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Reduced Matrix Models
and Noncommutative

Lattice Theories

by

Yuri Makeenko (ITEP, Moscow)

Based on:

e pedagogical introduction (TEK vs. NCYM)

e original part
Ambjgrn, Nishimura, Szabo, Y. M. (1999 — 2001)
Ambjgrn, Dubin, Y. M. (2004)

Reduced Matrix Models

Eguchi, Kawai (1982)

Large-N reduction:
d-dimensional LGT is equivalent at N = oc to

the one on a hypercube

Ld-oo=1d-oo

Subtleties for gauge theories for d > 2:

e Juenching prescription

Bhanot, Heller, Neuberger (1982)

e twisting prescription

Gonzalez-Arroyo, Okawa (1983)

work both on the lattice and in the continuum
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Reduction of Scalar Field

Parisi prescription:
Matrix-valued N x N scalar field ¢;;(x)
w() "= D) D(x)
D(x) = e Hwn
PF =diag (p],...,0Y%)
— diagonal Hermitian. EXxplicitly
e () e ei(pk_pj)%“sokj

where ¢, is z-independent

like a gauge transformation of a constant field

Reduction of Scalar Field (cont.)

Reduced action

SrR=-N>_
ij

is equivalent at N = oo to the original one

eul” X cos [0 — pYa] +N tr V()
1’

S=Y Ntr[ Y (@)l + afi) + V (p(2))]
x [

Averages coincide after integration over pf

(Fle()])
wla d N 7
RN AN | T PO Ie) )
_7/a p=1:=1

pt are quenched

can instead be distributed over a hypercube
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Recovering Planar Diagrams

Propagator in Reduced Model

. = %G(P@' —pj)

G(p@'—Pj) — M_gzﬂcos[(pf—f’? “‘]'

Simplest planar diagram

Recovering Planar Diagrams (cont.)

Total momenta along the double lines

pi—pP; = D,
Pi— Pk = q,
pi—pPr = ptgq.
recover
w/a
¢ (p) = ot 2
after
w/a
—Zf(pk)éa /(2 )df(q)

Similarly it works in the continuum
(for spherical Gaussian regularization)

Gross, Kitazawa (1982)
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Reduction in the Continuum Eguchi—Kawai model
Gross, Kitazawa (1982) Eguchi, Kawai (1982)
Continuum reduced action Reduction of Yang—Mills fields (lattice)
1 2
— = d.
SR thr{ Q[Pu,so] + V(‘P)} U,u(m) red DT(a: + a,u)UMD(:U)

. . . compatible with the reduced gauge transform.
Unit volume » depends on regularization:

Q) " D)D)

d

v = a lattice regularization

o d/2
vo= (—2) spherical regularization ]

AN If first to gauge transform and then to reduce

d
] ddyp. _/ % p?A2 Q(z + aji) Un(z) Q1 () "< DI etai) QU0 D(2)
(A
then v, 25 uot
Averages coincide

(F[p()]) red. / H dp F[DT(a:)ch(m)])R Subtleties for the large-N reduction on a torus

(when Uy is to be constrained)

—d 2/p2
or distribute p(p)=(\/;/\) =P/




Dr. Yuri Makeenko, ITEP, Moscow (KITP Lattice FT 2-03-05) Reduced Matrix Models and Non-Commutative L attice Theories

Page 5

Eguchi—Kawai model (cont.)

Reduced gauge action (lattice)

1 1
SR = 3 3 {1 - Ntr[UJU;DMDVDLDiUUUM]}
pFv
1 1
=52 (1 - tr U,IU;EU,,U#)
pFv

because [, and DL commute

D, ¥ D(x 4 aip) Di(z) = e~ ue

Gauge-invariant averages

red.

(F[U,u(m)]) — (F[UMDEK

e.qg. Wilson loops

1 red. , 1
—trU(C = (—tr P U,,.
(wirv(@) & (G T Undex

gauge invariant F

1
= (Ntr U;RU;TUQRU]_T)EK (for rectangle)

Continuum EK model

Continuum Eguchi—Kawai action
Sex = ———tr [Ay, Au]2
EK — 492 123 v

unit volume v is fixed by the regularization

is invariant under the gauge transformation
Ay 25 a0l
Reduction of the covariant derivative
10, + Au(z) "% DY (2)AuD(2)

rather than A, (x) itself

Vacuum state given by diagonal matrices

AE' = —Py (modulo gauge transformation)

is very degenerate: integration over P,

10
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Continuum EK model (cont.)

Gauge-invariant averages

red,

(Flidu4+Au(z)]) = (FlA)EK gauge inv. F

and the Wilson loops

<i tr Peifdg’u“‘lﬂ(f)> red. <i trPe §d5“‘4“>
N N

The reduction is valid strictly at N =

EK

11

Why the equivalence?

Open Wilson loops has to vanish:

e original theory: owing to gauge symmetry
e reduced model. owing to the R4 symmetry
A A 4 5

which was [/(1)? on the lattice

This guarantees

D -y
55 (0)

)
WEk(Cyz) ~ Wek (Cra)

The reduced action is invariant under the Rd,

but it should not be broken spontaneously

In fact it is broken for d > 2

Bhanot, Heller, Neuberger (1982)
12
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Quenched EK model

Bhanot, Heller, Neuberger (1982)

Decompose A, = —VMPMVJ

with diagonal P, and unitary Vy,
Gauge symmetry: V, — 2V,
dA, = dP,dV, A? (P,)

A (P,) — Vandermonde determinant

Haar measure:

The idea is to quench Py

. red. [\ il d
(Flidu+ A & [T api (B [-vieruYi] v
1=1

Then the R4 symmetry is not broken and

planar diagrams are reproduced

13

Twisting Prescription
Gonzalez-Arroyo, Okawa (1983)

Same reduction prescription as before but now
D(ZB) — r-’fl/argQ/a . rgd/a

where d (even) unitary N x N twisteaters I,

obey the Weyl—'t Hooft commutation relation

d = 2. clock and shift matrices: Weyl (1931)

Q = diag(Lw,w?,..., w1 wez()
(0100 --- 0)
0010 ---0

po 0000y
0 00O 1
\1 000 - 0

14
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Twisting Prescription (cont.) Twisted Reduced Model (scalars)

Eguchi, Nakayama (1983)
d = 4 twisteaters (simplest twist):

. Twisted reduced action
Zyy = e2minu /N c Z(N)

0 4n STr = —N%: tr Cuel e + N trv(e)

—n 0 The averages
red.

Flo()) '= (F|DV(2)eD(x
Direct product of L x L clock and shift matrices (Fle)) < [ (@) D( )} >TR

M=7rxI r2:Q®]I}

ra=1g7P =129 How to prove the equivalence?

which is possible only if N = 2 and n= L

More sophisticated twists are needed for tori

(boxes with p.b.c.)

15 16
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Matrices versus fields

Mapping matrices into fields on a N2 |attice:

wij < p(ai,aj)

Explicitly
e = > Ax)e(x)

p(xr) = NtrlpA()]

by using the matrix function (in d = 2)

?Tbl TTLQ

1 _j2mm _
D) = Ly T e (g o
mEZ%

Same coefficients of Fourier expansions

]_ _mmy
rii = 2 Y. (P™MQ™?), w7 p(m)
mEZ%
27Tm

p(x) = Y eav *Tp(m)
mEZ%

17

Matrices versus fields (cont.)

Kinetic parts of the actions coincide

M
N tr (?<p2 = r‘ucprch)
7
X

_ (1‘2/202(9;> ~ S el + am)
i3

Cubic interaction has an extra phase

Ntrg® = 3 p(-m — n)e(m)e(n)

% e’ﬂ'i 2w MM /N

The planar Ilimit N— oo is the same

(because of this extra phase)

18
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Important Theorem

Eguchi, Nakayama (1983)

Gonzalez-Arroyo, Okawa (1983)

The presence of the phase is crucial to

reproduce planar diagrams at N= oo

This happens because of the theorem stating:
e the phases cancel out in planar graphs
e the phases remain in nonplanar graphs

suppressing them as N— oo

It can be proven by rewriting
e"Ti E,u,,z/ My /N e_ip‘uguyqy/Q

o~ 1 (pi0p;+p;0pc+pi0p;) /2

aan_l ; 27 > Ny
or M K alN

19

Counting Topologies

Filk (1996)

Minwalla, van Raamsdonk, Seiberg (2000)

Nonplanar diagram of genus h is suppressed
—h
2d —2h

in perfect agreement with 't Hooft expansion

This has immediate important consequences

for gauge fields

20
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Twisted EK Model

Gonzalez-Arroyo, Okawa (1983)

Same reduction of gauge field but now
Dy = D(x + afi) DI(2) =T,

do not commute

TEK action

1 1
STEK =3 3 (1 — Zpv b UJUJLUUU#)
pFEY

TEK is nothing but LGT on a unit hypercube
with twisted b.c.

Up( + 1) = Qe + afp) Up(x) Q) (x)
Qulx 4+ 0) Q(x) = Zuw Qe + L) Qulx)

Zuw € Z(N) represents the 't Hooft flux

21

Twisted EK Model (cont.)

U(l)d symmetry is not broken for all couplings

owing to the twisting factor

Vacuum state is not diagonal

Uﬁ' =Ty (modulo gauge transformation)

Wilson |oops

1 1
Wrek(C) = =trDI(C) =tr P [] U,
N N ec TEK

where DC)y=P][ Iy,
e
is traceless for open loops

WTeEK(Cry) = 62y WTEK(Cx2)

except for passing throu the lattice: Ff; =1

This guarantees the equivalence at N=
22
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Continuum TEK

Gonzalez-Arroyo, Korthals Altes (1983)

Usual continuum limit a— O:

27"7’&”]/ _ 0_1
Na2 i

[P, P)] = —iBu1 By =

Continuum TEK action
STEK = ——=tr ([An, Au] + 1Buw)>
TEK 492 fo £V jirg

remember that tr [Au, Av] =0

for infinite-dimensional matrices (operators)

Vacuum configuration

AE' = —P, (modulo gauge transformation)

23

Continuum TEK (cont.)

Wilson |loops

Wrek(Cyz) =
1 i 1 1 i 1
<—trPe'wa: AP 1 1 pel oy 96 A”>
N N

vanish for open loops

TEK

= the R4 symmetry is not broken and

planar diagrams are reproduced
Same theorem provides the equivalence at N= oo

It can be proved also using loop equation where

2 (d)
(55\@ (o y>) _ B
d — d
5$D(0) 55/5) (0
which was (02)% = by on the lattice

24
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TEK with matter

Fundamental matter in the Veneziano |imit

Nf = an — O Veneziano (1976)

TEK action with matter Das (1983)

S = STEK+Ntr |M¢lp - (FMU;E@ + FLsoTUM)

H

describes n§ flavors

Continuum TEK action with matter

S = StEk + vNtr |m?ele + 3 [Aup + @ Pyul?

i3
remember that A, = —F, for free theory

= commutator

Similar formulas exist for fermions

25

Noncommutative theories from T EK

Connes, Douglas, Schwarz (1998)

To reproduce planar diagrams

CL2N -1

0”1/:??1#” — X0 as N— o0

Oupr May be kept finite if
a~NY2 (4=2) or a~NY* (a=24)

— the double scaling limit

Aoki, Ishibashi, Iso, Kawai, Kitazawa, Tada (2000)

Noncommutative QFT'’s can be obtained

26
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Star product NC Yang—Miills
Mapping matrices into fields Uyp(1l) gauge theory

Ntre3 = szgo(:c) * @(z) * p(x) S = %/dd:UFQ A= g—erKN
with the noncommutative star product Frv = OpAdy — A, —i1(Apx Ay — Ay Ay)
f1 (@)% fo(x) = %; e—2iyy9;ylz;/f1(m_|_y)f2(m_|_z) cubic + quartic interactions like in Yang—Mills
In the continuum = usual U(1) = Maxwell theory as 6 — 0

= usual U(oc) Yang—Mills theory as 0 — oo

1) > o) = A1) e (5 80 B0) Jo()

< noncommutative product of matrices . . .
is invariant under star gauge transformation

t. )
Noncommutative space Ay 25 Qw Ay x QF 4+ 192+ 0,07
Tpk Ty — Ty * Ly = 10 QxP'=1=0"x%xQ (star unitary)
Noncommutative QFT’s can be constructed includes several coordinate transformations:

translations, rotations, parity reflection, . ..

27 28
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One-loop renormalization

One-loop diagrams:

planar nonplanar
UV divergent UV convergent
20, /A d*k 1 _ 5 /\m/\Q
Pl = 3 (2m)4k2(p — k)2~ 1272 p2
20 AN d% elplk A2
np. = —A\ ~ Al —&ff
3 (2m)* k2(p — k)2~ 1272 P2
Nt = 0"+ N7 lpllop| <1
A odY elpdk 1
as 0 — oc

2m)4k2(p— k)2 p2ddet (0,u)

29

One-loop renormalization (cont.)

Uyp(1l) gauge theory is asymptotically free

— described only by the planar diagram

Same one-loop Gell-Mann—Low function as

for N= oo Yang—Mills

If & — 0O, to subtract the nonplanar diagram —

two contributions are canceled for usual U(1)

U(1) is recovered for very large distances ~ A#
rather than ~ v0: UV/IR mixing

1
If Axq 2 m — UV cutoff
0
then Axy ~ < ON — IR cutoff
1
since Ax1Axy ~ 0

UV and IR regularizations should be consistent
30
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NC Quantum Electrodynamics

Noncommutative QED

1 — ] —
S = /ddm {afz + yu(Op — 1Au*)Y + mapy
Fundamental matter:
v 25 0wy FEL gar

One-loop Gell-Mann—Low function
Hayakawa (2000)
(—11 + 2n¢)

2

1272
same as for N= oo QCD in the Veneziano limit

B()) =

(no nonplanar diagram with fermionic loop)

Limits of NC Uy(1l) gauge theory

Distances: T heories:
r <€ V0 Veneziano limit of QCD
VO <1 < 0N NC Uy(1) QED

ON <r QED
31

TEK for finite volume

Quotient condition imposed on AM:

Connes, Douglas, Schwarz (1998)

Ay + 27 Ryubp = QAL

Finite IV approximation

Ambjgrn, Nishimura, Szabo, Y. M. (1999)

e2ﬂ'ia5m, RJ“' U/_L — QI/U/_LQI

32

Page 16
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TEK for finite volume (cont.) Morita Equivalence

A.Schwarz (1998)

For €, = [[, [,/ with integer
L o For integer ratio m/n € Z the two models
n = — (n =1 for original TEK)
m 1) TEK with quotient condition
TEK with the quotient condition is equivalent 2) NCLGT with integer mn/n
I . d’ _ d
to NCLGT on a finite lattice /¢ = (am)%: are equivalent to the third one:
S = 1 oy 3) usual LGT on the lattice (an)? with
2
z€Td, p7Fv twisted b.c. and gauge group SU(p)

(1 -U}(x)* U::(x + a) x Up(x + afi) % Uy (x))

. (m)d/Q
invariant under the star gauge transformation P= n
3) also has np? = m? degrees of freedom

g.t. ~ *
Up(z) = Q(z + afi) x Up(z) * Q7(x) (1) and 3) coincide for n = 1)

Lattice star product is as before with 1) is a EK reduction of 3)
2 n
Opr = ——— & : i
T im Continuum torus can be obtained when both

m — 00, n — oo at fixed ratio p

33 34
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conclusions

N=occ QCD = Reduced Matrix Models

(space < gauge group)

Finite-N approximation of TEK = NCLGT
(finite lattice)

NCQFT's at & = oc describe planar diagrams
(except for 2D NCYM!)

Gauge Theories on twisted torus
= TEK with quotient condition
(not known in 1980's)

?

Help in solving N= oo QCD =

(probably not enough investigated)

SUSY M(atrix) models of Superstrings

(most interesting recent development)

35




