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Motivations for SQM

Curious results of Catterall & Gregory. Naive discretiza-
tion does not give correct continuum results for effective

(bosonic) mass.

Susy-Quantum Mechanics (SQM) is a very simple sys-

tem. Should be able to understand completely.
Basic test for lattice susy approach.

Analytically tractable, easily simulated (small system,
positive semi-definite fermion matrix), exact nonpertur-

bative results available (solve 1d Schrédinger eq.).

Concisely illustrates some of the issues that arise in

more interesting systems.

“Exact” susy (1/2) action available for comparison and

study.

Naive lattice

The continuum imaginary-time action is:

L
1 B
S = / dt {5((8,5:::)2 + () + p(8, + B (x))p
0
¥, 1) are 1-component Grassmann and z is real. h(z) is

the superpotential.

The action is invariant under the imaginary-time con-
tinuation of the susy transformations, generated by in-

finitesmal Grassmann parameters ¢, €s:

or = ey + 621,[_), 51/_) = —e1(Br + K, 5 = —ex(Byr — )

To prove this invariance one need only make use of (i)
the Leibnitz rule and (ii) periodic boundary conditions

for all fields.

But (i) is violated at order a?, p > 0, by discretization.

This is the chief obstruction to lattice susy.
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With 6 = €101 + €22,

hr =17, p = — (O + 1), Q1 =0
@z =, QY =0, Qo = — (O — 1)

defines the supercharges @1, Q2. Algebra: {Q;,Q:} = 20,

if aux. fields or eqs. of motion introduced.

In what follows it will be convenient to distinguish as A
the part of the superpotential that leads to interaction
terms in the action:
hzlm:c2+ﬁ E:Zg—n:c”
2 ’ n
n>2
A particularly simple case that we will concentrate on

is the one studied by CG:

1 1
h = EmIQ + ZQQ‘A

Naive action corresponds to replacement ¢, — A, where

A is some choice of finite diff. operator.

Here we take 9, — A~ for bosons, and

1
8, - AV = A7 — Ev'aAZ

for fermions.

Doublers at » = 0 aid our interpretation of important

effects below.

(Also, in future considerations of d > 1 susy-FTs we
need some sort of operator that lifts doublers; A" is the

simplest choice.)
At r =41, AW =AY — %7‘@&2 — AT,
Note also A x;A x; = ATz;A Tz,

Thus both naive choices AT are included in the dis-

cretization that we study.
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Then the action is:

-1 L A N

a S = §A A\ X+ §hihi + A + R0y
Here, ¢ = L/N, where N is the number of sites on the
(periodic) lattice.
Naive discretization of (imaginary-time) susy algebra
{Q1, Qo) =20, — 2A™:

Gz = ¥, Qi = —(ATx; + B, Q1th; = 0
Qax; = U, Qavp; = 0, Qo = —(ATx; — k)

The variation of the action, say under };:
a 10,5 = —%(1 o)A ARy, 3(1 — PYmaAy,
5 R+ (AR - B A )y,
All terms have an O(a) suppression. To see this in the

last term, we note:

ASH, — BNt = ng;’A%:@- 1+ O(a?)

The overall O(a) suppression is consistent with the fact
that the violation of susy is due to the violation of the

Leibnitz rule.

Power counting

In considerations below, we take

1 1
h = Emasz + ZlglA

Then Feynman vertices read of from

1 _
71 1 2.6 | o2
S = E by Zg%28 4 Bgrdab;
a S, (mgazZ 29 x, + ga:ﬂ,[)?,b)

Vertex rules indep. of a; so no contrib. to D:
D = L-2Ig—1Ip
L =1+Ig+Ir-Vi-V,-Vq
Ep+2Ip = 4V, + 6V + 2V

Er+2Ir = 2V,
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The only D > 0 solution with L > 0 is:
D=FEp=Iig=V,=V=0

L=Ip=V,=1, Eg=2

Boson 2-pt. fcn. w/ 1 fermion loop [Fig. 1a].
In the continuum, the corresponding expression is:
x/a .
dp—ip+m 1
6 ——=6g| -+ 0O
g[_ﬁ/ﬂ 271_ p2 +m2 g (2 (?71&))

In the lattice theory, the fermion loop contribution to

the boson 2-point function is twice as big

1 == —ia 'sin(2nk/N) +m + 2ra ' sin2(rk/N)
g 2 72 sin2(2mk/N) + (m + 2ra Lsin?(rk/N))?
k=0

=6g (1 + O(rma))

Subtract off w/ CT:

1
~1 1 = 9.2
a Sp. = a Sp+ 5 E 3gx; + const.

1
_ .1 - "
= SB+2§ %

For the A we study, this does not introduce any new

D > 0 diagrams since it is just a mass shift.

The single D > 0 diagram—+CT now has the right contin-
uum limit. All D < 0 digrams have the right continuum
limit by Reisz’s thm. Thus we recover the complete per-

turbation series (all orders) of the continuum theory.

Still must check that the CT suffices at the nonpertur-

bative level.
That is, for any diagram [" we still could have nonpertur-
bative terms that do not match those of the continuum:

T = Toone. + Ola) + O(e™/9)

We next show that the O(e_mge'/g) terms are absent, and
make an O(a) improvement to the lattice action, using

transfer matrix techniques.




Dr. Jod Giedt, University Toronto (KITP Lattice FT 3-08-05) SUSY On the L attice -- Discussion

Page 5

T matrix analysis

Assume local CTs

W3 (z) - W (z) + k(x),  B(x)gyp — (B(z) + €z))g

Then Z = Tr(—1)"T" obtained from
TMHNK)fd 2 e kg
AR 2O o, Tt M R

x e 1+ a(h"(q) + £(q))b'd]
where the operators satisfy
(b1} =1, b =

2,7 =4, (b7 =0

Straightforward manipulations in the ¢ < 1 limit yield

the effective hamiltonian, defined by

Tk, £] = e p—alkd] —af(g)

equal to:

Hlk 1) = 2p°+ h(g)? - %k(Q)

50 +(a) (1 500 + ) ) + O

with conjugation factors

fila) = 3(H%a) + K@)~ 5(0a) + £

Then to match the continuum hamiltonian

1 1 1
H=- 2 _hr2 7_hff bT b
LR (@) 5 (g)[6", 8]

through O(a), we must choose CTs

I(g) = 2al"(q) + O(a?)

E(q) = h'(q) + O(aQ), 5

We see that the O(1) CT k(g) = h"(g) suffices at a non-

perturbative level too.

10
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We also obtain the O(a) improved naive action:
1
a S, = 5 Z (A~z, Az, + ik, + b))
- 1
3 Ay + RS+ S a6, ),

ij

Ward identity

We know that the O(1) CT will fix, but it is interesting

to see how it occurs.

The measure is invariant, so for any operator O

(R40) = ((QAS)O) = a{YA0)

Recall that (below we set r = 1)
a QS = —g(l + ) AT AR g(l — ryma; AR,

+%E;A2¢i L (ASH — RIA Tz ),

11

It is convenient to separate into 2-pt and 4-pt vertices:

1S = (Q18) g + (1S = ady o) + adi

W/ the O(1) CT, the susy variation is modified to

NS — QS +ad 3grah

This extra term suffices to cancel the finite (a-indep.)

violation of Ward id. [Fig. 2].

12
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Susy lattice. Power-counting

The susy lattice:

1 _
a8 = 5 S (A + BT A + KS)Y
7 i
1st by Nicolai map [Catterall & Gregory].
1 — N
a5 = NN+ 0 N— Al
2 o1y

This form makes the exact susy rather obvious:

oz = 1, Sy = 0, S = —alN;

Later by superfields [Giedt & Poppitz].

New vertices occur in the susy theory.

- 1 n
= Z (mga:;L + §g2$? + 3gxpap;

i

+ griASr; — %E?A2$i)

13

In power-counting, we combine boson 4-point into one

D =1 vertex:

Tag

5 CPANSY

Vi e mgﬂ':gl + gxfﬂsﬂfi -
It is D =1, since A% ~ aA% ~ g7 L.
In addition, the boson propagator is now the modulus-

squared of the fermion propagator. (Will lead to precise

cancellations.)

Altogether,
D=L+V,-2Ig— I
L=1+Ig+1p—V,—V,—V;
Egp+2I5 =4V, + 6V + 2V,

Ep+2Ir =2V,

14
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New D =0 diagram, the scalar loop [Fig. 1(b)]:

1 szl 9m + 2ra~lsin?(wk/N)
a 2sin?(2mk/N) + (m + 2ra 1 sin?(wk /N))?

Added to the fermion loop diagram,

= —iaUsin(2rk/N) + m + 2ra L sin®(wk /N)

1
bg—
INa ; a—2sin?(2mk /N) + (m + 2ra—Lsin?(mk /N))?

the D = 0 contributions cancel: only the —m in the nu-

merator survives.

Net result: (a) + (b) = —3g(1 + O(ma)) — —3g.

(Recall that in the continuum, the two diagrams yield:

3g — 6g = —3g.)

15

Actually, Reisz’s theorem guarantees correct continuum
limit for D < 0 part (easy to verify here), so no need to

do calculation once we see ) = 0 parts cancel.

Entire perturbation series guaranteed to approach con-

tinuum value.

In summary, the chief advantage of the 1 exact susy is
that the lattice perturbation series is 1) < 0 and no CTs

are required.

Implications and outlook

In d > 2 theories, expect that some exact lattice susy
will similarly improve the UV behavior of the lattice
perturbation series. Then no/less CTs required, since

less D > 0 diagrams to cure.

16
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What happens at nonperturbative level far less clear.

For a simple 2d (2,2) Wess-Zumino model, we showed

that 1 exact lattice susy leads to continuum pert. series

w/o CTs.

This is highly nontrivial, since 3 of 4 susys, SO(2) ro-
tation invariance, and chiral U(1)g all recovered as long

distance “accidental” symmetries, w/o fine-tuning.

Presently studying (via finite-size scaling in Monte Carlo
simulations) the critical exponents (known from SCFT)

as nonperturbative check.

17

MC Simulation

We have extracted excitation energies, or, effective masses,

from connected Green functions:

GIB(t) - (35111+t/a> ) GIF(t) - (1[’111_)1+t€/a>
GH(1) = (I%I%H_Iﬁcmm_ ) GH(t) = (x1911 4170V 11/a)
Here £t = a,2a, ..., Na is the imaginary-time of points on

the lattice.

Due to the symmetry r — —z of the action, as well
as fermion number, the states that contribute to each
of these Green functions come from different sectors of

the state space.

18
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For t < Na and N > 1, we have for example

GlB(t) = ClgeimlBt -+ 633677n33t + ...

GQB(t) = cope ™8 | cype Bt 4

and similar equations for the fermions. Here myp <

Map < M3p < 4B,

All of our simulations are performed using hybrid Monte

Carlo techniques.

Our chief impediment was the rapid increase of auto-
correlation time (1000’s of updates as we approach con-

tinuum).

Regarding parameters, note that
L=Na=1»m"' =0lxm};»a= LN =N

Le., m =10, and N > 10 is the continuum limit.

Results (figures) confirm our analytical analysis.

19

Conclusions

Lattice power-counting analysis is a crucial pre-simulation
step, since continuum power-counting generally modi-

fied.

In a super-renormalizable lattice FT, CTs are manage-
able; perturbative quantum continuum limit reliably ob-

tained.

2d super-Yang Mills, nonlinear sigma models, etc. per-
haps do-able if the lattice pert. series is at least super-

renormalizable.

Of course, there are nonperturbative questions. Here

we were able to address with transfer matrix analysis.

Harder in d > 1 FT.

20
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MC simulations support the analytical arguments. Shows
that some susy systems can—in practice—be reliably
studied on the lattice. But more interesting systems...we

will see.

Upcoming work on (2,2) LG/WZ models vs. (2,2) min-
imal CFT models. Finite-size-scaling to extract critical

exponents for comparison to CFT.

Figure 1

e O(g) corrections to boson propagator.

e Diagram (a) has only a D = —1 piece surviving in the

continuum. In the continuum, (a) + (b) = —3g.

e Naive (uncorrected) lattice has D = 0 contribution
coming from fermion doublers. Then (a) + (b) =
O(ma) — 0.

e Corrected naive: (a)+(b)+CT = —3¢g(1+O(ma)) — —3g.

e In the susy lattice action, additional interactions
cause diagram (b) to also acquire a D = 0 contri-

bution, which just cancels that of diagram (a). Susy

lattice: (a) + (b) = —3¢(1 + O(ma)) — —3g.
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Figure 2

e Diagrams associated cancellation of the O(g) viola-

tion of the susy Ward identity.

e The 2-point and 4-point shaded vertices that violate

fermion number are those arising from 4 5..
Aoy a2 STt IHA+
(a) : Vi = §hiA i+ (Ahy — by ATz
(b) : Bagrap

(€) : Vi = CLII'A7A21,D1'

e The sum of these diagrams vanishes in the ¢ —
0 limit, provided the external momentum satisfies

‘Pem\ < a.

Figure 3

13 | 1 T 1 1 | 1 T 1 T | 1 T 1 T |
: + m,; no subtraction
I X m 0(1) subtracted
12— ¢ my 0(a) subtracted

m{eff)
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0.00 0.05 1/N o0 0.15

Leading boson mass for various forms of the action.
Large N corresponds to the continuum limit. Here,

m=g=10.
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Figure 4
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| X m; O(1) subtracted i
12— ¢ myp 0{e) subtracted ]
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Similar to Fig. 4, except that fermion masses are dis-

played.
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Figure 5
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0.00

0.05 1/N 010 0.15

Strongly coupled, O(a) improved. g = 100,m = 10. Susy

lattice results also shown. Larger discrepancy due to

lack of O(a) improvement in that case.
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) Figure 7
Figure 6
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Close-up of g = 100,m = 10 data. The improved action
Close-up of ¢ = 100,m = 10 data. Susy lattice results
data is not quite good enough to see O(a?) scaling. Sim-
shows O(a) scaling in continuum limit.
ple project to improve statistics, push to smaller a.




