Lattice Field Theory at Non-zero Chemical Potential

Simon Hands University of Wales Swansea

- The Sign Problem and the Silver Blaze Problem
- Progress at small μ/T
- Taylor Expansion of the Free Energy
- NJL model: Fermi Surface and Superfluidity
- Speculations

KITP Santa Barbara 31st March

The QCD Phase Diagram

The Sign Problem for $\mu \neq 0$

In Euclidean metric the QCD Lagrangian reads

$$\mathcal{L}_{QCD} = \bar{\psi}(M+m)\psi + \frac{1}{4}F_{\mu\nu}F_{\mu\nu}$$

with $M(\mu) = D[A] + \mu \gamma_0$

Straightforward to show $\gamma_5 M(\mu)\gamma_5 \equiv M^{\dagger}(-\mu) \Rightarrow \det M(\mu) = (\det M(-\mu))^*$

ie. Path integral measure is not positive definite for $\mu \neq 0$ Fundamental reason is explicit breaking of time reversal symmetry

Monte Carlo importance sampling, the mainstay of lattice QCD, is ineffective

A formal solution to the Sign Problem is *reweighting* ie. to include the phase of the determinant in the observable:

$$\langle \mathcal{O} \rangle \equiv \frac{\langle \langle \mathcal{O} \operatorname{arg}(\operatorname{det} M) \rangle \rangle}{\langle \langle \operatorname{arg}(\operatorname{det} M) \rangle \rangle}$$

with $\langle \langle ... \rangle \rangle$ defined with a positive measure $|\det M| e^{-S_{boson}}$

Unfortunately both denominator and numerator are exponentially suppressed:

$$\langle \langle \arg(\det M) \rangle \rangle = \frac{\langle 1 \rangle}{\langle \langle 1 \rangle \rangle} = \frac{Z_{true}}{Z_{fake}} = \exp(-\Delta F) \sim \exp(-\#V)$$

Expect signal to be overwhelmed by noise in thermodynamic limit $V \to \infty$

What goes wrong with the usual positive HMC measure?

 $\det M^{\dagger}M \begin{cases} M & \operatorname{describes} & \operatorname{quarks} q \in 3 \\ M^{\dagger} & \operatorname{describes} \operatorname{conjugate} \operatorname{quarks} q^{c} \in \overline{3} \end{cases}$

In general $\exists qq^c$ gauge singlet bound states with B > 0In QCD some qq^c states degenerate with the pion \Rightarrow unphysical onset of "nuclear matter" at $\mu_o \simeq \frac{1}{2}m_{\pi}$. bug for QCD, feature for Two Color QCD...

Calculations with the true complex measure det²M nullify effects of qq^c states for the vacuum with T = 0, $\frac{1}{2}m_{\pi} < \mu \lesssim \frac{1}{3}m_N$ by cancellations among configurations with different signs/phases

The Silver Blaze Problem...

This has been numerically verified, eg. in TSMB simulations of Two Color QCD with N = 1 adjoint staggered quarks.

SJH, Montvay, Scorzato, Skullerud, EurPJ C22 (2001) 451

The fake transition to a superfluid phase, forbidden by the Pauli Principle, at $\mu_o a \simeq 0.35$ disappears once configurations with detM < 0 are included with the correct weight.

Analytic solution for Random Matrix model in the mesoscopic limit $V \to \infty$ with $m_\pi^2 f_\pi^2 V$ fixed

Akemann, Osborn, Splittorff & Verbaarschot, hep-th/0411030

For $\mu = 0$ or $N_f = 0 \rho$ is real, but in general it is a *complex-valued* spectral density.

In region $x > m \rho$ develops oscillatory structure with wavelength $\sim V^{-1}$, amplitude $\sim e^V \Rightarrow$ here is where the Silver Blaze cancellations take place

Two Routes into the Plane

(I) Analytic continuation in μ/T by either Taylor expansion @ $\mu = 0$ Gavai & Gupta; QCDTARO Simulation with imaginary $\tilde{\mu} = i\mu$ de Forcrand & Philipsen; d'Elia & Lombardo effective for $\frac{\mu}{T} < \min\left(\frac{\mu_E}{T_E}, \frac{\pi}{3}\right)$

(II) Reweighting along transition line $T_c(\mu)$ Fodor & Katz Overlap between (μ, T) and $(\mu + \Delta \mu, T + \Delta T)$ remains large, so multi-parameter reweighting unusually effective

The Bielefeld/Swansea group used a hybrid approach; ie. reweight using a Taylor expansion of the weight:

Allton et al, NSF-ITP-02-26

$$\ln\left(\frac{\det M(\mu)}{\det M(0)}\right) = \sum_{n} \frac{\mu^{n}}{n!} \frac{\partial^{n} \ln \det M}{\partial \mu^{n}}\Big|_{\mu=0}$$

This is relatively cheap and enables the use of large spatial volumes $(16^3 \times 4 \text{ using } N_f = 2 \text{ flavors of p4-improved staggered fermion}).$ Note with $L_t = 4$ the lattice is coarse: $a^{-1}(T_c) \simeq 700 \text{MeV}$

The (Pseudo)-Critical Line

E. Laermann & O. Philipsen, Ann.Rev.Nucl.Part.Sci.53:163,2003

Remarkable consensus on the curvature...

Same curvature also seen in direct HMC simulations with $\mu_I = \frac{1}{2}(\mu_u - \mu_d) \neq 0$ J. Kogut & D. Sinclair, PRD70:094501,2004

The pseudocritical line found lies well above the (μ_B, T) trajectory marking chemical freezeout in RHIC collisions

 \Rightarrow is there a region of the phase diagram where *hadrons* interact very strongly (ie. inelastically)? <u>So what?</u>

Taylor Expansion

In our most recent work we develop the Taylor expansion of the free energy to $O((\mu_q/T)^6)$ (recall $c_6^{SB} = 0$):

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu_q}{T}\right)^n \quad \text{with} \quad \frac{c_n(T)}{n!} = \frac{1}{n!} \frac{\partial^n(p/T^4)}{\partial(\mu_q/T)^n} \Big|_{\mu_q = 0}$$

Similarly we define expansion coefficients

$$c_n^I(T) = \frac{1}{n!} \frac{\partial^n (p/T^4)}{\partial (\mu_I/T)^2 \partial (\mu_q/T)^{n-2}} \bigg|_{\mu_q = 0, \mu_I = 0}$$

Equation of State Allton et al PRD68(2003)014507, hep-lat/0501030

Growth of Baryonic Fluctuations

Quark number susceptibility $\chi_q = \frac{\partial^2 \ln Z}{\partial \mu_q^2}$ appears singular near $\mu_q/T \sim 1$; isospin susceptibility $\chi_I = \frac{\partial^2 \ln Z}{\partial \mu_I^2}$ does not

Massless field at critical point a combination of the Galilean scalar isoscalars $\bar{\psi}\psi$ and $\bar{\psi}\gamma_0\psi$?

The Critical Endpoint μ_E/T_E

Taylor expansion estimate from apparent radius of convergence

 $\mu_E/T_E \gtrsim |c_4/c_6| \sim 3.3(6)$ Allton *et al* PRD68(2003)014507 $\mu_E/T_E \gtrsim 1.1(2)$ Gavai & Gupta hep-lat/0412035

Reweighting estimate via Lee-Yang zeroes $\mu_E/T_E = 2.2(2)$

Z. Fodor & S.D. Katz JHEP0404(2004)050

Analytic estimate via Binder cumulant $\langle (\delta O)^4 \rangle / \langle (\delta O)^2 \rangle^2$ evaluated at imaginary $\mu \Rightarrow \mu_E / T_E \sim O(20)!$

P. de Forcrand & O. Philipsen NPB673(2003)170

The QCD Phase Diagram

χ SB vs. Cooper Pairing

Color Superconductivity

In the asymptotic limit $\mu \to \infty$, $g(\mu) \to 0$, the ground state of QCD is the *color-flavor locked* (CFL) state characterised by a BCS instability, [D. Bailin and A. Love, Phys.Rep. 107(1984)325] ie. diquark pairs at the Fermi surface condense via

$$\langle q_i^{\alpha}(p)C\gamma_5 q_j^{\beta}(-p)\rangle \sim \varepsilon^{A\alpha\beta}\varepsilon_{Aij} \times \text{const.}$$

breaking $SU(3)_c \otimes SU(3)_L \otimes SU(3)_R \otimes U(1)_B \otimes U(1)_Q \longrightarrow SU(3)_\Delta \otimes U(1)_{\tilde{Q}}$

The ground state is simultaneously superconducting (8 gapped gluons, ie. get mass $O(\Delta)$),

superfluid (1 Goldstone), and transparent (all quasiparticles with $\tilde{Q} \neq 0$ gapped). [M.G. Alford, K. Rajagopal and F. Wilczek, Nucl.Phys.B537(1999)443] At smaller densities such that $\mu/3 \sim k_F \lesssim m_s$, expect pairing between u and d only \Rightarrow "2SC" phase

$$\langle q_i^{\alpha}(p)C\gamma_5 q_j^{\beta}(-p)\rangle \sim \varepsilon^{\alpha\beta3}\varepsilon_{ij} \times \text{const.}$$

 $SU(3)_c \longrightarrow SU(2)_c \Rightarrow 5/8$ gluons get gapped Global $SU(2)_L \otimes SU(2)_R \otimes U(1)_B$ unbroken

In the electrically-neutral matter expected in compact stars, $k_F^d - k_F^u = \mu_e = -2\mu_I \sim 100 \text{MeV} \Rightarrow \langle qq \rangle$ condensate can have $\vec{k} \neq 0$ breaking translational invariance \Rightarrow

crystallisation

Other ideas: a 2SC/normal mixed phase (plates? rods?) or a gapless 2SC where $\langle qq \rangle \neq 0$ but $\Delta = 0$?

The most urgent issue of all – whether quark matter exists in our universe – requires quantitative knowledge of the EOS $p(\mu), \epsilon(\mu)$ for all $\mu > \mu_o$

Four Fermi Models with $\mu \neq 0$

Effective description of soft pions interacting with constituent quarks

$$\mathcal{L}_{NJL} = \bar{\psi}(\partial \!\!\!/ + m + \mu\gamma_0)\psi - \frac{g^2}{2}[(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2]$$

$$\sim \bar{\psi}(\partial \!\!\!/ + m + \mu\gamma_0 + \sigma + i\gamma_5\vec{\pi}.\vec{\tau})\psi + \frac{2}{g^2}(\sigma^2 + \vec{\pi}.\vec{\pi})$$

Full global symmetry is $SU(2)_L \otimes SU(2)_R \otimes U(1)_B$

Dynamical χ SB for $g^2 > g_c^2 \Rightarrow$ isotriplet Goldstone $\vec{\pi}$, constituent quark mass $\Sigma \gg m$

Scalar isoscalar diquark $\psi^{tr} C \gamma_5 \otimes \tau_2 \otimes A^{color} \psi$ breaks U(1)_B \Rightarrow diquark condensation signals superfluidty

Lattice four-fermi models:

Preserve QCD-like symmetries and have either an interacting continuum limit (2+1*d*) or can be considered a cutoff effective theory (eg. $a^{-1} \approx 700$ MeV for NJL in 3+1*d*)

Exhibit spontaneous χ SB at low μ , but no confinement physics, and no sign of any "nuclear matter" phase where both $\langle \bar{\psi}\psi \rangle > 0$ and $n_B > 0$

 \Rightarrow for $\mu > \mu_c \sim \Sigma$ describe "relativistic quark matter"

Simulable with $\mu > 0$ because the Goldstone channel dominated by

which are only available to $q\bar{q}$, and not qq^c

Can break $U(1)_B$ with a real measure because excluded from Vafa-Witten theorem

Fermion Dispersion relation

μ	K_F	eta_F	K_F/\mueta_F
0.2	0.190(1)	0.989(1)	0.962(5)
0.3	0.291(1)	1.018(1)	0.952(4)
0.4	0.389(1)	0.999(1)	0.973(1)
0.5	0.485(1)	0.980(1)	0.990(2)
0.6	0.584(3)	0.973(1)	1.001(2)

The fermion dispersion relation is fitted with

$$E(|\vec{k}|) = -E_0 + D\sinh^{-1}(\sin|\vec{k}|)$$

yielding the Fermi liquid parameters

$$K_F = \frac{E_0}{D}; \qquad \beta_F = D \frac{\cosh E_0}{\cosh K_F}$$

Meson Correlation Functions (2+1*d*)

For $\vec{k} \neq 0$ can always excite a particle-hole pair with almost zero energy \Rightarrow algebraic decay of correlation functions

eg. in the spin-1 channel at $\mu a = 0.6$, $C_{\gamma_{\perp}}$ (left) looks algebraic as predicted by free field theory, but $C_{\gamma_{\parallel}}$ (right) decays exponentially.

The interpolating operator for $C_{\gamma_{\parallel}}$ in terms of continuum fermions is $\bar{q}(\gamma_0 \otimes \tau_2)q$ ie. with same quantum numbers as baryon charge density

Dispersion relation $\omega(|\vec{k}|)$ extracted from meson channel interpolated by an operator $\bar{\psi}(\gamma_0 \otimes \tau_2)\psi$

A massless vector excitation?

SJH & C.G. Strouthos PRD70(2004)056006

Sounds Unfamiliar?

Light vector states in medium are of of great interest: Brown-Rho scaling, vector condensation... In the Fermi liquid framework a possible explanation is a *collective excitation* thought to become important as $T \rightarrow 0$: Zero Sound

Ordinary FIRST sound is a breathing mode of the Fermi surface: velocity $\beta_1 \simeq \frac{1}{\sqrt{2}} \frac{k_F}{\mu}$

ZERO sound is a propagating distortion $\beta_0 \sim \beta_F$ must be determined self-consistently

Diquark Condensation (3+1*d*)

Diquark Condensation (3+1*d*)

The Superfluid Gap

Quasiparticle propagator:

$$\langle \psi_u(0)\bar{\psi}_u(t)\rangle = Ae^{-Et} + Be^{-E(L_t-t)} \langle \psi_u(0)\psi_d(t)\rangle = C(e^{-Et} - e^{-E(L_t-t)})$$

Results from $96 \times 12^2 \times L_t$, $\mu a = 0.8$ extrapolated to $L_t \to \infty$ (ie. $T \to 0$) then $j \to 0$

The gap at the Fermi surface signals superfluidity SJH & D.N. Walters PLB548(2002)196 PRD69(2004)076011

• $\Delta/\Sigma_0 \simeq 0.15 \Rightarrow \Delta \simeq 60 \text{MeV}$ in agreement with self-consistent approaches

• Similar formalism to study non-relativistic model for EITHER nuclear matter (with or without pions) \Rightarrow calculation of E/A D. Lee & T. Schäfer nucl-th/0412002 OR Cold atoms with tunable scattering length \Rightarrow study of BEC/BCS crossover M. Wingate cond-mat/0502372 In either case non-perturbative due to large dimensionless parameter $k_F|a| \gg 1$, with a the s-wave scattering length. N.B. $\mu_I \neq 0$ or $m_{\pi} < \infty$ reintroduces sign problem!

Cold Quarks, Hot Glue...

NJL models permit study of Fermi surface – Zero Sound, perhaps the most interesting effect, is expected in systems with *short-ranged* interactions, but not in gauge theories.

Conjugate quarks supposedly invalidate the quenched approximation (Gocksch, Stephanov) – arguments assume tightly bound qq^c states resulting from confinement. What if we could generate cold, non-confining gluon configurations?

We have tried generating deconfining 3*d* configurations using the Dimensional Reduction approach to hot QCD, then "reconstructing" the timelike direction to permit quenched inversions of $(M(\mu) + m)$

Resulting model contains only static modes, so NOT a systematic effective description of high densities.

The DR model is 3d SU(2) gauge-Higgs with parameters β , κ , λ Hart & Philipsen, NPB 572 (2000) 243

Large κ yields results similar to Two Color QCD Small κ qualitatively different – no variation of $\langle qq_+ \rangle$ with μ Gauge-fixed quark propagator $\mathcal{G}(\vec{k},t)$ indicates restored chiral symmetry (sawtooth) and exponential decay ($\Delta > 0$) Intriguingly, \mathcal{G} has no significant \vec{k} -dependence \Rightarrow no means of identifying k_F or the Fermi surface

What is the gauge invariant signal for a Fermi surface?

Are we using the right basis?

Large cancellations between diagrams/configurations hint at low calculation efficiency. Maybe gauge covariant quarks and gluons not natural degrees of freedom at high density?

Intriguing 3*d* example: approximate duality between scalar QED and complex scalar field theory

Kajantie, Laine, Neuhaus, Rajantie & Rummukainen NPB 699 (2004) 632

$$\mathcal{L}_{SQED} = \frac{1}{4}F^2 + |D\phi|^2 + m^2|\phi|^2 + \lambda|\phi|^4 - \frac{1}{2}\varepsilon_{ijk}H_iF_{jk}$$

H is a real source term coupled to a real B-field

 $\mathcal{L}_{SFT} = [(\partial - \tilde{e}H)_k \tilde{\phi}^*] [(\partial + \tilde{e}H)_k \tilde{\phi}] + \tilde{m}^2 |\tilde{\phi}|^2 + \tilde{\lambda} |\tilde{\phi}|^4 + \cdots$

 $\tilde{e}H_3$ with $\tilde{e} = 2\pi/e$ is a real chemical potential for the conserved charge density $2\text{Im}(\tilde{\phi}^*\partial_3\tilde{\phi})$

Duality exact at Coulomb/Higgs \Leftrightarrow broken/symmetric phase transition

What is the physical origin of the sign problem? eg:

•Two Color QCD with N = 1 adjoint staggered quarks – superconductor at large μ ?

•Repulsive Hubbard model away from half-filling – model of cuprate superconductivity?

- Technicolor chiral fermions in complex representations
- " τ_3 -QED" describing planar superconductivity by giving the photon a mass via a mixed Chern-Simons term

 $\det M \neq \det M^* \text{ since } \{\gamma_5, D\} \neq 0$

Dorey & Mavromatos NPB 386 (1992) 614

• QCD itself?

Conjecture: *any* system exhibiting spontaneous breaking of a local symmetry by a pairing mechanism has a sign problem when formulated in terms of local gauge covariant degrees of freedom

Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$

- Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$
- Still no consensus on location of the critical endpoint, but NO OBVIOUS OBSTACLE to calculation of μ_E/T_E

- Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$
- Still no consensus on location of the critical endpoint, but NO OBVIOUS OBSTACLE to calculation of μ_E/T_E
- Need better control over: statistics; approach to the chiral limit; above all over approach to continuum limit

- Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$
- Still no consensus on location of the critical endpoint, but NO OBVIOUS OBSTACLE to calculation of μ_E/T_E
- Need better control over: statistics; approach to the chiral limit; above all over approach to continuum limit
- Fermi surface physics & superfluidity in NJL

- Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$
- Still no consensus on location of the critical endpoint, but NO OBVIOUS OBSTACLE to calculation of μ_E/T_E
- Need better control over: statistics; approach to the chiral limit; above all over approach to continuum limit
- Fermi surface physics & superfluidity in NJL
- What does a gauge theory's Fermi surface look like? Can we find smarter bases to ease the sign problem?

- Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$
- Still no consensus on location of the critical endpoint, but NO OBVIOUS OBSTACLE to calculation of μ_E/T_E
- Need better control over: statistics; approach to the chiral limit; above all over approach to continuum limit
- Fermi surface physics & superfluidity in NJL
- What does a gauge theory's Fermi surface look like? Can we find smarter bases to ease the sign problem?

