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The QCD Phase Diagram
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The Sign Problem for µ 6= 0

In Euclidean metric the QCD Lagrangian reads

LQCD = ψ̄(M +m)ψ +
1

4
FµνFµν

with M(µ) = D/ [A] + µγ0

Straightforward to show γ5M(µ)γ5 ≡M †(−µ) ⇒
detM(µ) = (detM(−µ))∗

ie. Path integral measure is not positive definite for µ 6= 0
Fundamental reason is explicit breaking of time reversal symmetry

Monte Carlo importance sampling, the mainstay of lattice
QCD, is ineffective
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A formal solution to the Sign Problem is reweighting ie. to
include the phase of the determinant in the observable:

〈O〉 ≡
〈〈O arg(detM)〉〉

〈〈arg(detM)〉〉

with 〈〈. . .〉〉 defined with a positive measure |detM |e−Sboson

Unfortunately both denominator and numerator are
exponentially suppressed:

〈〈arg(detM)〉〉 =
〈1〉

〈〈1〉〉
=
Ztrue

Zfake

= exp(−∆F ) ∼ exp(−#V )

Expect signal to be overwhelmed by noise in
thermodynamic limit V → ∞
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What goes wrong with the usual positive HMC measure?

detM †M

{

M describes quarks q ∈ 3

M † describes conjugate quarks qc ∈ 3̄

In general ∃ qqc gauge singlet bound states with B > 0

In QCD some qqc states degenerate with the pion
⇒ unphysical onset of “nuclear matter” at µo '

1

2
mπ.

bug for QCD, feature for Two Color QCD. . .

Calculations with the true complex measure det2M nullify
effects of qqc states for the vacuum with T = 0,
1

2
mπ < µ <∼

1

3
mN by cancellations among configurations

with different signs/phases
The Silver Blaze Problem. . .
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This has been numerically verified, eg. in TSMB
simulations of Two Color QCD with N = 1 adjoint
staggered quarks.

SJH,Montvay,Scorzato,Skullerud, EurPJ C22 (2001) 451

The fake transition to a superfluid phase, forbidden by the
Pauli Principle, at µoa ' 0.35 disappears once
configurations with detM < 0 are included with the correct
weight.
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Analytic solution for Random Matrix model in the
mesoscopic limit V → ∞ with m2

πf
2
πV fixed

Akemann, Osborn, Splittorff & Verbaarschot, hep-th/0411030
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〈ψ̄ψ〉 = lim
m→0

lim
V →∞

V
−1

dxdy
ρ(x, y,m;µ)

x+ iy +m

For µ = 0 or Nf = 0 ρ is real, but in general it is a
complex-valued spectral density.

In region x > m ρ develops oscillatory structure with
wavelength ∼ V −1, amplitude ∼ eV ⇒
here is where the Silver Blaze cancellations take place
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Two Routes into the Plane
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µ

T

Analytic continuation 

µ

Reweighting in    ,   (T)µ

in    /T

β

(I) Analytic continuation in
µ/T by either
Taylor expansion @ µ = 0

Gavai & Gupta; QCDTARO

Simulation with imaginary
µ̃ = iµ de Forcrand & Philipsen;

d’Elia & Lombardo

effective for µ
T
< min

(

µE

TE
, π

3

)

(II) Reweighting along transition line Tc(µ) Fodor & Katz

Overlap between (µ, T ) and (µ+ ∆µ, T + ∆T ) remains
large, so multi-parameter reweighting unusually effective
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The Bielefeld/Swansea group used a hybrid approach; ie. reweight
using a Taylor expansion of the weight:

Allton et al , NSF-ITP-02-26

ln

(

detM(µ)

detM(0)

)

=
∑

n

µn

n!

∂n ln detM

∂µn

∣

∣

∣

∣

µ=0

This is relatively cheap and enables the use of large spatial volumes
(163 × 4 using Nf = 2 flavors of p4-improved staggered fermion).
Note with Lt = 4 the lattice is coarse: a−1(Tc) ' 700MeV
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The (Pseudo)-Critical Line
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E. Laermann & O. Philipsen, Ann.Rev.Nucl.Part.Sci.53:163,2003

Remarkable consensus on the curvature. . .

Same curvature also seen in direct HMC simulations with
µI = 1

2
(µu − µd) 6= 0 J. Kogut & D. Sinclair, PRD70:094501,2004
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The pseudocritical line found lies well above the (µB, T )
trajectory marking chemical freezeout in RHIC collisions

⇒ is there a region of the phase diagram where hadrons
interact very strongly (ie. inelastically)? So what?
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Taylor Expansion
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In our most recent work we develop the Taylor expansion
of the free energy to O((µq/T )6) (recall cSB

6 = 0):

p

T 4
=

∞
∑

n=0

cn(T )
(µq

T

)n

with cn(T ) =
1

n!

∂n(p/T 4)

∂(µq/T )n

∣

∣

∣

∣

µq=0

Similarly we define expansion coefficients

cIn(T ) =
1

n!

∂n(p/T 4)

∂(µI/T )2∂(µq/T )n−2

∣

∣

∣

∣

µq=0,µI=0
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Equation of State Allton et al PRD68(2003)014507, hep-lat/0501030
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∆
p(µ, T )
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=
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T 4
=

nmax
∑

n=1

cn(T )
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∂p

∂µ
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Growth of Baryonic Fluctuations
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Quark number susceptibility χq = ∂2 ln Z
∂µ2

q
appears singular

near µq/T ∼ 1; isospin susceptibility χI = ∂2 ln Z
∂µ2

I
does not

Massless field at critical point a combination of the
Galilean scalar isoscalars ψ̄ψ and ψ̄γ0ψ?
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The Critical Endpoint µE/TE

Reweighting estimate
via Lee-Yang zeroes
µE/TE = 2.2(2)

Z. Fodor & S.D. Katz JHEP0404(2004)050

Taylor expansion estimate
from apparent radius of
convergence
µE/TE

>
∼ |c4/c6| ∼ 3.3(6)

Allton et al PRD68(2003)014507

µE/TE
>
∼ 1.1(2)

Gavai & Gupta hep-lat/0412035 0 2 4 6 8 10
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Analytic estimate via Binder cumulant 〈(δO)4〉/〈(δO)2〉2

evaluated at imaginary µ ⇒ µE/TE ∼ O(20)!
P. de Forcrand & O. Philipsen NPB673(2003)170
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The QCD Phase Diagram
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χSB vs. Cooper Pairing
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Color Superconductivity

In the asymptotic limit µ→ ∞, g(µ) → 0, the ground state
of QCD is the color-flavor locked (CFL) state characterised
by a BCS instability, [D. Bailin and A. Love, Phys.Rep. 107(1984)325]

ie. diquark pairs at the Fermi surface condense via

〈qα
i (p)Cγ5q

β
j (−p)〉 ∼ εAαβεAij × const.

breaking SU(3)c⊗SU(3)L⊗SU(3)R ⊗U(1)B ⊗U(1)Q
−→SU(3)∆⊗U(1)Q̃

The ground state is simultaneously
superconducting (8 gapped gluons, ie. get mass O(∆)),

superfluid (1 Goldstone),
and transparent (all quasiparticles with Q̃ 6= 0 gapped).

[M.G. Alford, K. Rajagopal and F. Wilczek, Nucl.Phys.B537(1999)443]
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At smaller densities such that µ/3 ∼ kF
<
∼ ms, expect

pairing between u and d only ⇒ “2SC” phase

〈qα
i (p)Cγ5q

β
j (−p)〉 ∼ εαβ3εij × const.

SU(3)c −→ SU(2)c ⇒ 5/8 gluons get gapped
Global SU(2)L⊗SU(2)R⊗U(1)B unbroken

In the electrically-neutral matter expected in compact stars,
kd

F − ku
F = µe = −2µI ∼ 100MeV ⇒ 〈qq〉 condensate can

have ~k 6= 0 breaking translational invariance ⇒
crystallisation

Other ideas: a 2SC/normal mixed phase (plates? rods?)
or a gapless 2SC where 〈qq〉 6= 0 but ∆ = 0?

The most urgent issue of all – whether quark matter exists
in our universe – requires quantitative knowledge of the
EOS p(µ), ε(µ) for all µ > µo
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Four Fermi Models with µ 6= 0

Effective description of soft pions interacting with
constituent quarks

LNJL = ψ̄(∂/ +m+ µγ0)ψ −
g2

2
[(ψ̄ψ)2 − (ψ̄γ5~τψ)2]

∼ ψ̄(∂/ +m+ µγ0 + σ + iγ5~π.~τ)ψ +
2

g2
(σ2 + ~π.~π)

Full global symmetry is SU(2)L⊗SU(2)R⊗U(1)B

Dynamical χSB for g2 > g2
c ⇒

isotriplet Goldstone ~π, constituent quark mass Σ � m

Scalar isoscalar diquark ψtrCγ5 ⊗ τ2 ⊗Acolorψ breaks U(1)B
⇒ diquark condensation signals superfluidty
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Lattice four-fermi models:

Preserve QCD-like symmetries and have either an
interacting continuum limit (2+1d) or can be considered a
cutoff effective theory (eg. a−1 ≈ 700MeV for NJL in 3+1d)

Exhibit spontaneous χSB at low µ, but no confinement
physics, and no sign of any “nuclear matter” phase where
both 〈ψ̄ψ〉 > 0 and nB > 0

⇒ for µ > µc ∼ Σ describe “relativistic quark matter”

Simulable with µ > 0 because the Goldstone channel
dominated by

γγ5 5

which are only available to qq̄, and not qqc

Can break U(1)B with a real measure because excluded from Vafa-Witten theorem
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Fermion Dispersion relation
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0.5 0.485(1) 0.980(1) 0.990(2)
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The fermion dispersion relation is fitted with

E(|~k|) = −E0 +D sinh−1(sin |~k|)

yielding the Fermi liquid parameters

KF =
E0

D
; βF = D

coshE0

coshKF
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Meson Correlation Functions (2+1d)

exp(ik.x)ψψ( )xψψ(0)
x
Σ

For ~k 6= 0 can always excite a particle-hole pair with almost
zero energy ⇒ algebraic decay of correlation functions
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zero energy
pairs

⇒ C ∼ 1

x2
0

|~k| = 2µ � � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �
Overhauser instability
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⇒ C ∼ e−(|~k|−2µ)x0

x
3/2
0
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eg. in the spin-1 channel at µa = 0.6, Cγ⊥ (left) looks
algebraic as predicted by free field theory, but Cγ‖ (right)
decays exponentially.

The interpolating operator for Cγ‖ in terms of continuum
fermions is q̄(γ0 ⊗ τ2)q
ie. with same quantum numbers as baryon charge density
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A massless vector excitation?
SJH & C.G. Strouthos PRD70(2004)056006
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Sounds Unfamiliar?
Light vector states in medium are of of great interest:

Brown-Rho scaling, vector condensation. . .
In the Fermi liquid framework a possible explanation is a
collective excitation thought to become important as
T → 0: Zero Sound

Ordinary FIRST sound is a breathing mode
of the Fermi surface: velocity β1 '

1√
2

kF

µ

ZERO sound is a propagating distortion
of the Fermi surface: velocity β0 ∼ βF must be determined
self-consistently
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Diquark Condensation (3+1d)
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Diquark Condensation (3+1d)
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Our fits exclude j ≤ 0.2
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The Superfluid Gap

Quasiparticle
propagator:

〈ψu(0)ψ̄u(t)〉 = Ae−Et +Be−E(Lt−t)

〈ψu(0)ψd(t)〉 = C(e−Et − e−E(Lt−t))

Results from 96 × 122 × Lt, µa = 0.8 extrapolated to
Lt → ∞ (ie. T → 0) then j → 0
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The gap at the Fermi surface signals superfluidity
SJH & D.N. Walters PLB548(2002)196 PRD69(2004)076011
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• ∆/Σ0 ' 0.15 ⇒ ∆ ' 60MeV
in agreement with self-consistent approaches

• Similar formalism to study non-relativistic model for
EITHER nuclear matter (with or without pions)
⇒ calculation of E/A D. Lee & T. Schäfer nucl-th/0412002

OR Cold atoms with tunable scattering length
⇒ study of BEC/BCS crossover M. Wingate cond-mat/0502372

In either case non-perturbative due to large dimensionless
parameter kF |a| � 1, with a the s-wave scattering length.

N.B. µI 6= 0 or mπ <∞ reintroduces sign problem!
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Cold Quarks, Hot Glue. . .
NJL models permit study of Fermi surface – Zero Sound,
perhaps the most interesting effect, is expected in systems
with short-ranged interactions, but not in gauge theories.

Conjugate quarks supposedly invalidate the quenched
approximation (Gocksch, Stephanov) – arguments assume
tightly bound qqc states resulting from confinement.
What if we could generate cold, non-confining gluon
configurations?

We have tried generating deconfining 3d configurations
using the Dimensional Reduction approach to hot QCD,
then “reconstructing” the timelike direction to permit
quenched inversions of (M(µ) +m)
Resulting model contains only static modes, so NOT a systematic effective description of

high densities.
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The DR model is 3d SU(2) gauge-Higgs with parameters
β, κ, λ Hart & Philipsen, NPB 572 (2000) 243

Large κ yields results similar to Two Color QCD
Small κ qualitatively different – no variation of 〈qq+〉 with µ
Gauge-fixed quark propagator G(~k, t) indicates restored
chiral symmetry (sawtooth) and exponential decay (∆ > 0)
Intriguingly, G has no significant ~k-dependence ⇒
no means of identifying kF or the Fermi surface

What is the gauge invariant signal for a Fermi surface?
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Are we using the right basis?
Large cancellations between diagrams/configurations hint
at low calculation efficiency. Maybe gauge covariant quarks
and gluons not natural degrees of freedom at high density?

Intriguing 3d example: approximate duality between scalar
QED and complex scalar field theory

Kajantie, Laine, Neuhaus, Rajantie & Rummukainen NPB 699 (2004) 632

LSQED =
1

4
F

2 + |Dφ|2 +m
2|φ|2 + λ|φ|4 −

1

2
εijkHiFjk

H is a real source term coupled to a real B-field

LSFT = [(∂ − ẽH)kφ̃
∗][(∂ + ẽH)kφ̃] + m̃

2|φ̃|2 + λ̃|φ̃|4 + · · ·

ẽH3 with ẽ = 2π/e is a real chemical potential for the
conserved charge density 2Im(φ̃∗∂3φ̃)

Duality exact at Coulomb/Higgs ⇔ broken/symmetric phase transition
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What is the physical origin of the sign problem? eg:

•Two Color QCD with N = 1 adjoint staggered quarks –
superconductor at large µ?

•Repulsive Hubbard model away from half-filling –
model of cuprate superconductivity?

• Technicolor – chiral fermions in complex representations

• “τ3-QED” describing planar superconductivity by giving
the photon a mass via a mixed Chern-Simons term

detM 6= detM∗ since {γ5, D/ } 6= 0

Dorey & Mavromatos NPB 386 (1992) 614

• QCD itself?

Conjecture: any system exhibiting spontaneous breaking
of a local symmetry by a pairing mechanism has a sign
problem when formulated in terms of local gauge covariant
degrees of freedom
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Summary
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Summary

Approaches with different systematics are yielding
encouraging agreement on the critical line Tc(µ)

Still no consensus on location of the critical endpoint,
but NO OBVIOUS OBSTACLE to calculation of µE/TE

Need better control over: statistics; approach to the
chiral limit; above all over approach to continuum limit

Fermi surface physics & superfluidity in NJL

What does a gauge theory’s Fermi surface look like?
Can we find smarter bases to ease the sign problem?

And finally. . .
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