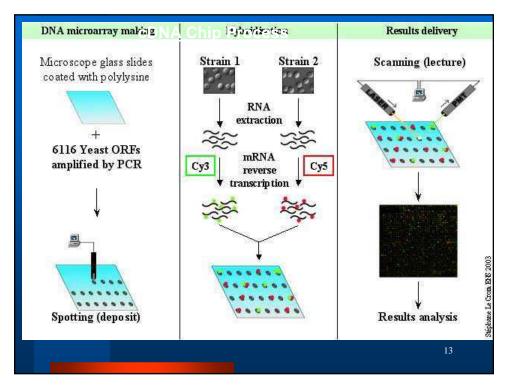
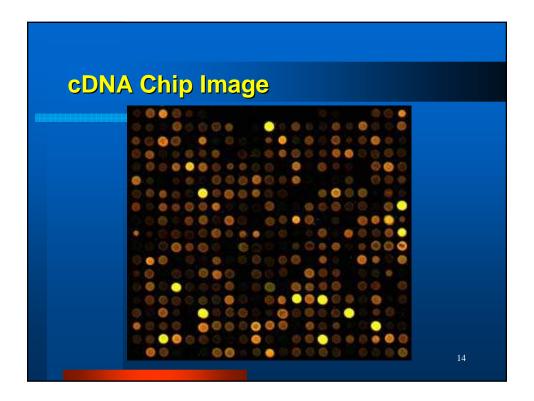
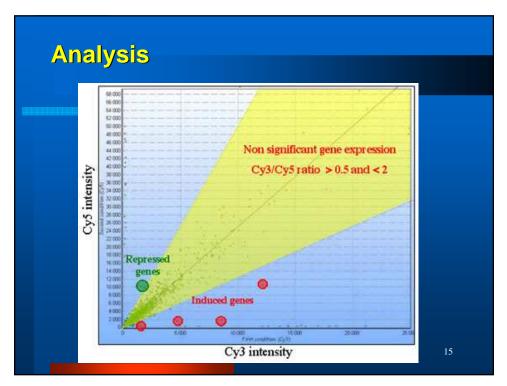
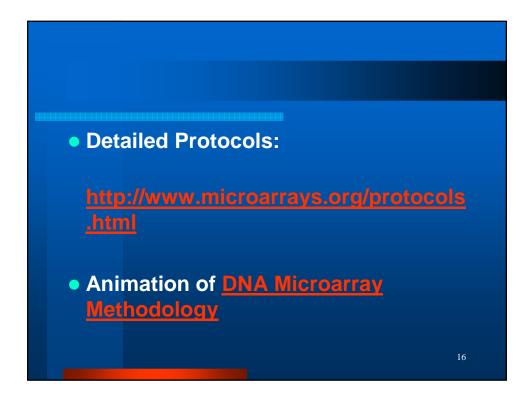
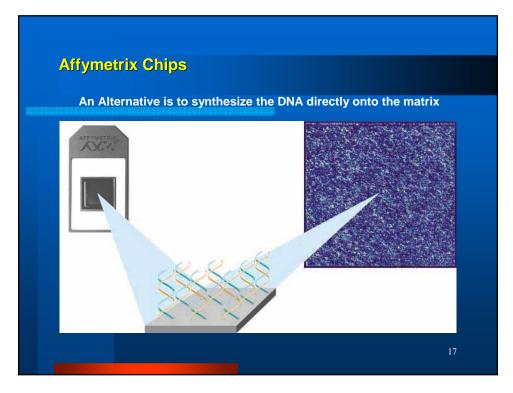

the genetic de, each amino dd is coded for y three mRNA ases arranged	2nd	is at t	econd base the top of hart.	c The third base In the codon is found along the right side of the chart.				
a specific 1st		U	С	Α	G			
	U	Phenylalanine Phenylalanine Leucine Leucine	Serine Serine Serine Serine	Tyrosine Tyrosine Stop Stop	Cysteine Cysteine <i>Stop</i> Tryptophan	U C A G		
The first base in a codon is found along the left side of the chart.	C	Leucine Leucine Leucine Leucine	Proline Proline Proline Proline	Histidine Histidine Glutamine Glutamine	Arginine Arginine Arginine Arginine	U C A G		
	A	Isoleucine Isoleucine Isoleucine Methionine	Threonine Threonine Threonine Threonine	Asparagine Asparagine Lysine Lysine	Serine Serine Arginine Arginine	U C A G		
	G	Valine Valine Valine Valine Valine	Alanine Alanine Alanine Alanine	Aspartic acid Aspartic acid Glutamic acid Glutamic acid	Glycine Glycine Glycine Glycine	U C A G		

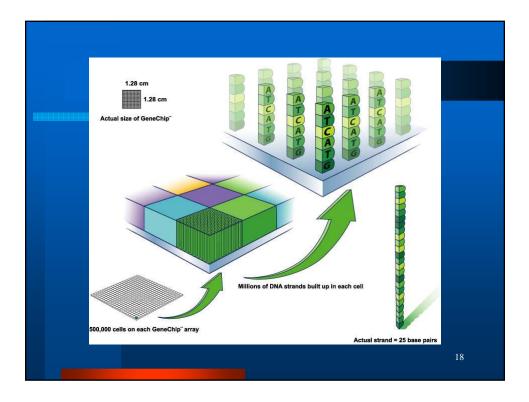


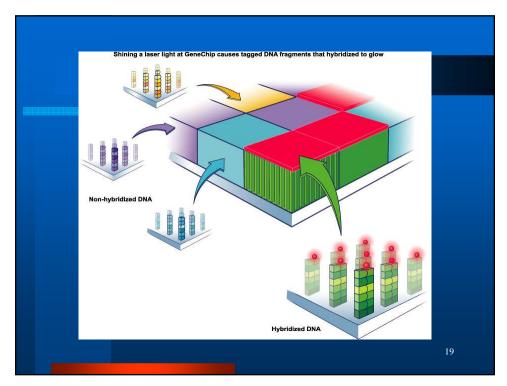


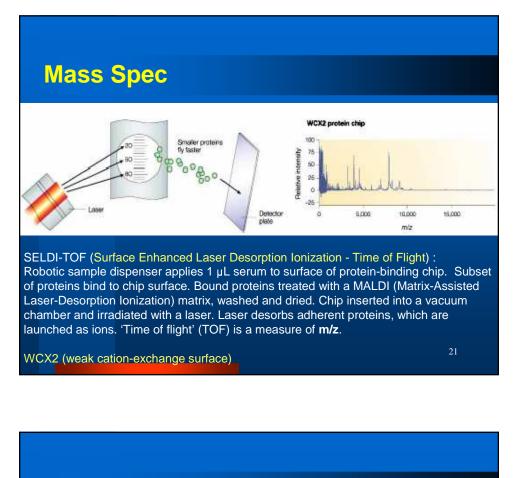


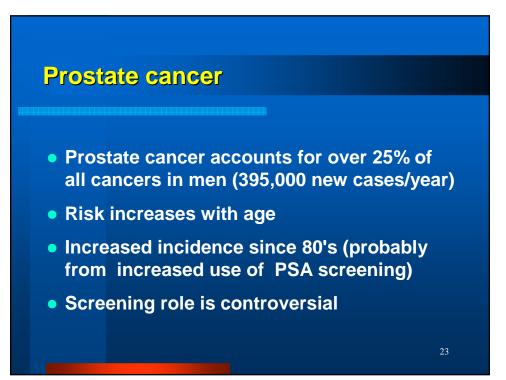


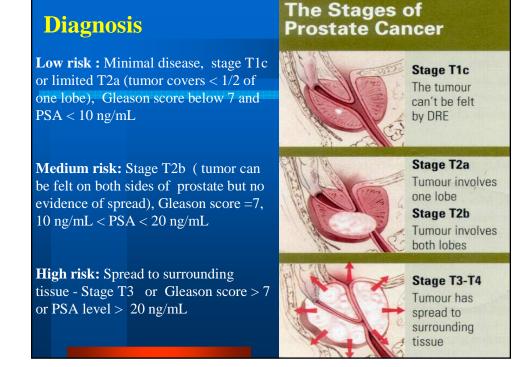


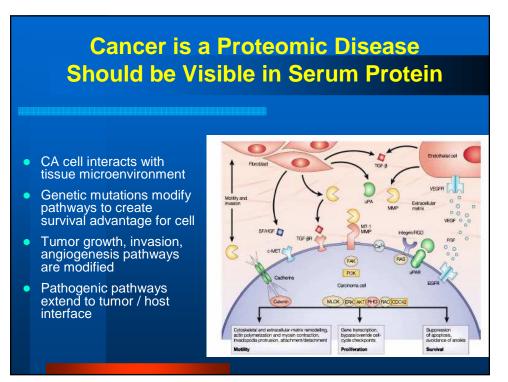




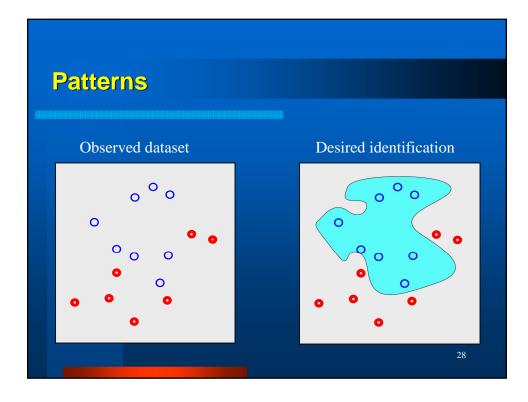


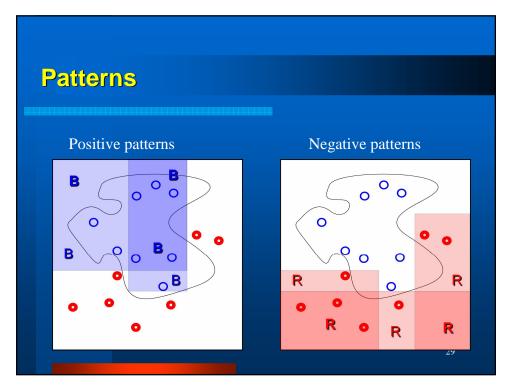


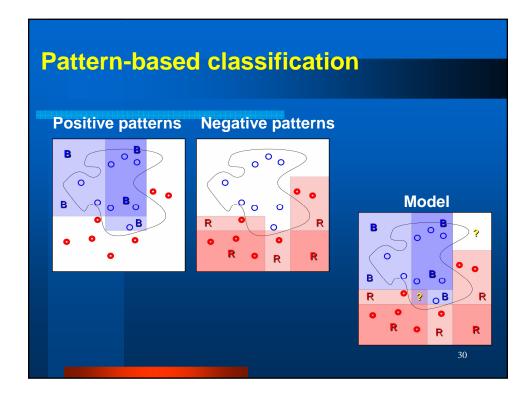


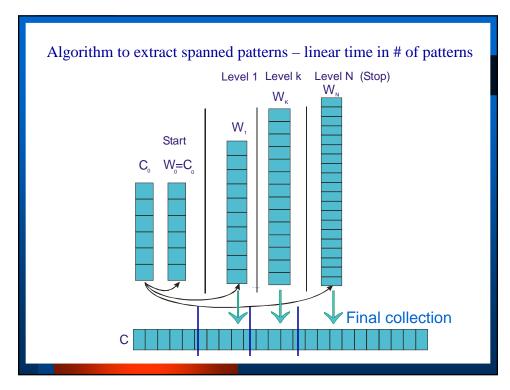


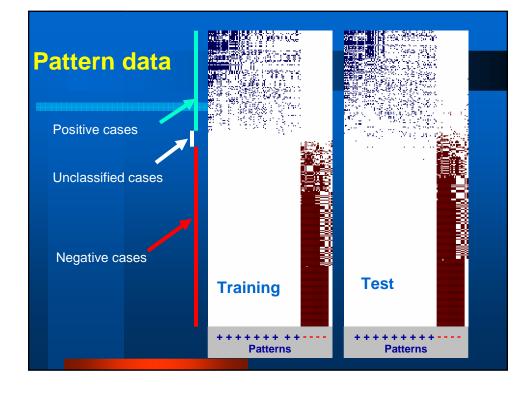
- Promise of Gene Chips and Mass Spec not translated to treatement
- No consensus on method, lack of robustness, not accepted by medical community
- NEED FOR ROBUST PREDICTION

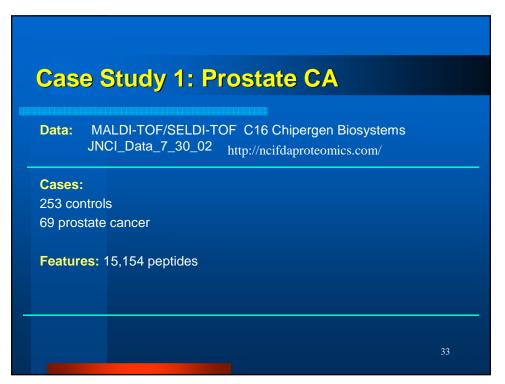


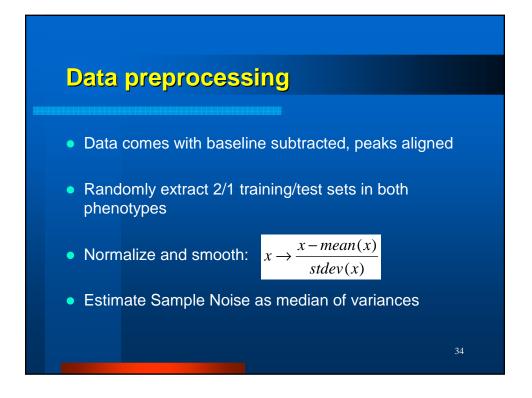


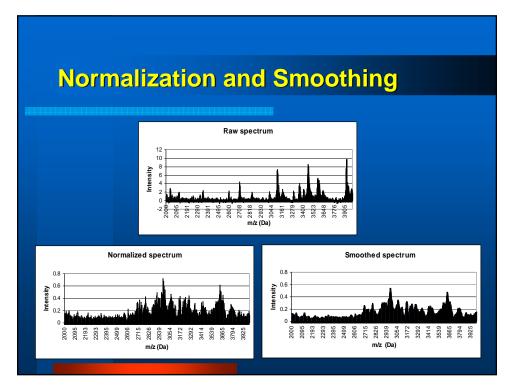


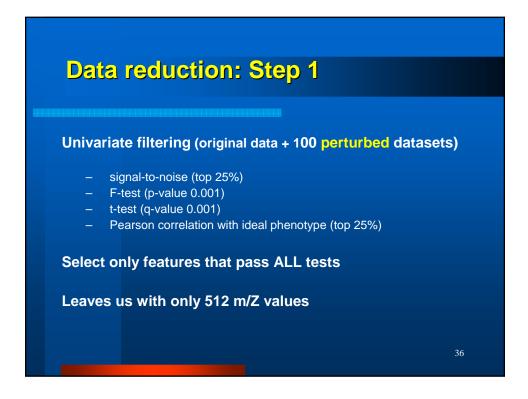

- Early detection
- Accurate staging
- Increased survival/cure rates
- Avoid surgery, morbidity
- Protein pathways may suggest better HT, markers other than PSA and perhaps lead to individualized therapy

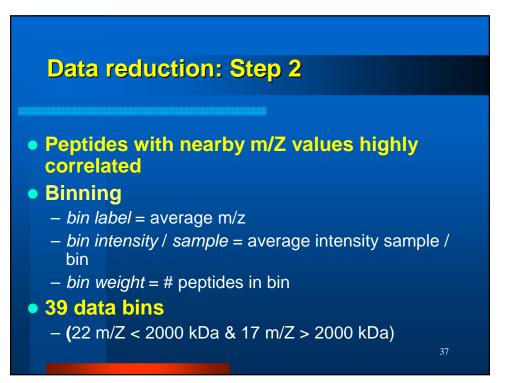


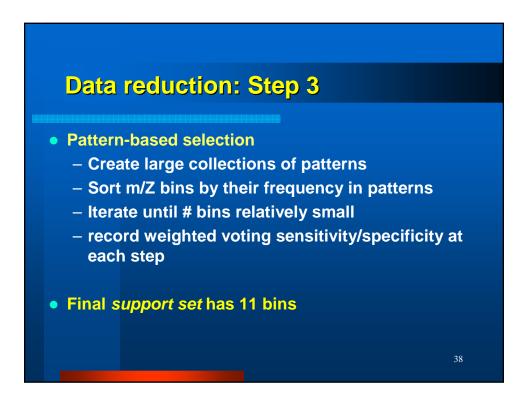


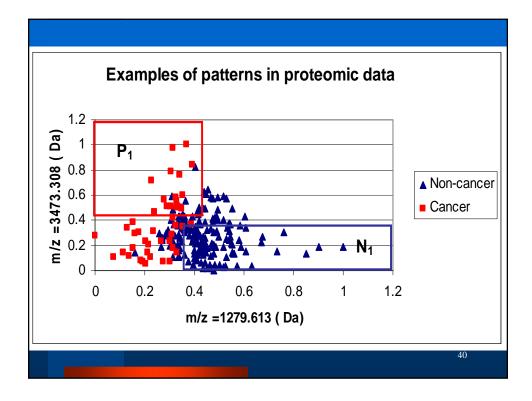




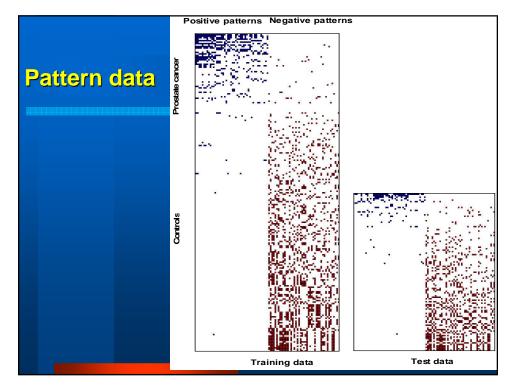


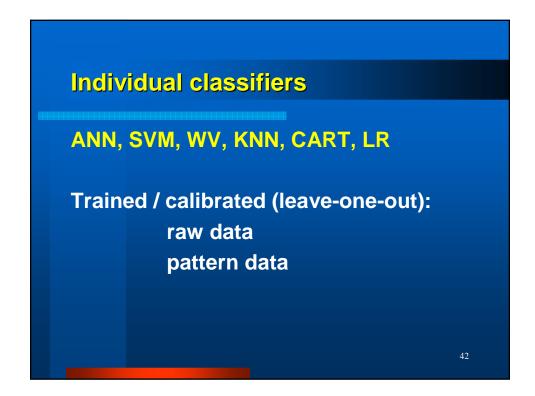


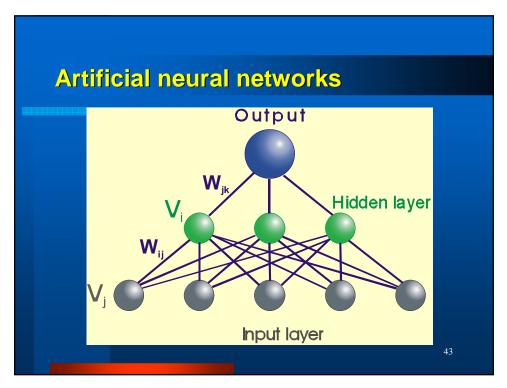


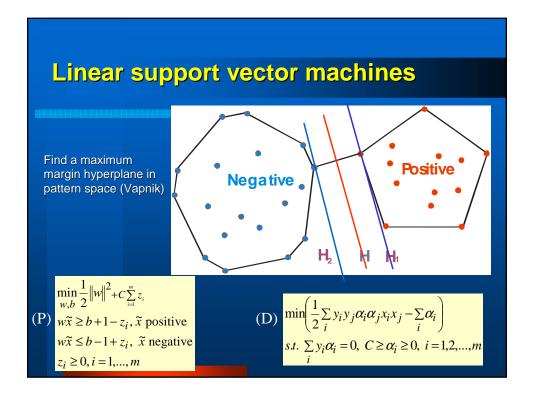


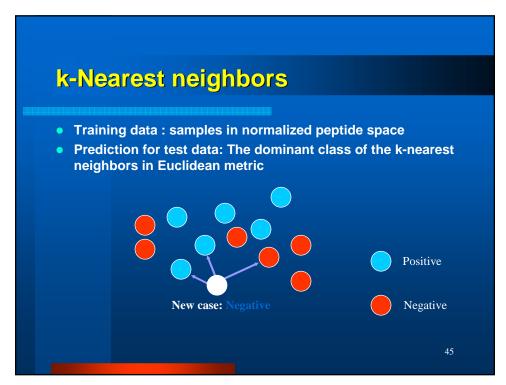
Dr. Gyan Bhanot, IBM Watson Research Center (KITP Mar 15, 2005)

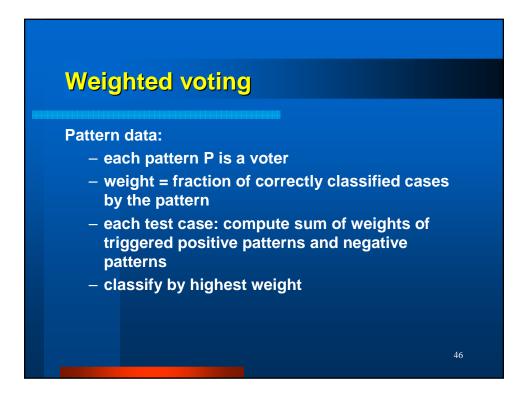


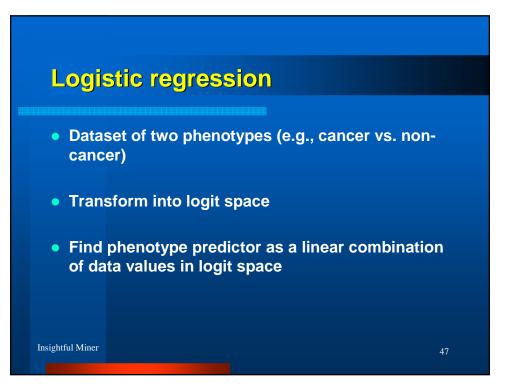


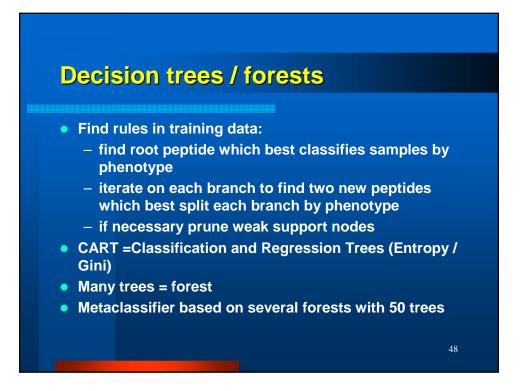

Collection of				Representative	# m/z values	Average intensity	
	Bin #	n # 95% CI		m/z	included in	Cancer	Non-cance
his a sheat she had be				1172	bin	cases	cases
bins selected by the	1	254,990	254.990	254	1	0.46	0.58
	2	272.946	274.224	273	10	0.40	0.38
filtering approach	3	278.140	278.140	278	1	0.37	0.26
	4	277.450	281.740	279	6	0.50	0.36
	5	359.761	364.819	362	6	0.40	0.63
	6	363.235	367.040	365	4	0.45	0.29
	7	364.596	373,480	369	5	0.51	0.35
	8	415.070	415.070	415	1	0.51	0.37
	9	416.590	416.590	416	1	0.45	0.34
	10	428.810	431.635	430	4	0.39	0.28
	11	470.605	484.855	477	4	0.61	0.72
	12	491.060	504.800	497	2	0.37	0.52
	13	500.556	504.031	502	11	0.44	0.26
	14	515.725	519.245	517	2	0.32	0.18
	15	538.877	542.457	540	6	0.44	0.28
	16	586.070	586.070	586	1	0.54	0.64
	17*	875.799	875.811	875	2	0.12	0.02
	18	895.780	895.780	895	1	0.25	0.14
	19*	935.025	935.025	935	10	0.18	0.04
	20	952.510	952.510	952	1	0.16	0.04
	21	980.950	980.950	980	1	0.26	0.14
	22*	1106.310	1106.310	1106	1	0.18	0.06
	23*	2009.127	2010.538	2009	24	0.19	0.31
	24	2052.057	2052.987	2052	25	0.17	0.30
	25	3108.330	3108.330	3108	1	0.30	0.23
	26*	3370.392	3371.423	3370	29	0.22	0.09
	27*	3471.836	3472.552	3472	41	0.23	0.11
	28	3504.961	3505.606	3505	3	0.24	0.13
	29*	4096.067	4098.015	4097	34	0.28	0.38
	30	4117.572	4118.074	4117	20	0.29	0.38
	31	4625.511	4629.172	4627	25	0.36	0.28
	32	4853.500	4853.500	4853	1	0.41	0.31
	33	5241.970	5241.970	5241	1	0.33	0.23
	34*	6713.381	6714.365	6713	63	0.26	0.12
	35*	6805.956	6806.306	6806	26	0.22	0.11
	36*	6951.030	6951.685	6951	44	0.25	0.13
	37*	7085.121	7085.540	7085	38	0.28	0.14
	38	7119.308	7120.018	7119	32	0.15	0.08
	39	9217.333	9220.654	9218	44	0.39	0.31

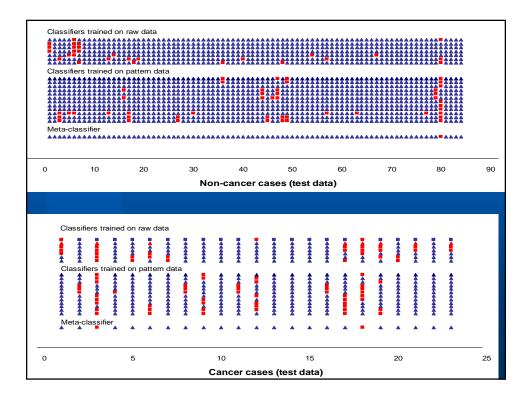


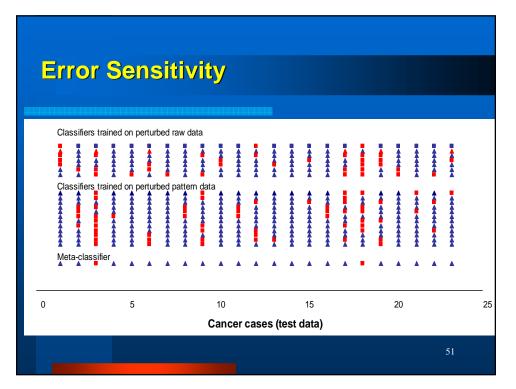

Dr. Gyan Bhanot, IBM Watson Research Center (KITP Mar 15, 2005)

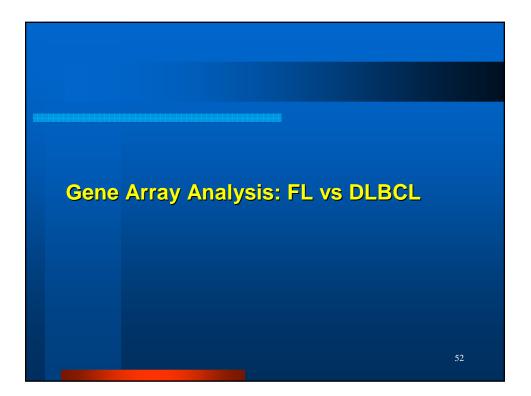




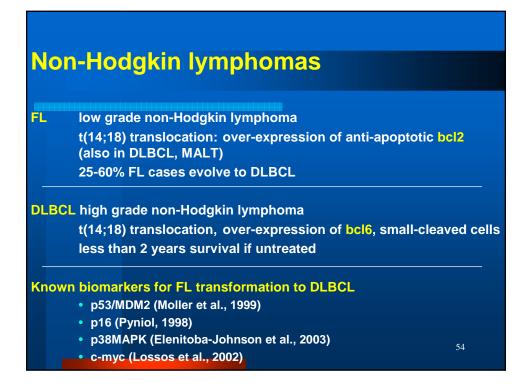








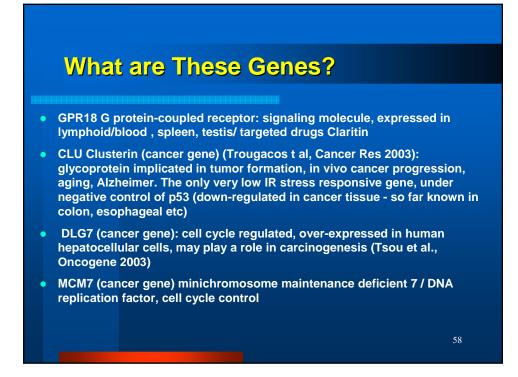
	ta-classifier ight =N*(Sp-50)*(Se	÷50)				
			Trai	ning	Т	est
	Classifier		Sensitivity (%)	Specificity (%)	Sensitivity (%)	Specificity (%)
	ANN	0.061	93.48	98.82	86.96	97.62
	SVM (linear kernel)	0.000	50.00	98.82	65.22	96.43
Trained on raw	SVM (quadratic kernel)	0.012	58.70	98.82	69.57	96.43
data	KNN (k=5)	0.04	84.78	89.35	69.57	96.43
Guid	LOGISTIC_REGRESSION	0.072	100.00	100.00	82.61	94.05
	CART (Entropy splitting index)	0.058	91.30	98.82	73.91	91.67
	CART (Gini splitting index)	0.053	86.96	100.00	78.26	94.05
	Weighted voting (comprehensible pattern collection size	0.071	100.00	99.41	86.96	95.24
	Weighted voting (medium pattern collection size)	0.071	100.00	99.41	86.96	96.43
	Weighted voting (comprehensive pattern collection size)	0.069	100.00	97.63	86.96	98.81
	ANN (comprehensible pattern collection size)	0.042	80.43	98.22	78.26	95.24
	ANN (medium pattern collection size)	0.038	78.26	96.45	78.26	96.43
Trained on	ANN (comprehensive pattern collection size)	0.042	82.61	94.08	73.91	94.05
pattern data	SVM (linear kernel)	0.071	100.00	99.41	82.61	98.81
	SVM (quadratic kernel)	0.071	100.00	99.41	82.61	98.81
	KNN (k=5)	0.072	100.00	100.00	82.61	98.81
	LOGISTIC_REGRESSION	0.069	100.00	97.63	86.96	88.10
	CART (Entropy splitting index)	0.043	82.61	95.27	73.91	91.67
	CART (Gini splitting index)	0.043	82.61	95.27	78.26	91.67
	META-CLASSIFIER		100.00	99.41	91.30	98.81

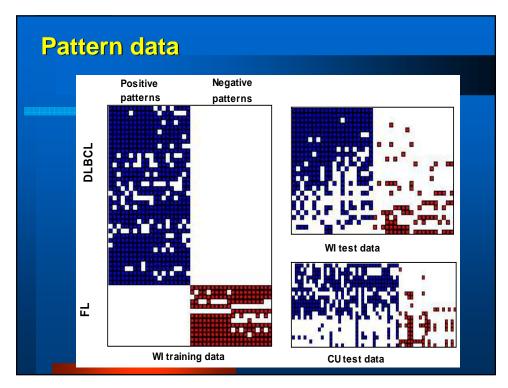


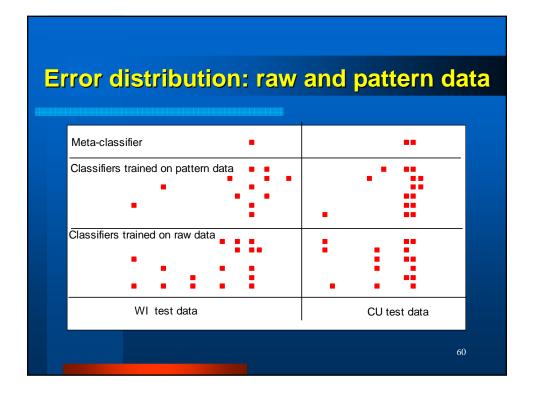
Dr. Gyan Bhanot, IBM Watson Research Center (KITP Mar 15, 2005)

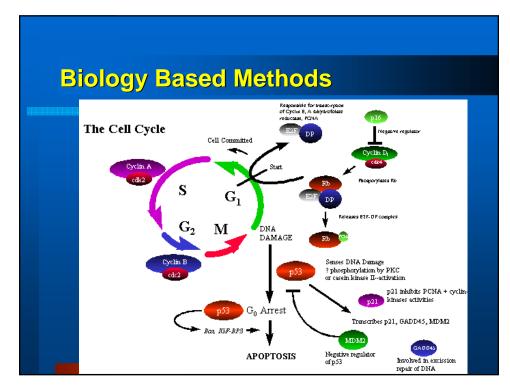
Lym	nphoma datasets	
Data:	WI (Shipp et al., 2002) Affy HuGeneFL	
	CU (DallaFavera Lab, Stolovitzky, 2005) Affy Hu95Av2	2
Sampl	es: WI: 58 DLBCL & 19 FL CU: 14 DLBCL & 7 FL	
Genes	WI: 6817	
	CU: 12581	
		55

Robust	മ്പംട്രാഹി	Sipeta.	Abra Contraction	tHost	ලාදාවෙල	Bodia
	SEPP1	*	*	*		oxidative stress
support set	TXNIP	*	*			metastases suppressor
	DNASE1L3	*	*			apoptosis
	CDH11	*	*	*		cell adhesion
	LUCA15		*			apoptosis
	GPR18	*	*	*		signaling pathway
	CLU	*	*	*		apoptosis
	LY9	*	*			cell adhesion
	RHOH	*	*			T-cell differentiation
	ELF2					transcription
	CCNG2				*	cell cycle
	CR2					complement activation
	CDKN2D				*	cell cycle
	PPP2R5C		*			signal transduction
	G18					cell growth
	LY86		*			apoptosis
	ARPC1B					cell motility
	MCM7	*	*	*	*	cell cycle
	BCL2A1	*		*	*	apoptosis
	IMPDH2	*		*		GMP biosynthesis
	RRP45	*				immune response
	STAT1					NF-kappaB cascade
	DLG7	*	*	*		cell-cell signaling
	SLC1A5	*	*			transport
	TUBB2	*		*		microtubule movement
	PSMA6					protein catabolism
	PSMC1	*	*	*		spinocerebellar ataxia
	LGALS3	*	*	*		sugar binding
	CLTA	*		*		transport
	PAGA	*		*		cell proliferation

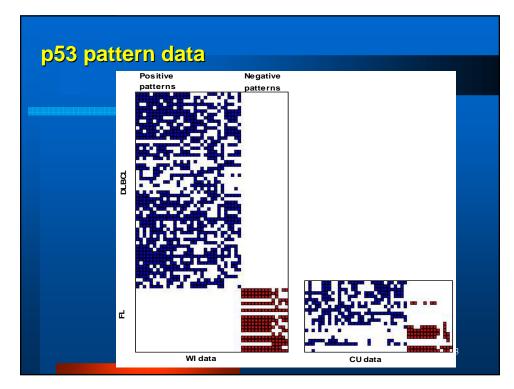

Examples of FL and DLBCL patterns										
		Gene Symbol				Prevalence (%)				
Pattern	GPR18	CLU	DLG7	MCM7	Traini	ng set	Tes	t set		
	GFK10	CLU		MCM/	Pos	Neg	Pos	Neg		
P1			>-1.13	>-0.62	97	0	91	23		
P1 P2	≤0.91		>-1.13	>-0.62 >-0.77	97 95	0	91 79	23 31		

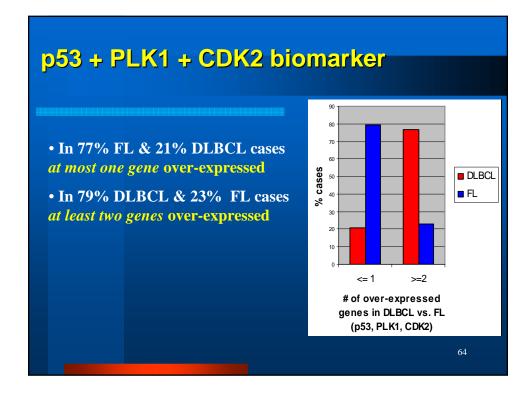

WI training data:

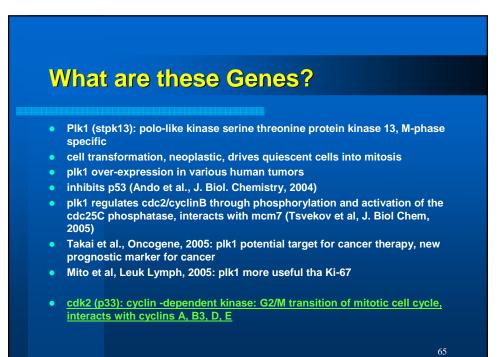

Each DLBCL case satisfies at least one of the patterns P1 and P2


Each FL case satisfies the pattern N1 (and none of the patterns P1 and P2)

57

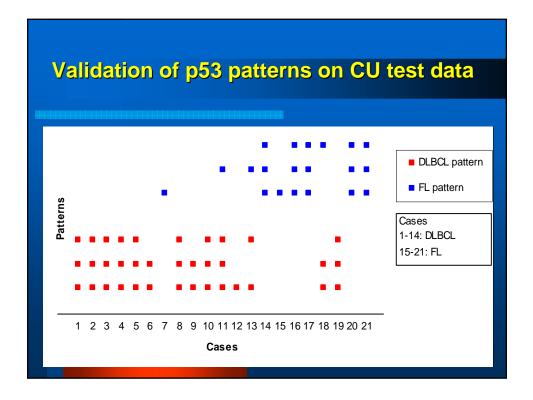


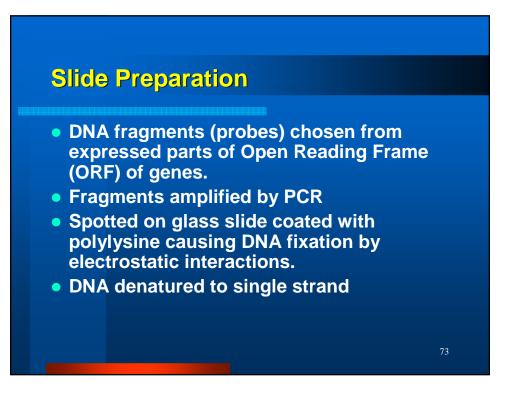


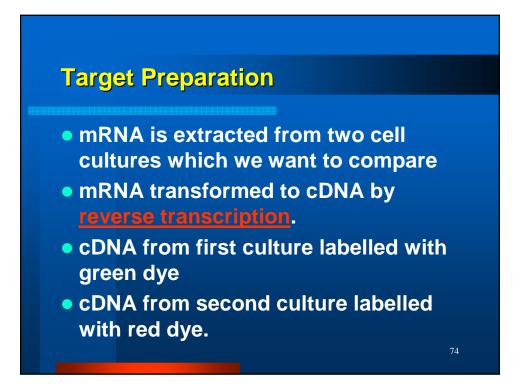


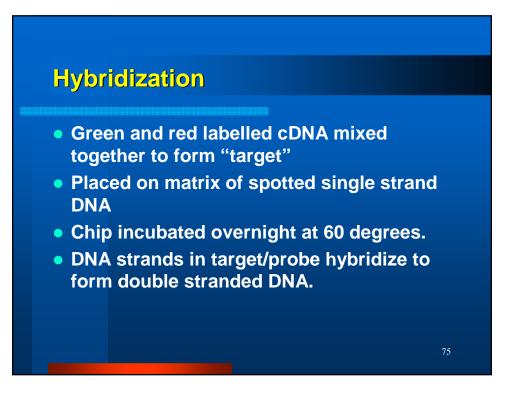


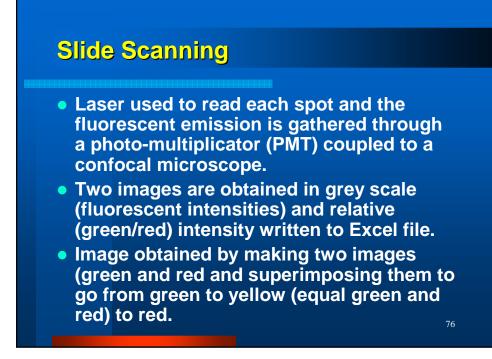
	-			
Summer to at at		Gene	symbol	_
Support set of	CCNB1	EPRS	PMAIP1	E2F3
90 p53 responsive	MCM7	GSK3B	ACAA2	MDM4
so pos responsive	BRCA1	COL6A1	E2F5*	AMPD2
genes	BCL2A1	HRAS	POLA	RBBP4
	PPP2R4	SERPING1	HMGB2	CCNG2*
	EIF2S2	CCNA2	PSMB5	HARS
	COMT	CCT6A	ACTA2	CASP6
	IARS	PRKDC	INSR	RPS6KA1
	MPI	CAD	SNRPA	GRP58
	ALAS1	TNFRSF1B	G1P2	TP53
	MRPL3	ZNF184*	IMPDH1	SMAD2
	NCF2	ALDOA	MAP2K2	ATP5C1
	AARS	KARS	TOP2A	TIMP3
	KIF11	MAD2L1	CXCL1	THBS2
	CDK4	GOT1	BAG1	MYCBP
	ATP1B1	CDC25B	TOP1	DTR
	CDC20	PSMA1	MAP4	TIMP3
	PRIM1	KIAA0101	FDFT1	CBS
	CDC2	PCNA	MTA1	CDKN2D*
	TOP2A	TCF3	CDKN1A	RELA
	CDK2	CYC1	HLAE*	
	MYC	UPP1	PLK1	
	CCNE1	TOPBP1	CDK7	

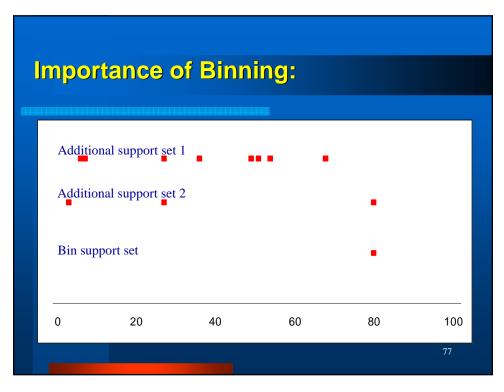



Pro	state ca	ancer biomarkers
Study	Chip type	Selected peaks (m/z)
Petricoin et al.	Hydrophobic C16	2092, 2367,2582, 3080, 4819, 5439, 18220
Adam et al.	IMAC-Cu	4475, 5074,5382,7024, 7820, 8141, 9149, 9507,9656
Qu et al.	IMAC-Cu	3963,4080,6542,6797, 6949, 6991, 7024, 7885, 8067, 8356, 9656,9720
Banez et al.	WCX2/IMAC-Cu	3972, 8226, 13952, 16087, 25167, 33270
Lehrer et al.	Hydrophobic H4	15200, 15900,17500
Bhanot et al.	Hydrophobic C16	875,935,1106, 2009, 3370, 3472, 4097, 6713, 6806, 6951,7085
		69




Meta-classifier on	Missclassi fied samples	S1	S2	\$3	S4	S5	Meta- classifier
multiple support sets	DLBCL 15	1		1		1	
	DLBCL 21			1		1	
	DLBCL 26	1	1	1		1	1
	DLBCL 27			1			
	DLBCL 29	1	1	1	1	1	1
S1: support set of top 100 SNR correlated	DLBCL 35	1				1	
genes (Shipp et al., 2002)	DLBCL 36		1				
	DLBCL 39	1	1		1	1	1
S2: support set identified with	DLBCL 40					1	
Genes@Work (Stolovitzky, 2005)	DLBCL 46				1		
S3: support set of top 100 genes w.r. t-test	DLBCL 52				1		
55. support set of top 100 genes w.i. t-test	DLBCL 54					1	
S4: support set of 30 robust genes (current	DLBCL 56			1		1	
study)	DLCL 7						
study)	DLCL 13			1		1	
S5: support set of p53 responsive genes	DLCL 14		1	1		1	
(top 90 SNR correlated)	FL-DM						
	FL-GL	1	1	1	1	1	1
	Error rate	6	6	9	5	12	4
	Weights	0.26	0.30	0.24	0.30	0.00	


Meta-classifier performance, FL vs DLBCL


				Training		Test			
Clas	sifier	Weight	Sensitivity (%)	Specificity (%)	Error rate (%)	Sensitivity (%)	Specificity (%)	Error rate (%)	
8	ANN	0.08	94.74	92.31	5.88	82.35	84.62	17.02	
raw	SVM	0.08	97.37	92.31	3.92	97.06	76.92	8.51	
ed on data	kNN	0.09	97.37	100.00	1.96	91.18	84.62	10.64	
ned da	WV	0.07	92.11	92.31	7.84	94.12	76.92	10.64	
Trained da	C4.5	0.06	94.74	84.62	7.84	94.12	69.23	12.77	
Τ	LR	0.07	97.37	84.62	5.88	94.12	69.23	12.77	
	ANN	0.10	100.00	100.00	0.00	97.06	76.92	8.51	
on ata	SVM	0.10	100.00	100.00	0.00	97.06	76.92	8.51	
с, с	kNN	0.10	100.00	100.00	0.00	100.00	69.23	8.51	
Trained pattern o	WV	0.10	100.00	100.00	0.00	97.06	76.92	8.51	
Tr pat	C4.5	0.10	100.00	100.00	0.00	91.18	76.92	12.77	
	LR	0.05	100.00	76.92	5.88	100.00	61.54	10.64	
Me	ta-clas	sifier	100.00	100.00	0.00	100.00	76.92	6.38	

