QCD and a Holographic Model of Hadrons

M. Stephanov

U. of Illinois at Chicago

Motivation and plan

- \checkmark Large N_c :
 - planar diagrams dominate
 - resonances are infinitely narrow
- Effective theory in terms of resonances is weakly coupled?
- What is this effective theory?
- String theory explicit examples suggest it is a 5d effective theory.
- Bottom-up approach.

A holographic model: J. Erlich, E. Katz, D. Son and M.S., hep-ph/0501128.

(L. Da Rold, A. Pomarol, hep-ph/0501218)

- ABC of AdS/CFT (holography)
- A simple model:
 - chiral symmetry breaking _
 - quark-hadron duality, sum rules
 - OPE
 - etc.

This talk:

AdS/CFT correspondence: formulation

Begin with $S_4[G,q] = \int d^4x \mathcal{L}[G,q]$.

Generating functional for correlators of an operator \mathcal{O} (examples of \mathcal{O} : $G^a_{\mu\nu}G^{\mu\nu a}$, $\bar{q}q, \bar{q}\gamma^{\mu}t^{a}q, \ldots$):

$$Z_4[\phi_0(x)] = \int \mathcal{D}[G,q] \exp\left\{iS_4 + i\int_{x^4}\phi_0\mathcal{O}\right\}.$$

Polchinski-Strassler slice

$$Z_5[\phi_0(x)] = \int_{\phi(x,\epsilon)=\phi_0(x)} \mathcal{D}[\phi] e^{iS_5[\phi]}$$

$$Z_4 = Z_5$$

(Generating functional) [4d sources $\phi_0(x)$] = (Effective action) [fields $\phi_0(x)$].

Example: conserved current

Let \mathcal{O} be a current: $J^{\mu a} = \bar{q}\gamma^{\mu}t^{a}q$. ϕ_{0} : source for $J^{\mu a}$ is a vector potential $V_{0}^{\mu a}$. I.e.,

$$Z_4[V] = \int \mathcal{D}[G,q] \exp\left\{iS_4 + i\int_{x^4} V_0 \cdot J\right\}.$$

We shall look at

$$\int d^4x e^{iqx} \langle J^{\mu a}(x) J^{\nu b}(y) \rangle = \delta^{ab} (q^{\mu} q^{\nu} - q^2 \eta^{\mu \nu}) \Pi(-q^2).$$

In QCD, scale invariance in the UV means $\Pi(Q^2) \sim \ln(Q^2)$.

5d action for V_m^a ? Let us take

$$S_5 = -\frac{1}{4g_5^2} \int d^5 x \sqrt{g} \, V_{mn}^a V^{amn}$$

At tree level, we need to minimize S_5 wrt V with the b.c. $V(x, \epsilon) = V_0(x)$. Then take 2 variational derivatives wrt $V_0(x)$ and $V_0(y)$ to find $\langle J(x)J(y)\rangle$.

Example: current (contd)

 $V_{5} = 0 \text{ gauge; linearize; Fourier } x^{\mu} \to q^{\mu}:$ $\partial_{z} \left(\frac{1}{z} \partial_{z} V_{\perp}\right) + \frac{q^{2}}{z} V_{\perp} = 0.$ $V_{\perp}(q, z)$ $V_{\perp}(q, z)$ $V_{\perp}(q, z)$ $V_{\perp}(q, z)$ $V_{\perp}(q, z)$

Action to quadratic order in V, on eqs of motion (int. by parts):

$$S_5 = -\frac{1}{2g_5^2} \int d^4x \, \frac{1}{z} \, V^a_\mu \partial_z V^{a\mu} \Big|_{z=\epsilon}$$

Let V(q, z) be a solution with V(q, z) = 1, then we need $(V_{\mu}^{a})_{\perp} = V_{\mu 0}^{a}(q)V(q, z)$.

$$\Pi(Q^{2}) = -\frac{1}{2g_{5}^{2}} \frac{1}{Q^{2}} \frac{\partial_{z} V(q, z)}{z} \Big|_{z=\epsilon}$$

$$V(q,z) = (Qz)K_1(Qz) = 1 + \frac{Q^2 z^2}{2} \ln(Qz) + \mathcal{O}(z^2).$$

Thus

$$\Pi(Q^2) = -\frac{1}{2g_5^2} \ln Q^2 + \text{contact terms}$$

In QCD

$$\Pi(Q) = -\frac{N_c}{24\pi^2} \ln Q^2 + \dots$$

In AdS_5 :

$$\Pi(Q^2) = -\frac{1}{2g_5^2} \ln Q^2 + \dots$$

Thus

$$g_5^2 = \frac{12\pi^2}{N_c}$$

Large $N_c \Leftrightarrow$ small coupling

Example: current (summary notes)

 $\frac{\delta S_{5,\text{eff}}}{\delta (V_0)_{\parallel}} = 0$ corresponds to $\partial_{\mu} J^{\mu} = 0.$

 $\log Q^2 \leftarrow$ scale invariance of the 5d theory (metric).

"Dictionary":

operator \mathcal{O}

4d	\leftrightarrow	5d
W_4	\leftrightarrow	$S_{5,\mathrm{eff}}$
rator $\mathcal{O}(x)$ (ϕ_0 – source)	\leftrightarrow	field $\phi(x,z)$ (ϕ_0 – boundary value)
scale invariance ($\log Q$)	\leftrightarrow	scale invariance
$\partial_{\mu}J^{\mu} = 0$	\leftrightarrow	gauge invariance
large N_c	\leftrightarrow	small g_5
large Q	\leftrightarrow	small z

dimension of $\mathcal{O} \quad \leftrightarrow \quad \text{mass of } \phi$

Dimension of operator and 5d mass

$$\mathcal{L}_5 = \frac{1}{2}\sqrt{g} \left(g^{mn} \partial_m \phi \,\partial_n \phi - m_5^2 \,\phi^2 \right)$$

 $z \rightarrow 0 \ (qz \ll 1)$ solution of LE equations for \mathcal{L}_5 :

$$\begin{split} \phi \sim z^{\Delta_{\phi}} & \text{with} & (\Delta_{\phi} - 4)\Delta_{\phi} - m_5^2 = 0. \\ m_5^2 = 0 & : & \phi \to \text{const} = \phi_0 \quad \text{OK}; \\ m_5^2 \neq 0 & : & \phi z^{-\Delta_{\phi}} \to \text{const} = \phi_0. \\ [\phi] = 0 & \Rightarrow & [\phi_0] = +\Delta_{\phi} \quad ([x] = -1) \\ \text{Thus} \left[\mathcal{O}\right] = 4 - \Delta_{\phi} \equiv \Delta_{\mathcal{O}} \text{ and} \end{split}$$

$$m_5^2 = (\Delta_\phi - 4)\Delta_\phi = \Delta_\mathcal{O}(\Delta_\mathcal{O} - 4)$$

For example,

$$T^{\mu}_{\mu}$$
 : $m_5^2 = 0; \quad \bar{\psi}\psi$: $m_5^2 = -3;$
 J^{μ} : $m_5^2 = (\Delta - 3)(\Delta - 1) = 0.$

Spontaneous symmetry breaking

$$S_5 = \frac{1}{2} \int d^5 x \sqrt{g} \, g^{mn} \partial_m \phi \, \partial_n \phi + \dots$$

with b.c. at z = 0: $\phi z^{-\Delta_{\phi}} = \phi_0$. The extremum:

$$\phi_{\rm sol} = \phi_0 \, z^{\Delta_\phi} + A \, z^{\Delta_{\mathcal{O}}} \qquad (\Delta_\phi + \Delta_{\mathcal{O}} = 4).$$

Vary the source: $\phi_0 \rightarrow \phi_0 + \delta \phi_0$:

$$\delta S_5 = \int d^4x \ z^{-3} \ \delta \phi \ \partial_z \phi \Big|_{z=0} + \ldots = (\Delta_{\mathcal{O}} - \Delta_{\phi}) \int d^4x \ \delta \phi_0 \ A$$

Compare to W_4 :

$$\delta W_4 = \int d^4 x \; \delta \phi_0 \; \langle \mathcal{O} \rangle$$

Therefore

$$A = \frac{1}{2\Delta_{\mathcal{O}} - 4} \langle \mathcal{O} \rangle$$

 $A \rightarrow 0$ as $\phi_0 \rightarrow 0$: spontaneous symmetry breaking

The model

4D: $\mathcal{O}(x)$	5D: $\phi(x,z)$	p	$\Delta_{\mathcal{O}}$	$(m_5)^2$
$ar{q}_L \gamma^\mu t^a q_L$	$A^a_{L\mu}$	1	3	0
$ar{q}_R \gamma^\mu t^a q_R$	$A^a_{R\mu}$	1	3	0
$\overline{q}^lpha_R q_L^eta$	$(2/z)X^{lphaeta}$	0	3	-3

$$S = \int_0^{z_m} d^5 x \sqrt{g} \operatorname{Tr} \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} (F_L^2 + F_R^2) \right\}$$

Symmetries: $X \to LXR^{\dagger}$, $F_L \to LF_LL^{\dagger}$, $F_R \to RF_RR^{\dagger}$.

Boundary conditions at $z = z_m$: $F_{z\mu} = 0$, $D_z X = 0$.

Chiral symmetry breaking:

$$X_0(z) = \frac{1}{2}Mz + \frac{1}{2}\Sigma z^3.$$

Matching to QCD: $\Sigma^{\alpha\beta} = \langle \bar{q}^{\alpha}q^{\beta} \rangle$. We take $M = m_q \mathbf{1}$ and $\Sigma = \sigma \mathbf{1}$.

Four free parameters: m_q , σ , z_m and g_5 . Compared to three in QCD: m_q , Λ_{QCD} and N_c .

Hadrons and QCD sum rule

$$\partial_z \left(\frac{1}{z}\partial_z V_\perp\right) + \frac{q^2}{z}V_\perp = 0.$$

Normalizable modes: $\psi_{\rho}(\epsilon) = 0$, $\partial_z \psi_{\rho}(z_m) = 0$, $\int (dz/z) \psi_{\rho}(z)^2 = 1$.

$$\Pi_{V}(-q^{2}) = -\frac{1}{2g_{5}^{2}} \frac{1}{Q^{2}} \frac{\partial_{z} V(q, z)}{z} = -\frac{1}{g_{5}^{2}} \sum_{\rho} \frac{\left[\psi_{\rho}'(\epsilon)/\epsilon\right]^{2}}{(q^{2} - m_{\rho}^{2})m_{\rho}^{2}} \cdot \mathbf{r}$$

$$F_{\rho} = \frac{1}{g_{5}} \frac{\psi_{\rho}'(\epsilon)}{\epsilon} \cdot \mathbf{r}$$
rule:

QCD sum rule:

$$\Pi_V(Q^2) = -\frac{1}{2g_5^2} \ln Q^2 + \dots$$

Chiral symmetry breaking and GOR relation

 $A = (A_L - A_R)/2, \quad X = X_0 \exp(i2\pi^a t^a), \quad A_\mu = A_{\mu\perp} + \partial_\mu \varphi, \quad v(z) = m_q z + \sigma z^3$

$$\delta A_{\perp}: \qquad \partial_{z} \left(z^{-1} \partial_{z} A_{\perp} \right) + z^{-1} q^{2} A_{\perp} - z^{-3} g_{5}^{2} v^{2} A_{\perp} = 0;$$

$$\delta A_{\parallel}: \qquad \partial_z \left(z^{-1} \partial_z \varphi \right) + z^{-3} g_5^2 v^2 (\pi - \varphi) = 0;$$

$$\delta A_z: \qquad -q^2 \partial_z \varphi + z^{-2} g_5^2 v^2 \partial_z \pi = 0.$$

$$\pi(z) = m_{\pi}^2 \int_0^z du \frac{u^3}{v(u)^2} \cdot \frac{1}{g_5^2 u} \partial_u A(0, u) = -m_{\pi}^2 f_{\pi}^2 \frac{1}{2m_q \sigma} \quad \text{for} \quad z \gg \sqrt{m_q / \sigma}.$$

Thus $m_{\pi}^2 f_{\pi}^2 = 2m_q \sigma + \mathcal{O}(m_q^2)$. (Still holds for $\Delta_{\sigma} \neq 3$, or deformed AdS.)

GOR (contd)

Arbitrary Δ_{σ} $(v(z) = m_q z^{\Delta_m} + \sigma z^{\Delta_{\sigma}})$:

$$1 = m_{\pi}^2 f_{\pi}^2 \int_0^\infty dz \frac{z^3}{(m_q \, z^{\Delta_m} + \sigma \, z^{\Delta_\sigma})^2} = m_{\pi}^2 f_{\pi}^2 \, \frac{1}{(\Delta_\sigma - \Delta_m)m_q \sigma} = \frac{m_{\pi}^2 f_{\pi}^2}{2m_q \langle \bar{q}q \rangle}$$

$$(\Delta_{\sigma} - \Delta_m)\sigma = 2\langle \bar{q}q \rangle$$

Meson wavefunctions and couplings

Couplings:

$$g_{\rho\pi\pi} = g_5 \int dz \, \frac{v^2(z)}{z^3} \, (\pi - \varphi)(z) \cdot \pi(z) \cdot \psi_\rho(z),$$

Comparison with experiment

Observable	Measured	Model	Units
m_{π}	139.6 ±0.0004	139.6*	MeV
$m_{ ho}$	$775.8 {\pm} 0.5$	775.8*	MeV
m_{a_1}	1230 ±40	1363	MeV
f_{π}	$92.4 {\pm} 0.35$	92.4*	MeV
$F_{ ho}^{1/2}$	345 ±8	329	MeV
$F_{a_1}^{1/2}$	433 ±13	452	MeV
$g_{ ho\pi\pi}$	$6.03 {\pm} 0.07$	6.63	—
$m_{ ho'}$	1720 ±20	1783	MeV

•
$$N_c \Rightarrow g_5 = \sqrt{12\pi^2/N_c} = 2\pi.$$

• $m_{\rho} = 2.405/z_m \Rightarrow z_m = (323 \text{ MeV})^{-1}.$
• $f_{\pi} \text{ and } m_{\pi} \Rightarrow \sigma = (327 \text{ MeV})^3 \text{ and } m_q = 2.29 \text{ MeV}.$

Holographic model vs open moose

OPE and higher order terms

$$\Pi_V(Q^2) = -\frac{1}{2g_5^2} \ln Q^2; \qquad \Pi_A(Q^2) = \Pi_V(Q^2) + \#\frac{m_q\sigma}{Q^4} + \mathcal{O}\left(m_q^2, \frac{\sigma^2}{Q^6}\right);$$

(In open moose: $\Pi_A - \Pi_V \sim \exp(-\#Q)$.) In QCD:

$$\Pi_V(Q^2) = \ldots - \frac{m_q \sigma}{Q^4}; \qquad \Pi_A(Q^2) = \ldots + \frac{m_q \sigma}{Q^4};$$

$$\Delta \mathcal{L}_5 = \sqrt{g} \operatorname{Tr} \left[\gamma_{XFXF} (X^{\dagger} F_L X F_R) + \gamma_{X^2 F^2} (X X^{\dagger} F_L^2 + X^{\dagger} X F_R^2) \right]$$

Similarly: $\Pi_V = \ldots + \# \frac{\langle \alpha_s G^2 \rangle}{Q^4}$.

Need source h_0 for operator $\alpha_s G^2 \Rightarrow$ massless scalar field h in 5d. Classical solution: $h = h_0 + A_h z^4$. $A_h = (1/4) \langle \alpha_s G^2 \rangle$. Coupling $\Delta \mathcal{L}_5 = \gamma h (F_L^2 + F_R^2)$ gives $\Pi_V = \dots \# \gamma A_h / Q^4$.

Outlook

- $h(z,x) \longrightarrow$ glueball spectrum (Polchinski-Strassler, Boschi-Filho-Braga)
- strange mesons
- chiral anomaly (WZW)
- Baryons (Teramond-Brodsky)
 - finite density?
- **•** running of α_s (log violations of scaling)