KITP, UCSB 23 March 2005

't Hooft-Polyakov Monopoles on the Lattice

Arttu Rajantie

DAMTP and Churchill College University of Cambridge

Davis, Kibble, Rajantie & Shanahan, JHEP11(2000) Davis, Hart, Kibble & Rajantie, PRD65(2002) Rajantie, in progress

Introduction

- 't Hooft-Polyakov monopoles
 - Pointlike magnetic charges
 - Georgi-Glashow model: SU(2)+adjoint Higgs
- Confinement in QCD and Yang-Mills
 - Monopole condensation?
 - Abelian projection?
- Predicted by all GUTs
 - Produced in the early universe
 - Greatly diluted by inflation
 - Constantly searched, none found yet (or possibly one on Valentine's Day 1982 (Cabrera 1982))
- Theoretical interest
 - SUSY models
 - Dualities

Topological Solitons

Localized, topologically stable field configurations

- Order parameter ϕ at spatial infinity $|\vec{r}| \to \infty$:
 - Finite energy ⇒ Must approach vacuum
 - Possibly different vacuum in different directions
 - \bullet Defines a map from S^{d-1} to the vacuum manifold $\mathcal{M}\cong G/H$
- Solitons exist if $\pi_n(G/H) \neq 0$ for n < d
 - n = 0: Domain walls (kinks)
 - n = 1: Vortices (strings)
 - n=2: Monopoles
 - Winding number $N_W \in \pi_n(G/H)$

- Dualities
- Confinement ← Monopole condensation? ('t Hooft, Mandelstam)

Classical Kink

• 1+1D real scalar field

$$\mathcal{L} = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}\phi'^2 - \frac{\lambda}{4}(\phi^2 - v^2)^2$$

- Two vacua $\phi = \pm v \Rightarrow \pi_0 = \mathbb{Z}_2$, winding number 0 or 1
- Kink: Choose $\phi(\pm \infty) = \pm v$
- Exact stationary solution: $\phi(x) = v \tanh(\lambda v^2/2)^{1/2} x$

Energy $M_{\rm kink} = \frac{2}{3}\sqrt{2\lambda}v^3$

Georgi-Glashow model

Continuum:

$$\mathcal{L} = -\frac{1}{2} \text{Tr } F_{\mu\nu} F^{\mu\nu} + \text{Tr } [D_{\mu}, \Phi] [D^{\nu}, \Phi] - m^2 \text{Tr } \Phi^2 - \lambda (\text{Tr } \Phi^2)^2$$

- SU(2) gauge field $A_{\mu}=A_{\mu}^{a}\sigma^{a}/2$, where $a\in\{1,2,3\}$
- Adjoint Higgs field $\Phi = \Phi^a \sigma^a/2$
- Euclidean lattice action (lattice spacing= 1)

$$\mathcal{L}_{E} = 2\sum_{\mu} \left[\operatorname{Tr}\Phi(\vec{x})^{2} - \operatorname{Tr}\Phi(\vec{x})U_{\mu}(\vec{x})\Phi(\vec{x} + \hat{\mu})U_{\mu}^{\dagger}(\vec{x}) \right]$$

$$+ \frac{2}{g^{2}} \sum_{\mu < \nu} \left[2 - \operatorname{Tr}U_{\mu\nu}(\vec{x}) \right] + m^{2} \operatorname{Tr}\Phi^{2} + \lambda (\operatorname{Tr}\Phi^{2})^{2}$$

- Link variables $U_{\mu} \in \mathrm{SU}(2)$, $U_{\mu} \sim \exp(igA_{\mu})$
- Plaquette $U_{\mu\nu} = U_{\mu}(x)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}^{\dagger}(x)$

't Hooft-Polyakov Monopole

- $m^2 < 0$: Symmetry breaking SU(2) \rightarrow U(1)
 - Vacuum manifold $\{ \operatorname{Tr} \Phi^2 = v^2 = |m^2|/\lambda \} \cong S^2$
 - $\pi_2(S^2) = \mathbb{Z} \Rightarrow \mathsf{Monopoles}$ ('t Hooft, Polyakov)

$$\Phi^{a}(\vec{r}) = \frac{r_{a}}{gr^{2}}H(gvr)$$

$$A_{i}^{a}(\vec{r}) = -\epsilon_{aij}\frac{r_{j}}{gr^{2}}[1 - K(gvr)]$$

- Broken phase: U(1) symmetry \Rightarrow Electrodynamics
 - Field strength $\mathcal{F}_{\mu\nu}=\mathrm{Tr}\hat{\Phi}F_{\mu\nu}+(2ig)^{-1}\mathrm{Tr}\hat{\Phi}[D_{\mu},\hat{\Phi}][D_{\mu},\hat{\Phi}]$
 - Unitary gauge $\hat{\Phi}=\sigma_3$: Reduces to $\mathcal{F}_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$
 - Magnetic field $\mathcal{B}_i = \frac{1}{2} \epsilon_{ijk} \mathcal{F}_{jk}$:
 - If $\Phi \neq 0$, then $\vec{\nabla} \cdot \vec{\mathcal{B}} = 0$
 - For a smooth configuration $\vec{\nabla} \cdot \vec{\mathcal{B}}(\vec{x}) = (4\pi/g) \sum_i \pm \delta(\vec{x} \vec{x}_i)$
 - \Rightarrow Magnetic monopoles with charge $\pm 4\pi/g$

Magnetic Field on the Lattice

- Discretized version of $\mathcal{F}_{\mu\nu}$:

 - Define projection $\Pi_+=\frac{1}{2}(1+\hat{\Phi})$ $\left[=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right]$ Projected link $u_{\mu}(x)=\Pi_+(x)U_{\mu}(x)\Pi_+(x+\hat{\mu})$ $\left[\propto\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right]$
 - U(1) field strength tensor

$$\alpha_{\mu\nu} = (2/g) \arg \operatorname{Tr} u_{\mu}(x) u_{\nu}(x+\hat{\mu}) u_{\mu}^{\dagger}(x+\hat{\nu}) u_{\nu}^{\dagger}(x)$$

- Magnetic field $\hat{B}_i = \frac{1}{2} \epsilon_{ijk} \alpha_{jk}$
 - Magnetic charge in a lattice cell

$$\hat{\rho}_M = \sum_i \left[\hat{B}_i(x+\hat{i}) - \hat{B}_i(x) \right] \in (4\pi/g)\mathbb{Z}$$

⇒ Stable monopoles

Classical Monopole Mass

Continuum result

$$M = (4\pi m_W/g^2)f(m_H/m_W)$$

- $f(x) \approx 1 + x/2 + (x^2/2)(\ln x + \sqrt{2})$ (Kirkman&Zachos 1981)
- Example: $\lambda = 0.1, g = 1/\sqrt{5}$
- Finite size effects
 - Coulomb force $|m^2|\gg 1/L^2$: $\Delta E(L)\approx 11.0/g^2L$
 - Symmetry restoration $\Delta E(L) \approx V(0) L^3 = (\lambda v^4/4) L^3$
- Infinite-volume extrapolation:

$$f(x) \approx 1.10$$

Perturbative Quantum Corrections

- ullet Find lowest energy eigenvalue $E(N_W)$ with a given winding number N_W
 - Soliton mass M = E(1) E(0)
- Perturbative approach: (Dashen et al. 1974)
 - Loop expansion around classical solution $\varphi_0(x)$
 - Write $\varphi(t,x) = \varphi_0(x) + \delta(t,x)$
 - Quantize $\delta(t,x)$: Field in a x-dependent potential
 - Order δ^2 : Harmonic potential $U(\delta) = \frac{1}{2}V''(\varphi_0(x))\delta^2$
 - Diagonalize:

$$\left[-\vec{\nabla}^2 + V''(\varphi_0(x)) \right] \delta_k(x) = \omega_k^2 \delta_k(x)$$

- \Rightarrow Frequencies ω_k
- One-loop level: $\Delta E = \sum_k (\omega_k^1 \omega_k^0)/2$
- Higher-order corrections: Difficult

One-loop Kink Mass

• Equation for ω_k :

$$\left[-\frac{\partial^2}{\partial x^2} + \lambda v^2 \left(3 \tanh^2 \sqrt{\lambda v^2 / 2} x - 1 \right) \right] \delta_k(x) = \omega_k^2 \delta_k(x)$$

• Can be solved exactly:

$$\omega_0^2=0$$
 , $\omega_1^2=3\lambda v^2/2$ and a continuum $\omega_q^2=(q^2/2+2)\lambda v^2$

- Caveats: Zero mode, measure for q, UV regularisation
- Result: (Dashen et al. 1974)

$$M_{\rm kink} \approx \frac{2}{3}\sqrt{2\lambda}v^3 + \left(\frac{1}{2\sqrt{6}} - \frac{3}{\sqrt{2}\pi}\right)\sqrt{\lambda}v$$

Leading-log Monopole Mass

- Same principles, many extra complications
 - Gauge fixing
 - Two coupled fields
 - Higher dimensionality
 - Renormalisation issues
- ullet Only leading log in the $m_H/m_W
 ightarrow 0$ limit has been calculated (Kiselev&Selivanov 1988)

$$M = \frac{4\pi m_W}{g^2} \left(1 + \frac{g^2}{8\pi^2} \ln \frac{m_H^2}{m_W^2} + O(g^2) \right)$$

- Infrared divergence as $m_H/m_W \rightarrow 0$
- Related to Coleman-Weinberg effect: $m_H/m_W \gg g$ due to quantum fluctuations
- Difficult to test: Need small $m_H/m_W \to 0$ \Rightarrow Small $g \Rightarrow$ Small quantum correction

Non-perturbative Soliton Masses

- ullet Soliton creation and annihilation operators ψ^\dagger and ψ (Kadanoff&Ceva 1971)
 - $\langle 0|\psi^{\dagger}(t_1)\psi(t_2)|0\rangle \propto e^{iM(t_2-t_1)}$
- Path integral formulation (integrate over φ with $N_W=0$)

$$e^{-M(t_2-t_1)} \propto Z_0^{-1} \int_0 D\varphi \psi^{\dagger}(t_1)\psi(t_2)e^{-S[\varphi]}$$

- Easy to do in simple cases: Kinks, vortices
- Less straightforward for monopoles:
 - Magnetic field $\Rightarrow \psi$ necessarily non-local
 - Compact QED: Duality maps to an integer-valued gauge theory (Polley&Wiese)
 - ⇒ Becomes much simpler
 - Non-Abelian theories: Several attempts (Frohlich&Marchetti, Di Giacomo et al.)
 - Idea: Add a classical monopole configuration between t and $t+\delta t$ (Dirac string with an endpoint, BPS monopole...)
 - Boundary conditions problematic

Removing Start and Endpoints

- Take $t_2 \rightarrow t_1 + T$, where T is temporal size
 - $\langle \psi^{\dagger}(t_1)\psi(t_2)\rangle \to Z_1/Z_0 = \exp(-MT)$ $\Rightarrow M = -\ln(Z_1/Z_0)/T$
- Define Z_1 using appropriate boundary conditions
- Monte Carlo: Cannot calculate Z_1 or Z_0 directly
 - Only expectation values: Derivatives or differences

Mass Derivatives

- $M = -(\ln Z_1/Z_0)/T$, but cannot calculate Z_1 or Z_0 directly
- \circ Calculate derivative with respect to some parameter λ :

$$\frac{\partial M}{\partial \lambda} = \frac{1}{T} \left(\frac{1}{Z_0} \frac{\partial Z_0}{\partial \lambda} - \frac{1}{Z_1} \frac{\partial Z_1}{\partial \lambda} \right)$$

Express in terms of expectation values:

$$\frac{1}{Z_{N_W}} \frac{\partial Z_{N_W}}{\partial \lambda} = -\frac{1}{Z_{N_W}} \int_{N_W} D\varphi \left(\frac{\partial S}{\partial \lambda} \right) e^{-S} = -\left\langle \frac{\partial S}{\partial \lambda} \right\rangle_{N_W}$$

- Can be calculated with Monte Carlo simulations
- Integrate to obtain $M(\lambda)$
 - Start in symmetric phase: No integration constant

Non-perturbative Kink Mass

- Comparison of one-loop, operator and twist results (Ciria&Tarancon 1994)
 - Twist: Simply antiperiodic b.c. $\phi(L) = -\phi(0)$

- Non-perturbative results agree with each other
- Twist has much smaller errors
 - Also true for monopoles in compact QED (Vettorazzo&de Forcrand 2004)
- Slightly above one-loop result

KITP, UCSB 23 March 2005

Fixed Boundary Conditions

- Fix the field to the classical solution at the boundary (Smit&van der Sijs 1994, Cea&Cosmai 2000)
- Boundary effects?

Twisted Boundary Conditions

- Most common choice: Periodic boundary conditions
 - No boundary effects: Consequence of translation invariance
 - Magnetic Gauss law $\vec{\nabla} \cdot \vec{\mathcal{B}} = \rho_M \Rightarrow$ Magnetic charge $Q_M = 0$
- Translation invariance only requires periodicity up to symmetries
 - C-periodic: (Kronfeld&Wiese 1991)

$$U_{\mu}(x + N\hat{\jmath}) = U_{\mu}^{*}(x) = \sigma_{2}U_{\mu}(x)\sigma_{2}$$

 $\Phi(x + N\hat{\jmath}) = \Phi^{*}(x) = -\sigma_{2}\Phi(x)\sigma_{2}$

- Charge conjugation: Avoid Gauss law problem
- Restricts Q_M to even values \Rightarrow Use this to define Z_0
- Twisted b.c.:

$$U_{\mu}(x + N\hat{\jmath}) = \sigma_{j}U_{\mu}(x)\sigma_{j}$$

$$\Phi(x + N\hat{\jmath}) = -\sigma_{j}\Phi(x)\sigma_{j}$$

- Locally gauge equivalent to C-periodic but not globally!
- Always gives odd $Q_M \Rightarrow$ Use this to define Z_1 (JHEP 2000)

Derivative of Monopole Mass

- Choose m^2 as the integration variable
 - Start at high enough $m^2 \Rightarrow$ Symmetric phase
 - Measure $\langle {
 m Tr} \Phi^2 \rangle_{N_W}$ at many values of m^2 using lattice Monte Carlo
 - Integrate:

$$M = L^3 \int_{m_0^2}^{m^2} dm^2 \left(\langle \text{Tr}\Phi^2 \rangle_1 - \langle \text{Tr}\Phi^2 \rangle_0 \right)$$

Better: Finite differences

$$M = \frac{1}{T} \sum_{n} \left(\langle e^{\Delta m^2 T L^3 \text{Tr } \Phi^2} \rangle_{1, m_n^2} - \langle e^{\Delta m^2 T L^3 \text{Tr } \Phi^2} \rangle_{0, m_n^2} \right)$$

Derivative of Monopole Mass: Results

Monopole Mass: Results

- Problems: Must go through a phase transition
 - Errors accumulate
- ullet Direct way of calculating M at given m^2
 - Gauge transformation → C-periodic except

$$U_3(t, x, L, L - 1) = -U_3^*(t, x, 0, L - 1)$$

$$U_1(t, L - 1, y, L) = -U_1^*(t, L - 1, y, 0)$$

$$U_1(t, L - 1, L, z) = -U_1^*(t, L - 1, 0, z)$$

- Problems: Must go through a phase transition
 - Errors accumulate
- ullet Direct way of calculating M at given m^2
 - Gauge transformation → C-periodic except

$$U_3(t, x, L, L - 1) = -U_3^*(t, x, 0, L - 1)$$

$$U_1(t, L - 1, y, L) = -U_1^*(t, L - 1, y, 0)$$

$$U_1(t, L - 1, L, z) = -U_1^*(t, L - 1, 0, z)$$

Change of variables

$$U_3(t, x, L, L - 1) \rightarrow -U_3(t, x, L, L - 1)$$
 $U_1(t, L - 1, y, L) \rightarrow -U_1(t, L - 1, y, L)$
 $U_1(t, L - 1, L, z) \rightarrow -U_1(t, L - 1, L, z)$

- Problems: Must go through a phase transition
 - Errors accumulate
- Direct way of calculating M at given m^2
 - Gauge transformation
 - Change of variables

$$Z_1 = \int_{\text{C-per}} DU_{\mu} D\Phi \exp(-S - \Delta S) = \langle \exp(-\Delta S) \rangle_0 Z_0$$

where

$$\Delta S = \beta \sum_{t,x=0}^{L-1} \left[\text{Tr } U_{23}(x, y_0, z_0) + \text{Tr } U_{13}(x_0, y, z_0) + \text{Tr } U_{12}(x_0, y_0, z) \right]$$

• Three orthogonal 't Hooft lines crossing each other at (x_0, y_0, z_0)

- Problems: Must go through a phase transition
 - Errors accumulate
- Direct way of calculating M at given m^2
 - Gauge transformation
 - Change of variables

$$Z_1 = \int_{\text{C-per}} DU_{\mu} D\Phi \exp(-S - \Delta S) = \langle \exp(-\Delta S) \rangle_0 Z_0$$

where

$$\Delta S = \beta \sum_{t,x=0}^{L-1} \left[\text{Tr } U_{23}(x, y_0, z_0) + \text{Tr } U_{13}(x_0, y, z_0) + \text{Tr } U_{12}(x_0, y_0, z) \right]$$

• Three orthogonal 't Hooft lines crossing each other at (x_0, y_0, z_0)

Non-Integer Twists

- Difficult to calculate $\langle \exp(-\Delta S) \rangle$: Poor overlap
- Define for $\epsilon \in [0,1]$

$$Z_{\epsilon} = \int_{\text{C-per}} DU_{\mu} D\Phi \exp(-S - \epsilon \Delta S)$$

- ullet Unphysical for non-integer ϵ
- Still well-defined
- ullet Differentiate with respect to ϵ

$$\frac{dM}{d\epsilon} = -\langle \Delta S \rangle_{\epsilon}$$

KITP, UCSB 23 March 2005

Non-Integer Twists

• From 3D simulation (PRD65(2002))

Renormalisation

- Comparison with classical results?
 - m^2 , λ , g bare couplings
 - Must renormalise
- Scheme dependence
- Perturbative renormalisation
 - Monopole mass only to the same order 10 in perturbative expansion
- Non-perturbative approach:
 - Measure three different quantities (say g, m_H , m_W)
 - Use them to fix the classical couplings
- For the moment, simply ignore logs and finite terms
 - Shift m^2 axis by a constant amount

KITP, UCSB 23 March 2005

Comparison with Classical Mass

Quantum masses generally lower (renormalisation?)

Effective Couplings

- Classical simulation \Rightarrow Finite size effect $\Delta E(L) = 11.0/g^2L$
- ullet Fit quantum finite size effect to determine g_R
 - Gives $g_R \approx 0.44(5)$ vs bare $g \approx 0.447$
- Masses m_H and m_W from correlation functions
 - Difficult to measure m_W
- Expectations: As $m^2 \to m_c^2$
 - Triviality: $\lambda_R \to 0$
 - Asymptotic freedom: g_R becomes large

- $M/m_W = (4\pi/g_R^2) f(m_H/m_W) \to 0$?
- Will W^{\pm} decouple?
 - ⇒ Charged scalar + photon (+ neutral scalar)

Asymptotic Duality in 2+1D Abelian Higgs Model

(NPB2004)

- Near the critical point, $M_{\rm vort} \propto (m_c^2 m^2)^{0.671 \pm 0.038}$
 - Vortex becomes the lightest particle: $m_{\gamma}, m_s \propto (m_c^2 m^2)^{1/2}$
 - Dual to complex scalar field theory?
- Numerical evidence: XY model critical exponent

KITP, UCSB 23 March 2005

Speculation: Asymptotic Duality in Georgi-Glashow Model?

Georgi-Glashow model	Abelian Higgs model
Higgs phase	Coulomb phase
electric/magnetic field	magnetic/electric field
magnetic monopole	charged scalar
massless photon	massless photon
Confining phase	Higgs phase
confinement	superconductivity
confining string	vortex line

- Puts the 't Hooft-Mandelstam dual superconductor idea on firm footing
- Same duality is known to exist in supersymmetric theories

Hints for Monopole Duality

ullet Phase diagram for $\lambda o \infty$ (Greensite et al. 2004)

- Limit $\kappa \to \infty$ = compact QED
 - Exactly dual to 4D frozen superconductor (Peskin 1978)
 - Frozen superconductor = $\lambda, \kappa \to \infty$ limit of Abelian Higgs model
 - Duality maps electric and magnetic field to each other
- Will duality survive near critical point even for finite λ, κ ?

KITP, UCSB 23 March 2005

Conclusions

- Monopole mass using twisted boundary conditions
 - Well defined even on the lattice
 - No cooling needed
 - No reference to any specific field configs
- Integrating the derivative
 - Derivative with respect to m^2
 - Straightforward
 - Growing errors
 - Derivative with respect to non-integer twist ϵ
 - Non-integer values unphysical
 - Direct measurement of M at given couplings
- Comparison with classical result
 - Significant correction in terms of bare couplings
 - Renormalisation: Perturbative/Non-perturbative
- Critical behaviour: Duality?