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@ Y spectrum

Calculate spectrum to fix mg and a1

and compare with experiment to give confidence in

b quark methods.

@s decays

Need precision calculation of fg and Bp in order to pin down CKM parameters. In

IBs\/ BB,

particular need combination ?B\/E . Aim is to reduce theory errors to a few percent

otherwise will dominate uncertainties from experiment.
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CKM today ...
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Motivation

... and with 2—3% theory errors.
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And with B Factories. ..
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MILC Ensembles

@ MiILC collaboration have used improved staggered formulation to generate the first

ensembles of configurations which include 2 + 1 flavors of dynamical quarks.

Q- u, d degenerate with masses down to m, /8.
1 = s (can ignore heavy c, b, t dynamical gs.)

2 values of lattice spacing, a ~ 0.12fm and 0.08fm.

@ Fix 5 free parameters of QCD (bare m,, = myq, ms, m,, my, and
a = (g) using

My, M, Mp_, My and AEy (25 — 15).

@ These are ‘gold-plated’ quantities (e.g. stable hadron masses). Compute other

‘gold-plated’ quantities as a test of (lattice) QCD.
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g Modern ChalleigESNRIRTheory - 02/24/2005

Heavy Quarks on the Lattice

b quarks typically have low velocity v within the meson.

Can use effective theory Lattice NRQCD - expansion of Lagrangian in powers of v? - to

get high statistics (calculation of the quark Green’s functions can be done using a

simplistic evolution equation instead of having to solve a boundary value Dirac problem).
T System

Upsilon (T) meson is bound state of b and b Radial quantum number n = 1,2, 3...
Orbital angular momentum quantum number L. = S, P, D, F’ correspondingto 0, 1, 2, 3

respectively.
e.g. T(25)hasn =2, L = 0.

The stable states are very precisely known experimentally.

Calcs have the advantage that valence quarks are not the same as the light dynamical
guarks. Results indicate how the dynamical quarks feed in to meson properties.

Can systematically improve Lagrangian order by order in v? and match to continuum -

these results use 0(714) Lagrangian with tree level tadpole improved matching.
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Lattice n ¢ I} amy, aMms Ty aMl? Nconf  MNorig
20° x 64coarse 0 8.0 . 0.856 2.8 210 16
2 7.2 0.02,- 0.845 2.8 210 16
2+1 6.76 0.01,0.05 0.836 2.8 210 16
241  6.79 0.02,0.05 0.837 2.8 210 16
2+1 6.81 0.03,0.05 0.8378 2.8 210 16
3  6.85 0.05,0.05 0.8391 2.8 210 8
283 % 96 fine 0 84 . 0.8652  1.95 210 16

241 7.09 0.0062,0.031 0.8461 1.95 159 16,12*
2+1 7.11 0.0124, 0.031 0.855 1.95 210 16

Table 1: Parameters and details of MILC configurations used for Y correlator calculations. *For
92 of the 159 configurations, data from 4 of the 16 origins was rejected due to corruption on

the last timeslice of the configuration.
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e Vodern ChalleiESIRIRITheory - 02/24/2005

Fitting

@ T correlator fit function G(t) = Zn”p_l Cje_Eﬂ't

7=0

Use Bayesian Fitting (augment x2 with a Bayesian term) to allow whole range of data to

be fitted to large Neyp
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e Vodern ChalleiESIRIRITheory - 02/24/2005

Lattice Spacing Results

@) Compare a determinations from orbital (1P1 3 Sl) (PS) and radial (2351 — 1351)
(SS) energy splittings - gives good insight about dynamical content of configurations

being used.
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rO Determination
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Energy Splitting (Gev)
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@ 25 — 15 splitting used to fix

Qa.

Q Splittings become indepen-
dent of dynamical u/d quark
mass for the region we are

working in.

Alan Gray, 02/24/2005

—10—



e Vodern ChalleiESIRIRITheory - 02/24/2005
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B Leptonic Decays
HPQCD[MILC] & JLQCD
18=2+[1 ] nf:QZ

1.40_ ! ! ! ! ! ! ! ! | ! ! ! ! ! ! ! ! | ! ! ! ! |
L val
§f1.30:— * qu —m (fln
[ o 2 —m (pre‘ f fBs/MB,
1.20_—]1 * 241 mq = m’ F = “fev/ms
L ® 2+1: <m: : :
L10f i mql ", @ Hint of chiral logs but stat. errors large.
[ [ | 2+1:n%a>inra o
: g Aim is to reduce stat. errors.
1.00}- =
0905 \o\ @ We have used smearing to succesfully
E ¥ 5 do this.
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M. Wingate, A. Kronfeld review Lattice 2003
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Simulation details
@ MILC 2 + 1 flavour dynamical configs. For light quarks use asqtad action.

@ ror heavy b quarks use standard tadpole improved Lattice NRQCD action correct through
1/(amy)? at amy = 2.8.

@ ! and m, fixed by T,
my,,q and m fixed by mand K.

Hence no adjustable parameters.

Alan Gray, 02/24/2005 14—



amy = ANy, /q a_l(GeV) amyg Neconf | Msre
Coarse
0.01 1.596 0.005 568 4
0.01 568 2
0.02 568 2
0.04 568 1
0.02 1.605 0.02 486 2
0.04 486 1
Fine
0.0062 2.258 0.0062 | 465 4
0.031 472 4

Note some points partially quenched.

amg = 0.04 corresponds to Bj.
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Smearing & Fitting

@ smear heavy quark at source and sink. Use ground state hydrogenic style wavefunctions

as have been used for Y.
@ Find optimal radius: that which minimises fit errors while maintaining reasonable X2/dof

@ o Bayesian multi exponential fits. Compare single correlator fits to simultaneus vector

2 X 1 (source or sink smearing only) and matrix 2 X 2 (source and sink smearing) fits.

@ Fit function is G(t) = Z?i%p_l C(09) (—1)ite—mst

@ Extract (0 = f]g)),/m = 2V C(00)_ Similarly get next order in 1/m,, parts:
C(10) &) and combine through 1-loop
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Smearing Results

0.3
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@ Fit good for negzp > 7

@ Matrix fit substantially re-

duces stat. errors.
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d Results
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P Results

Q Chiral Fit to 4 most chi-
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d Results
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® Results
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B — B Mixing

@ continuum (O1,)M$ has contribution from lattice (O7,);q¢ and (Og)as at 1-loop:
Op = [?Q V(1 =) wq]_[@amb(l —5) ¥q |
Ogs = [¢Q (1 —5) ¥q ] Wa(l —5) ¥q |

@ same simulation params as B leptonic decay but only so far with mys = 0.01,

mq = 0.04 (i.e B;), and only leading order in 1/m,
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Fitting

0.003 -
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@ corr has form Cl(tp,tg) = Z?‘;fzpo_l Ajk(—]_)the_mth(_1)kt36_mkté

@) Again Bayesian fitting used.
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e Modern ChallengESHTIMIMBEISISI Theory- 02/24/2005
IV Bp

Q a6<OL>? = |14 pr ] <9L>lat +  prs s (Os)iat
Or = [Yo 7" (1 —75) g ] [Ygvu(l —75) 1]
Os = [g (1 —75) g ] [Yg (1 —75) ¥y ]

Q PLS, PLL calculated pertubatively.

@ Interms of 3-pnt (Agg) and B 2-pnt (£ gB) correlator groundstate amplitudes,
AR")

£BB 2= 2M]j9a3‘ (Or,8)1at

@ Note: we fit directly to 3-point without first taking ratio over 2-point. Don’t need to wait for
plateau - fit at low ¢ where error is still small by including ex states.

@ By is defined through (OL>M—S = %f%M%BB

@ prelim result fp_ \/Bp. (my) = 0.244(15)(32) Gev
errors are fitting (fits still prelim) and systematic (AQCD/mb, ozg etc.).
In process of doing 1/m, corrections.
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Conclusions

@ spectroscopy results provide my and a~ ! for B decay and mixing calcs, as well as

confidence that methods work.

@ Have implemented smearing in B simulations to substantially reduce statistical errors of

parameters needed for f .
@ chiral fits look promising. Need more fully unquenched points at light quark mass.

@ successtul fit done to B — B mixing correlator looks good. Now include 1/mb

corrections and repeat with different 1m, .
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