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I. Motivations

Main Goal: construct perturbative series which are converging and accurate.

For a generic observable Obs. in a λφ4 theory

Obs.(λ) ≃
K∑

k=0

ak(φmax)λk

where φmax is a large field cutoff. The simplest implementation is a
restricted range of integration in the measure of a lattice formulation

∏

x

∫ φmax

−φmax

dφx.
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Practical Considerations

The calculation of the modified coefficients ak(φmax) fall in three categories:

• Low k (the usual ones with exponentially small corrections; semi classical)

• Intermediate k (crossover; complicated but with universal features)

• Large k (power suppressed; no k! behavior)

The method works well in nontrivial cases (the anharmonic oscillator and
D = 3 Dyson hierarchical model; see YM PRL 88 141601)
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Figure 1: Number of significant digits obtained with regular perturbation
theory at order 1, 3, 5, ...., 15 (black) and with φmax = 3 (green), 2.5
(blue) and 2 (red), at order 1, 3, ..., 11 , as a function of λ, for the ground
state energy of the anh. osc and the renormalized mass of Dyson’s model.
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Optimization

• We can adjust φmax(λ, K) in order to minimize or eliminate the
discrepancy with the (usually unknown) correct value.

• The strong coupling can be used to calculate approximately this optimal
φmax(λ, K) (suitable to approach a weak/strong coupling crossover)

• The perturbative ”coefficients” ak(φmax(λ, K)) now depend on λ.
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The large field cutoff/UV cutoff connection

Semi-classical examples of relations between these two cutoffs

1. Spherical charge density held together by some ”strong” force within a
radius R. The total charge is e.

Electrostatic Energy: E ∝ e2

R

Maximum Electric field: |E|max ∝ e
R2 ∝

E2

e3
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2.Resonant Cavity

Maxwell equations without sources and the boundary conditions are invariant
under a rescaling of the electric and magnetic fields.

The cavity explodes if e|E| ∼ e2

4πǫ0r2B

ERyd. = e2

8πǫ0rB
; rB = h̄

mecα

Maximum Electric field: |E|max ∝
E2
Ryd.

e3
∝ em2

e

Note: the bound corresponds to 1018Watt/cm2 and is extreme; eye
protection materials can only sustain 1015Watt/cm2
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3.Instantons

The classical Yang-Mills equations are non-linear and a given solution cannot
be rescaled arbitrarily, however translations and conformal transformation
generate new solutions by changing the size (ρ) and the location (x0). The
magnitude of the field strength is maximized at x = x0 and

|F µν|max ∝ ρ−2

If instantons of size ρ < a ∼ Λ are excluded then

|F µν|max ∝ Λ2
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4. Classical Gravity

Spherical mass density supported by radiative pressure or Fermi pressure.
The radius is R and the total mass M .

If we restrict our attention to the cases where R > RS = 2GM
c2

Gravitational Energy: Eg ∼
GM2

R < Mc2/2

Gravitational Field < GM
R2

S
= c2

2RS

(no extra couplings here)
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5. Effective potential for a scalar field

Examples: Higgs, inflaton (glueball?)

Suppose that there is some new physics at a scale Λ (e. g. Λ = 1TeV for
the Higgs or Λ = MP for the inflaton).

Does the new physics show up at large field fluctuations (φ > Λ(D−2)/2) or
at large energy values (Veff > Λ4)?

Linde advocates the second possibility for the corrections of quantum gravity
to the inflaton potential

I believe that the general form of the answer is that the corrections appear
if φ > AΛ(D−2)/2 with A dimensionless and depending on the relevant
couplings.

10



Remarks

Effective theories usually involve a UV cutoff but not a field cutoff

D = 3 critical potentials have finite radius of convergence (YM, PRD D67
025006 (large N); YM and Oktay, PRD 69 125016, N = 1). Interpretation?

A large field cutoff regulates some UV divergent quantities 2D and 3D scalar
field theory (Li and YM, Lattice 2003)

Popular lattice models (Ising and O(N) models, Wilson LGT with compact
groups) have both a UV and a field cutoff (but this may also be a source
of ”artifacts”)
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II. Simple Model Calculations

• 1 site scalar field theory

• 1 plaquette gauge theory

• the anharmonic oscillator
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1 site SFT (B. Kessler, Li and YM, PRD 69 045014)

∫ +∞

−∞

dφe−
1
2φ2−λφ4

6=
∞∑

0

(−λ)l

l!

∫ +∞

−∞

dφe−
1
2φ2

φ4l

The peak of the integrand of the r.h.s. moves too fast when the order
increases. On the other hand, if we introduce a field cutoff, the peak moves
outside of the integration range and

∫ +φmax

−φmax

dφe−
1
2φ2−λφ4

=

∞∑

0

(−λ)l

l!

∫ +φmax

−φmax

dφe−
1
2φ2

φ4l
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Figure 2: Significant digits obtained with the optimal cut φmax(λ) estimated
using a strong coupling expansion at lowest order (W6S0), compared to
results at three fixed cuts and regular perturbation theory (PT6) at order 6.
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Figure 3: Significant digits obtained with the optimal cut φmax(λ)
(corresponding to a truncated expansion at order 6 in the weak coupling)
estimated using the strong coupling expansion at orders 0, 1, 2 and 3
(solid lines), compared to significant digits using only the strong coupling
expansion of the integral at the same orders in the strong coupling (dashed
lines) and regular perturbation theory at order 6 (PT6).
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1 plaquette LGT, (Li, YM hep-lat/0501023 PRD in pr.)

Z(β, N) =

∫ ∏

l∈p

dUle
−β(1− 1

N ReTrUp) ,

Z(β, 2) = (2/β)3/21

π

∫ 2β

0

dtt1/2e−t
√

1 − (t/2β)

Z(β, 2, tmax) = (2/β)3/21

π

∫ tmax

0

dtt1/2e−t
√

1 − (t/2β)

Z(β, 2, tmax) = (βπ)−3/221/2
∞∑

l=0

Al(tmax)(2β)−l ,

with

Al(tmax) ≡
Γ(l + 1/2)

l!(1/2 − l)

∫ tmax

0

dte−ttl+1/2 ,
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Z(β, tmax) = (βπ)−3/221/2
∞∑

l=0

Al(tmax)(2β)−l ,

Al(tmax) ≡
Γ(l + 1/2)

l!(1/2 − l)

∫ tmax

0

dte−ttl+1/2 ,

When tmax → ∞ the integral becomes the (complete) Γ function and the
coefficients grow factorially. In lattice perturbation theory, we ”add the
tails”.

When tmax is finite, the integral is bounded by a power of tmax. When
tmax ≤ 2β, the sum converges.
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Figure 4: Number of correct significant digits as a function of β at successive
orders of the regular perturbative series for Z(β). As the order increases
from 1 to 15, the curves (W1, W2, . . . ) get lighter. The thick solid line is
log10(β

−1e−2β/Z) (”instanton effect”).
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Figure 5: Number of correct significant digits as a function of β for a fixed
cut tmax = 8. As the order increases from 1 to 15 (W1, W2, . . . ), the
curves become lighter. 19
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Figure 6: Location of the exact matching between the series at order 6,
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solution within the radius of convergence and the empty circles the other
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Figure 7: Approximate locations in the (β, tmax) plane of the matching
between the order 6 weak coupling expansion and Z(β). The two solid lines
are the two numerical solutions at that order (as in Fig. 6). The dash line
(empty circles) represent the first (second) approximate solutions at order
0, . . . , 4 in β. 21
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6 using the first solution for tmax/β at order 0 to 3 compared to the weak
coupling expansion at order 6 (dotted line W6) and the strong coupling
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The anharmonic oscillator (L. Li and YM

hep-th/0503047)

H =
p2

2
+ V (x) ,

with

V (x) =

{
1
2ω

2x2 + λx4 if |x| < xmax

∞ if |x| ≥ xmax

E0(xmax) = ω
∞∑

k=0

E
(k)
0 (xmax)(λ/ω3)k ,

Rk(xmax) ≡ E
(k)
0 (xmax)/E

(k)
0 (∞) ,
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Figure 9: Rk(xmax) = E
(k)
0 (xmax)/E

(k)
0 (∞) for k going from 1 to 10.
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Figure 10: Rk(x+x0(k)) for k = 2, . . . 10 and the universal function U(x)
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Figure 11: Numerical values of R0(xmax) and R1(xmax) . The solid lines
represent the large xmax expressions. The broken lines represent lowest
orders in the small xmax approximation.
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III. 4D Gluodynamics

1. Gauge field cuts (gauge invariant or Landau gauge?)

2. Effects of a field cut (small except in the crossover region)

3. Large Field dynamics (β < 0; first order PT at β ≃ −22 for

SU(3))

4. Lattice Perturbation Theory (3rd order phase transition?)

5. What is the correct theory?
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1. Gauge Field Cuts

Spheres versus Cubes (scalar case): for a scalar field configuration {φx} seen
as LD-dimensional vector, there are two obvious norms: (

∑
φ2

x)1/2 (defines
spheres) and Maxx|φx| (defines cubes). There are strong correlations
between these two quantities (shown for 10,000 configs. for D = 1 below)

(
1
/
L
)

ΣΣ(
φφ2
)

|φφ|
max

1 2 3 4

 

 -0.20+0.36*x
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Gauge invariant versus Landau gauge cuts

The volume average of 1 − (1/N)ReTrUL in the Landau gauge is well
correlated (the sample correlation is 0.46) with the gauge invariant P .
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The maximum value of 1 − (1/N)ReTrUlink is well correlated with its
average (when the Landau gauge algorithm is used long enough!)
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Figure 12: Largest absolute value of 1−(1/N)ReTrUlink versus its average;
sample correlation: 0.426.
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2. Effect of a gauge invariant cut on P

The effect of the cut is very small but of a different size below, near or
above β = 5.6. The relative change of the configuration average of P when
80 percent of the large field configurations are discarded, for various values
of β in a pure SU(3) LGT on a 84 lattice is shown below
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Figure 13: P versus β for SU(3) in 4 dimensions. The solid line represents
the numerical values; the dashed lines on the left, successive orders in the
strong coupling expansion; the dot-dash lines on the right, successive orders
in the weak coupling expansion.
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This is in agreement with the idea that modifying the weight of the large
field configurations affects the crossover behavior (where we usually get
some kind of continuum scaling)

Methods to change the weight of the large field configurations:

• adding adjoint action (Bhanot, Creutz, Hasenbusch, Necco)

• adding a monopole chemical potential (Mack et al. , Brower et al.)

• removing center vortices (de Forcrand and D’Elia)

33



Figure 14: From Bhanot and Creutz PRD 24 3212
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Figure 15: From R. Brower et al. PRL 47 621 35



3. Gluodynamics at negative β

Continuum expectations: when g → ig, g2 → −g2

• The terms ig∂AAA become non-hermitian

• The terms g2AAAA become unbounded from below

However, it is possible to obtain a positive spectrum for potentials such as
ix3 or −x4 by changing the boundary conditions (Bender and Boettcher,
PRL 80, 5243; see also Bender, Brody and Jones hep-th/0402011 for field
theory)

In LGT, the large field problem occurs when we ”decompactify”.
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Minimum action configurations at negative β

for detail see L. Li and YM, hep-lat/0410929, PRD 71

For SU(2) and SU(3) with β < 0, an absolute minimum of β
∑

p(1 −
(1/N)ReTr(Up)) can be obtained if Up is a non trivial element of the
center for each plaquette.

We can construct a set of lines L such that every plaquette shares one and
only one link with this set. These lines cannot intersect. These lines cannot
be obtained from each other by exactly one translation of one lattice spacing
in one single direction. For D = 2, parallel lines separated by two lattice
spacing do the job. For D > 2, we require that any plane contains this type
of solution (we thus reduce the problem to a 2D lattice with periodic b.c.)
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For D = 3, an example of L is {(A, 0, 0), (0, A, 1), (1, 1, A)} with A
arbitrary. It is not difficult to show that there are 8 distinct L.
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For D = 4, L contains 8 lines. An example of solution is

{ (A, 0, 0, 0), (0, A, 0, 1), (0, 1, A, 0), (0, 0, 1, A),

(1, 1, 0, A), (1, 0, A, 1), (1, A, 1, 0), (A, 1, 1, 1) } .

For D = 2 (D = 3), the 4 (8) SU(2) configurations with −11 on L and
the identity on the other links, are gauge equivalent.

For SU(2), there is only one set of Up for a configuration of minimal action
(all −11). For SU(3), we have two choices:Up = e±i2π/311 (Ising like).
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SU(2)

Using a change of variables, Ul → −Ul for l ∈ L and the invariance of the
Haar measure (−11 ∈ SU(2)), we find

Z(−β) = e2βNpZ(β)

Taking the logarithmic derivative, we obtain

P (β) + P (−β) = 2 .

This identity can be seen in the symmetry of the curve P (β)
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Figure 16: The average action density P (β) for SU(2).
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P (+∞) = 0, implies that P seen as a function of g2 = 2N/β, jumps
discontinuously by 2 as g2 becomes negative. This invalidates the idea that
P could have a regular expansion about g2 = 0 with a non-zero radius of
convergence (essential singularity).

This relation can also be used in the opposite limit and expanded about
β = 0. The odd terms cancel automatically. The even terms of order
2 and higher add and cannot cancel. Consequently, the even coefficients
of the strong coupling expansion of P (β) and the odd coefficients of the
free energy should vanish, in agreement with explicit calculations (Balian,
Drouffe and Itzykson).
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〈W (C)〉−β = (−1)|A| 〈W (C)〉β
We can now try to interpret the change of the Wilson loop with the area
in a term of a potential. We consider a rectangular R × T contour C and
write

W (R, T, β) ≡ 〈W (C)〉β ∝ e−E(R,β)T .

From Eq. (1) this implies

E(R,−|β|) = E(R, |β|) + iπR .

This property can be related to the fact that the configurations of minimum
action are invariant under translations by two lattice spacings but not under
translations by one lattice spacing.
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SU(3)

For N = 3, −11 is not a group element and the closest thing to the
change of variables used for N = 2 that we can invent is a multiplication
by a nontrivial element of the center ζ11 for the links of a particular set L.
We then obtain

Z(ζβ) = e(1−ζ)βNpZ(β)

×
〈
e(β/3) p(ζReζ⋆TrUp−ReTrUp)

〉

β
. (1)

In the case N = 2, ζ is replaced by -1, 〈...〉β becomes 1
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First Order PT at β ≃ −22.

-40 -20 0 20 40

0.0

0.5

1.0

1.5
SU(3)

P

ββ

 

Figure 17: MC calculation of the average action density P (β) for SU(3)
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4. Lattice Perturbation Theory

Three steps (Heller and Karsch, NPB 251 254)

1. β = 2N/g2; U = eigA with A = AaT a

2. Extend the range of integration of the Aa from −∞ to +∞

3. Expand in g

We used the series of Di Renzo et al. JHEP 10 038 hep-lat/0011067.

P (1/β) =

10∑

m=0

bmβ−m + . . . .
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rm = bm/bm−1, the ratio of two successive coefficients extrapolates near
6 when m → ∞. On the other hand, we expect a linear growth for an
asymptotic series.
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Figure 18: Ratios for the 95 and 2000 data (on 84 and 244 lattices).
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P = (1/βc − 1/β)−γ(A0 + A1(βc − β)∆ + ....) ,

We introduce quantities (Nickel) called the extrapolated ratio (R̂m) and the

extrapolated slope (Ŝm) in order to estimate βc and γ. These quantities
are defined as

R̂m = mrm − (m − 1)rm−1 ,

and
Ŝm = mSm − (m − 1)Sm−1 ,

where

Sm = −m(m − 1)(rm − rm−1)/(mrm − (m − 1)rm−1)

is called the normalized slope. When A0 and A1 are constant, one finds
that the 1/m corrections disappear:

Ŝm = γ − 1 − Bm−∆ + O(m−2).
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Series Analysis
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Figure 19: The extrapolated ratios (left) suggests βc ≃ 5.72. The
extrapolated slope (right)suggests γ = −1.07.
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Conclusions of the series analysis

• P ∝ (1/5.7 − 1/β)1.07

– not expected
– could be visible in 2d derivative of P (statistical errors permitting)

• Not incompatible with asymptotic series (P could be a superposition of
a function that has an asymptotic series and one that has a finite radius
of convergence) provided that the factorial behavior shows up at a large
enough order.

see also Horsley et al. Nucl.Phys.Proc.Suppl.106:870-872,2002 Also
in *Berlin 2001, Lattice field theory* 870-872 e-Print Archive: hep-
lat/0110210
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Direct Search for Singularities in P ′ and P ′′
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∂2P/∂β2 is ”twice subtracted” and the errors increase rapidly with the
volume.
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What is the right theory?

• Continuum behavior is sensitive to field cuts

• Does the new 1st order PT line terminate at a critical point?

• Is the 3rd order PT suggested by perturbation theory a feature relevant
for the continuum?

• What kind of effective theory do we want? Massive glueball with M/Λ
not so small?

• How do we decide about the non-universal features?
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IV. Projects

• Effective theory for ReTrUp

• Stochastic Perturbation Theory with boundaries

• Inverse and determinant of matrices in cut perturbation theory
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