From Υ Spectroscopy

to B Meson Decay Constants

I. Allison^{*a*}, C. Davies^{*a*}, A. Gray^{*b*}, E. Gulez^{*b*}, P. Lepage^{*c*}, J. Shigemitsu^{*b*}, M. Wingate^{*d*}

 a University of Glasgow b The Ohio State University c Cornell University d University of Washington

Contents

Υ Spectrum

Calculate spectrum to fix m_b and a^{-1} and compare with experiment to give confidence in b quark methods.

B decays

Need precision calculation of f_B and B_B in order to pin down CKM parameters. In particular need combination $\frac{f_{B_s}\sqrt{B_{B_s}}}{f_B\sqrt{B_B}}$. Aim is to reduce theory errors to a few percent otherwise will dominate uncertainties from experiment.

Motivation

C. Bernard, SCIDAC Meeting March 2004;

CLEO-c

MILC Ensembles

MILC collaboration have used improved staggered formulation to generate the first ensembles of configurations which include 2+1 flavors of dynamical quarks.

- 2 = u, d degenerate with masses down to $m_s/8$.
 - 1 = s (can ignore heavy c, b, t dynamical qs.)

2 values of lattice spacing, $a \approx$ 0.12fm and 0.08fm.

Fix 5 free parameters of QCD (bare $m_u = m_d, m_s, m_c, m_b$, and

 $a\equiv \alpha_s$) using

 $m_{\pi}, m_K, m_{D_s}, m_{\Upsilon}$ and $\Delta E_{\Upsilon}(2S - 1S)$.

These are 'gold-plated' quantities (e.g. stable hadron masses). Compute other 'gold-plated' quantities as a test of (lattice) QCD.

Heavy Quarks on the Lattice

- $\bigcirc b$ quarks typically have low velocity v within the meson.
- Can use effective theory Lattice NRQCD expansion of Lagrangian in powers of v^2 to get high statistics (calculation of the quark Green's functions can be done using a simplistic evolution equation instead of having to solve a boundary value Dirac problem). Υ System
- Upsilon (Υ) meson is bound state of b and \overline{b} Radial quantum number n = 1, 2, 3...Orbital angular momentum quantum number L = S, P, D, F corresponding to 0, 1, 2, 3 respectively.
 - e.g. $\Upsilon(2S)$ has $n=2,\,L=0.$
 - The stable states are very precisely known experimentally.
- Calcs have the advantage that valence quarks are not the same as the light dynamical quarks. Results indicate how the dynamical quarks feed in to meson properties.
- Can systematically improve Lagrangian order by order in v^2 and match to continuum these results use $\mathcal{O}(v^4)$ Lagrangian with tree level tadpole improved matching.

Lattice	n_f	eta	am_l, am_s	u_{0L}	aM_b^0	n_{conf}	n_{orig}
$20^3 \times 64$ coarse	0	8.0	-	0.856	2.8	210	16
	2	7.2	0.02,-	0.845	2.8	210	16
	2+1	6.76	0.01,0.05	0.836	2.8	210	16
	2+1	6.79	0.02,0.05	0.837	2.8	210	16
	2+1	6.81	0.03,0.05	0.8378	2.8	210	16
	3	6.85	0.05,0.05	0.8391	2.8	210	8
$28^3 imes 96$ fi ne	0	8.4	-	0.8652	1.95	210	16
	2+1	7.09	0.0062, 0.031	0.8461	1.95	159	16,12*
	2+1	7.11	0.0124, 0.031	0.855	1.95	210	16

Table 1: Parameters and details of MILC configurations used for Υ correlator calculations. *For 92 of the 159 configurations, data from 4 of the 16 origins was rejected due to corruption on the last timeslice of the configuration.

Fitting

• Υ correlator fit function $G(t) = \sum_{j=0}^{n_{exp}-1} C_j e^{-E_j t}$ Use *Bayesian Fitting* (augment χ^2 with a Bayesian term) to allow whole range of data to be fitted to large n_{exp}

Lattice Spacing Results

Compare *a* determinations from orbital $({}^{1}P_{1} - {}^{3}S_{1})$ (PS) and radial $({}^{2}S_{1} - {}^{1}S_{1})$ (SS) energy splittings - gives good insight about dynamical content of configurations being used.

r0 Determination

Upsilon Spectrum

- \mathbf{D} 2S-1S splitting used to fix a.
- Splittings become independent of dynamical u/d quark mass for the region we are working in.

Upsilon Spectrum

with

Simulation details

Solution MILC 2+1 flavour dynamical configs. For light quarks use asquad action.

For heavy *b* quarks use standard tadpole improved Lattice NRQCD action correct through $1/(am_b)^2$ at $am_b = 2.8$.

• a^{-1} and m_b fixed by Υ , $m_{u,d}$ and m_s fixed by π and K.

Hence no adjustable parameters.

$am_f \equiv am_{u/d}$	a^{-1} (GeV)	am_q	n_{conf}	n_{src}
Coarse				
0.01	1.596	0.005	568	4
		0.01	568	2
		0.02	568	2
		0.04	568	1
0.02	1.605	0.02	486	2
		0.04	486	1
Fine				
0.0062	2.258	0.0062	465	4
		0.031	472	4

Note some points partially quenched.

 $am_q = 0.04$ corresponds to B_s .

Smearing & Fitting

- Smear heavy quark at source and sink. Use ground state hydrogenic style wavefunctions as have been used for Υ .
- Find optimal radius: that which minimises fit errors while maintaining reasonable χ^2/dof
- Do Bayesian multi exponential fits. Compare single correlator fits to simultaneus *vector* 2×1 (source or sink smearing only) and *matrix* 2×2 (source and sink smearing) fits.
- Fit function is $G(t) = \sum_{j=0}^{n_{exp}-1} C^{(0j)} (-1)^{jt} e^{-m_j t}$
- Extract $\Phi^{(0)} = f_B^{(0)} \sqrt{m_B} = 2\sqrt{C^{(00)}}$. Similarly get next order in $1/m_b$ parts: $C^{(10)}, \Phi^{(1)}$ and combine through 1-loop

Smearing Results

Φ Results

Φ Results

Φ Results

Include fit with a² terms turned off and staggered energy splittings set to 0.

$\Phi \text{ Results}$

ξ Results

• Continuum $\langle O_L \rangle^{\overline{MS}}$ has contribution from lattice $\langle O_L \rangle_{lat}$ and $\langle O_S \rangle_{lat}$ at 1-loop: $O_L = [\overline{\psi}_Q \gamma^{\mu} (1 - \gamma_5) \psi_q] [\overline{\psi}_{\overline{Q}} \gamma_{\mu} (1 - \gamma_5) \psi_q]$ $O_S = [\overline{\psi}_Q (1 - \gamma_5) \psi_q] [\overline{\psi}_{\overline{Q}} (1 - \gamma_5) \psi_q]$

Same simulation params as B leptonic decay but only so far with $m_f = 0.01$, $m_q = 0.04$ (i.e B_s), and only leading order in $1/m_b$

• Corr has form $C(t_B, t_{\bar{B}}) = \sum_{j,k=0}^{n_{exp}-1} A_{jk} (-1)^{jt_B} e^{-m_j t_B} (-1)^{kt_{\bar{B}}} e^{-m_k t_{\bar{B}}}$

Again Bayesian fitting used.

Fitting

•
$$a^{6}\langle O_{L}\rangle^{\overline{MS}} = [1 + \rho_{LL} \alpha_{s}] \langle O_{L}\rangle_{lat} + \rho_{LS} \alpha_{s} \langle O_{S}\rangle_{lat}$$

 $O_{L} = [\overline{\psi}_{Q} \gamma^{\mu} (1 - \gamma_{5}) \psi_{q}] [\overline{\psi}_{\overline{Q}} \gamma_{\mu} (1 - \gamma_{5}) \psi_{q}]$
 $O_{S} = [\overline{\psi}_{Q} (1 - \gamma_{5}) \psi_{q}] [\overline{\psi}_{\overline{Q}} (1 - \gamma_{5}) \psi_{q}]$

 \bullet ρ_{LS}, ρ_{LL} calculated pertubatively.

In terms of 3-pnt (A_{00}) and B 2-pnt (ξ_{BB}) correlator groundstate amplitudes, $\frac{A_{00}^{(OL,S)}}{\xi_{RR}} 2 = \frac{1}{2M_R a^3} \langle O_{L,S} \rangle_{lat}$

Note: we fit directly to 3-point without first taking ratio over 2-point. Don't need to wait for plateau - fit at low t where error is still small by including ex states.

- B_B is defined through $\langle O_L \rangle^{\overline{MS}} = \frac{8}{3} f_B^2 M_B^2 B_B$
- prelim result $f_{B_s} \sqrt{B_{B_s}(m_b)} = 0.244(15)(32) \, {\rm GeV}$ errors are fitting (fits still prelim) and systematic (Λ_{QCD}/m_b , $lpha_s^2$ etc.). In process of doing $1/m_b$ corrections.

Conclusions

- Υ spectroscopy results provide m_b and a^{-1} for B decay and mixing calcs, as well as confidence that methods work.
- Have implemented smearing in B simulations to substantially reduce statistical errors of parameters needed for f_B .
- Chiral fits look promising. Need more fully unquenched points at light quark mass.
- Successful fit done to $B \bar{B}$ mixing correlator looks good. Now include $1/m_b$ corrections and repeat with different $m_{q,f}$.