Twisting vs. Staggering: is twisted-mass lattice QCD a viable alternative to improved staggered fermions?

hep-lat/0407025, 0411021
Stephen R. Sharpe and Jackson Wu
University of Washington

Outline

- Introduction: status of lattice fermion actions
- What is twisted-mass lattice QCD (tmLQCD) and why is it interesting?
- Effective chiral Lagrangian for tmLQCD including discretization errors
- Results for "generic small mass" regime: $m_{q} \sim a \Lambda_{\mathrm{QCD}}^{2}$
- Results for "Aoki" regime: $m_{q} \sim a^{2} \Lambda_{\mathrm{QCD}}^{3}$
- Summary and outlook

Introduction

- Lattice QCD is entering an exciting era
- Terascale computers (e.g. UKQCD's QCDOC)
- Unquenched simulations with $m_{\pi} \rightarrow 250 \mathrm{MeV}$ and below
- Potential for few percent control over all systematics
- Choices for light fermion action:
- Improved staggered fermions
- Fastest, but not unitary, and possibly not local, at $O\left(a^{2}\right)$
- Chirally symmetric fermions
- The ultimate choice, but slowest
- Improved Wilson fermions
- Straightforward, but slow
- Twisted-mass
- Maybe as fast as staggered, but potential not yet clear
- Are twisted-mass fermions a viable alternative to staggered fermions?

tmLQCD

Variant of unimproved Wilson fermions with twisted mass
[Frezzotti, Grassi, Sint \& Weisz, 2000]

- Advantages
+ WYSIWYG: no roots of determinant
+ speed comparable to staggered
+ at "maximal twist"
- errors $\sim a^{2}$ automatically [Frezzotti \& Rossi, 2003]
- operator mixing as in continuum [Frezzotti \& Rossi, 2004]
- Disadvantages
- flavor is broken for $a \neq 0: S U(2) \rightarrow U(1)$

Detailed numerical studies underway [DESY-Zeuthen]
We use analytical methods to study its properties

What happens to Istvan's circles?

Contour plot of charged m_{π}^{2} from $\operatorname{tm} \chi$ PT with parameters roughly tuned to match those of hep-lat/0410031, Farchioni et al.

What is tmLQCD?

Begin in the continuum.

- Action in "twisted basis" for two degenerate flavors $\left(\tau_{3}^{2}=1\right)$:

$$
\begin{aligned}
\mathcal{L}_{t m} & =\bar{\psi}\left(D D+m_{q} e^{i \gamma_{5} \tau_{3} \omega}\right) \psi=\bar{\psi}\left(D D+m+i \gamma_{5} \tau_{3} \mu\right) \psi \\
\cos \omega & =m / m_{q}, \quad \sin \omega=\mu / m_{q}, \quad m_{q}=\sqrt{m^{2}+\mu^{2}}
\end{aligned}
$$

- Maximal twist is $m=0, \omega=\pi / 2$.
- Flavor-breaking is fake: non-singlet axial transformation

$$
\widehat{\psi}=\exp \left(i \gamma_{5} \tau_{3} \omega / 2\right) \psi, \quad \widehat{\bar{\psi}}=\bar{\psi} \exp \left(i \gamma_{5} \tau_{3} \omega / 2\right)
$$

brings \mathcal{L} into usual form ("physical basis"):

$$
\mathcal{L}_{t m}=\widehat{\bar{\psi}}\left(\not D+m_{q}\right) \widehat{\psi}
$$

Kinematics of continuum tmQCD

Currents and densities:

$$
A_{\mu}^{j}=\bar{\psi} \gamma_{\mu} \gamma_{5} \tau_{j} \psi, \quad V_{\mu}^{j}=\bar{\psi} \gamma_{\mu} \tau_{j} \psi, \quad P^{j}=\bar{\psi} \gamma_{5}\left(\tau_{j} / 2\right) \psi, \quad S^{0}=\bar{\psi} \psi
$$

Relation between operators in twisted and physical bases ($a=1,2$) :

$$
\begin{aligned}
\widehat{A}_{\mu}^{a} & =\cos \omega A_{\mu}^{a}+\epsilon^{3 a b} \sin \omega V_{\mu}^{b}, \quad \widehat{A}_{\mu}^{3}=A_{\mu}^{3}, \\
\widehat{V}_{\mu}^{a} & =\cos \omega V_{\mu}^{a}+\epsilon^{3 a b} \sin \omega A_{\mu}^{b}, \quad \widehat{V}_{\mu}^{3}=V_{\mu}^{3}, \\
\widehat{P}^{3} & =\cos \omega P^{3}+i \sin \omega S^{0} / 2, \quad \widehat{P}^{a}=P^{a}, \\
\widehat{S}^{0} & =\cos \omega S^{0}+2 i \sin \omega P^{3}
\end{aligned}
$$

Note: A_{μ}^{3} and P^{a} create physical pions for all ω

What is tmLQCD?

Lattice action [Frezzotti, Grassi, Sint \& Weisz] :

$$
S_{F}^{L}=a^{4} \sum_{x} \bar{\psi}_{l}(x)\left[\frac{1}{2} \sum_{\mu} \gamma_{\mu}\left(\nabla_{\mu}^{\star}+\nabla_{\mu}\right)+m_{0}+i \gamma_{5} \tau_{3} \mu_{0}-\frac{r}{2} \sum_{\mu} \nabla_{\mu}^{\star} \nabla_{\mu}\right] \psi_{l}(x)
$$

- cannot rotate away twist in mass
\Rightarrow parity and flavor broken, though breaking vanishes in naive continuum limit
- Wilson term $\nabla_{\mu}^{\star} \nabla_{\mu}$ mixes with identity
\Rightarrow usual additive renormalization of $m_{0}: m=Z_{m}\left(m_{0}-m_{c}\right) / a$
- μ_{0} is multiplicatively renormalized, like m_{q} in continuum:

$$
\mu=Z_{\mu} \mu_{0} / a
$$

- renormalized twist angle and quark mass:

$$
\tan \omega=\mu / m+O(a), m_{q}=\sqrt{m^{2}+\mu^{2}}+O(a)
$$

Computational advantage of tmLQCD

Rewrite action:

$$
\begin{aligned}
S_{F}^{L} & =a^{4} \sum_{x} \bar{\psi}_{l}(x)\left[D_{W}+m_{0}+i \gamma_{5} \tau_{3} \mu_{0}\right] \psi_{l}(x) \\
& =a^{4} \sum_{x} \bar{\psi}_{l}(x) \gamma_{5}\left[H_{W}+i \tau_{3} \mu_{0}\right] \psi_{l}(x)
\end{aligned}
$$

with H_{W} the Hermitian Wilson-Dirac operator:

$$
H_{W}=\gamma_{5}\left(D_{W}+m_{0}\right)=H_{W}^{\dagger}
$$

- computational problem: zero eigenvalues of H_{W}
\Rightarrow fermion determinant vanishes, slows algorithms
- solved by twisting: μ_{0} provides IR cut-off

$$
\operatorname{det}\left(H_{W}+i \tau_{3} \mu_{0}\right)=\prod_{\lambda}\left(\lambda+i \mu_{0}\right)\left(\lambda-i \mu_{0}\right)=\prod_{\lambda}\left(\lambda^{2}+\mu_{0}^{2}\right)
$$

- Simulations comparable in speed to staggered fermions [Kennedy, Lattice 04]

Automatic $O(a)$ improvement

Key property of tmLQCD at maximal twist [Frezzotti \& Rossi] :

$$
Q_{\text {lat }}=Q_{\text {cont }}\left[1+c a^{2} \Lambda_{Q C D}^{2}+c^{\prime} a^{2} m_{q}^{2}+O\left(a^{4}\right)\right]
$$

Why does this work? We will study for $a \sim m_{q}$ so $a \Lambda_{Q C D} \gg a m_{q} \sim a^{2}$

- At maximal twist, have $m_{0}=m_{c}$, so

$$
\begin{aligned}
m_{0}-\frac{r}{2} \sum_{\mu} \nabla_{\mu}^{\star} \nabla_{\mu}+i \mu \gamma_{5} \tau_{3} & =i \mu \gamma_{5} \tau_{3}+\left.a c^{\prime}\left(D_{\mu}^{2}\right)\right|_{\text {cont }}+O\left(a^{2}\right) \\
& \longrightarrow \mu-\left.a c^{\prime} i \gamma_{5} \tau_{3}\left(D_{\mu}^{2}\right)\right|_{\text {cont }}+O\left(a^{2}\right)
\end{aligned}
$$

when rotate to physical basis
$\Rightarrow O(a)$ corrections necessarily violate parity and flavor
\Rightarrow physical (parity-flavor conserving) quantities corrected only at $O\left(a^{2}\right)$

Range of validity of automatic improvement

- Possibilities are: $\left(a^{-1}=2 \mathrm{GeV}, \Lambda_{Q C D}=300 \mathrm{MeV}\right)$
(A) $m_{q} \gg a \Lambda_{Q C D}^{2} \sim 45 \mathrm{MeV}$
(B) $m_{q} \sim a \Lambda_{Q C D}^{2} \gg a^{2} \Lambda_{Q C D}^{3} \sim 7 \mathrm{MeV}$
(C) $m_{q} \geq c a^{2} \Lambda_{Q C D}^{3} \sim 7 \mathrm{MeV}$, with $c=O(1)$
- Since $\left(m_{u}+m_{d}\right) / 2 \approx 3 \mathrm{MeV}$, want (B) or, better, (C)
- [Frezzotti \& Rossi] argue that (A) is needed:
- Vacuum should be determined by $O\left(m_{q}\right)$ and not $O(a)$ effects
- We claim that can relax to (B) with appropriate definition of ω
- We agree with [Aoki \& Bär] that (C) can also hold, although with $c \neq 0$ in general.

Our method: tm χ PT

- We study long-distance physics (vacuum \& pion properties) using the chiral Lagrangian extended to include discretization errors
- understand, analytically, competition between $O\left(m_{q}\right)$ and $O(a)$ effects
- interpret and guide simulations (which are in new territory)
- consider 2 light degenerate flavors
- results valid for $2+1$ flavors if $p^{2} \sim m_{\pi}^{2} \ll m_{K}^{2}$
- use two step method of [SRS + Singleton, 1998]
(1) construct continuum $\mathcal{L}_{\text {eff }}$ describing lattice theory [Symanzik]

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{Q C D}+a \mathcal{L}_{1}+a^{2} \mathcal{L}_{2}+\ldots
$$

(2) construct chiral effective theory for $\mathcal{L}_{\text {eff }}$

- power counting: work to NLO using $p^{2} \sim m_{q} \sim a$

Step 1: effective continuum Lagrangian

Need most general Lagrangian consistent with lattice symmetries, which include

- Parity + discrete flavor $\left(\psi_{l} \rightarrow i \tau_{1} \psi_{l}\right)$
- Parity $+\mu_{0} \rightarrow-\mu_{0}$

Result is simple [Münster \& Schmidt, SRS \& Wu] :

$$
\begin{aligned}
\mathcal{L}_{0} & =\mathcal{L}_{\text {glue }}+\bar{\psi}\left(\not D+m+i \gamma_{5} \tau_{3} \mu\right) \psi \\
\mathcal{L}_{1} & =b_{1}\left[g^{2}(a)\right] \bar{\psi} i \sigma_{\mu \nu} F_{\mu \nu} \psi
\end{aligned}
$$

- same as for Wilson fermions aside from twisted mass in \mathcal{L}_{0}
- other potential operators in \mathcal{L}_{1} vanish by LO equations of motion, or are NNLO in our power counting, e.g. $\bar{\psi} \sigma_{\mu \nu} F_{\mu \nu} \gamma_{5} \tau_{3} \psi$ requires factor of $a \mu$
- \mathcal{L}_{2} is same as for Wilson theory [Bär, Rupak, Shoresh], but can ignore as introduces no additional symmetry breaking

Step 2: map onto chiral Lagrangian

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{\text {glue }}+\bar{\psi}\left(\not D+m+i \gamma_{5} \tau_{3} \mu\right) \psi+a b_{1} \bar{\psi} i \sigma_{\mu \nu} F_{\mu \nu} \psi
$$

- For $m=\mu=a=0$ have $S U(2)_{L} \times S U(2)_{R}$ chiral symmetry:

$$
\psi_{L, R} \longrightarrow U_{L, R} \psi_{L, R}, \quad U_{L, R} \in S U(2)_{L, R}
$$

- Symmetry broken by mass and a terms in same way
- $\bar{\psi}\left(m+i \gamma_{5} \tau_{3} \mu\right) \psi=\bar{\psi}_{L} \mathcal{M} \psi_{R}+\bar{\psi}_{R} \mathcal{M}^{\dagger} \psi_{L}$ with $\mathcal{M}=m+i \tau_{3} \mu=m_{q} \exp \left(i \omega \tau_{3}\right)$
- $a \bar{\psi} \sigma_{\mu \nu} F_{\mu \nu} \psi \propto \bar{\psi}_{L} \hat{A} \sigma_{\mu \nu} F_{\mu \nu} \psi_{R}+\bar{\psi}_{R} \hat{A}^{\dagger} \sigma_{\mu \nu} F_{\mu \nu} \psi_{L}$
- $\mathcal{L}_{\text {eff }}$ invariant if treat \mathcal{M}, \hat{A} as spurions:
$\mathcal{M} \rightarrow U_{L} \mathcal{M} U_{R}^{\dagger}$ and $\hat{A} \rightarrow U_{L} \hat{A} U_{R}^{\dagger}$
\Rightarrow standard χ PT analysis can be used for \mathcal{M} and \hat{A}
[SRS \& Singleton; Bär, Rupak \& Shoresh]

Resulting chiral Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\chi}= & \frac{f^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger}\right)-\frac{f^{2}}{4} \operatorname{Tr}\left(\chi^{\dagger} \Sigma+\Sigma^{\dagger} \chi\right)-\frac{f^{2}}{4} \operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right) \\
& -L_{1} \operatorname{Tr}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger}\right)^{2}-L_{2} \operatorname{Tr}\left(D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger}\right) \operatorname{Tr}\left(D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger}\right) \\
& +L_{45} \operatorname{Tr}\left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right) \operatorname{Tr}\left(\chi^{\dagger} \Sigma+\Sigma^{\dagger} \chi\right)-L_{68}\left[\operatorname{Tr}\left(\chi^{\dagger} \Sigma+\Sigma^{\dagger} \chi\right)\right]^{2} \\
& +W_{45} \operatorname{Tr}\left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right) \operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right)-W_{68} \operatorname{Tr}\left(\chi^{\dagger} \Sigma+\Sigma^{\dagger} \chi\right) \operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right) \\
& -W_{68}^{\prime}\left[\operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right)\right]^{2}+W_{10} \operatorname{Tr}\left(D_{\mu} \hat{A}^{\dagger} D_{\mu} \Sigma+D_{\mu} \Sigma^{\dagger} D_{\mu} \hat{A}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\Sigma & \sim\left\langle\psi_{L} \bar{\psi}_{R}\right\rangle \longrightarrow U_{L} \Sigma U_{R}^{\dagger}, D_{\mu} \Sigma=\partial_{\mu} \Sigma-i \ell_{\mu} \Sigma+i \Sigma r_{\mu}, \\
\chi & =2 B_{0}(s+i p) \rightarrow 2 B_{0} \mathcal{M}, \quad \hat{A} \rightarrow \hat{a}=2 W_{0} a
\end{aligned}
$$

and constants are not determined by symmetries

- f, B_{0} and L_{i} are from continuum $\chi \mathrm{PT}$
- W_{i}, W_{i}^{\prime} are introduced by discretization errors

$\operatorname{tm} \chi \mathbf{P T}$ at leading order

Lagrangian takes continuum form if use variable $\chi^{\prime}=\chi+\hat{A}$:

$$
\begin{aligned}
\mathcal{L}_{\chi, L O} & =\frac{f^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger}\right)-\frac{f^{2}}{4} \operatorname{Tr}\left(\chi^{\dagger} \Sigma+\Sigma^{\dagger} \chi\right)-\frac{f^{2}}{4} \operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right) \\
& =\frac{f^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger}\right)-\frac{f^{2}}{4} \operatorname{Tr}\left(\chi^{\prime \dagger} \Sigma+\Sigma^{\dagger} \chi^{\prime}\right)
\end{aligned}
$$

- corresponds to $O(a)$ shift in m and m_{c} :

$$
m \rightarrow m^{\prime}=m+a W_{0} / B_{0}, m_{q} \rightarrow \sqrt{m^{\prime 2}+\mu^{2}}, \tan \omega_{0} \equiv \mu / m^{\prime}, \chi^{\prime}=2 B_{0} m_{q} e^{i \omega_{0} \tau_{3}}
$$

- condensate aligns with χ^{\prime} :

$$
\Sigma=\exp \left(i \omega_{0} \tau_{3} / 2\right) \Sigma_{p h} \exp \left(i \omega_{0} \tau_{3} / 2\right), \quad \Sigma_{p h}=\exp (i \vec{\pi} \cdot \vec{\tau} / f)
$$

\Rightarrow LO pion interactions have no $O(a)$ corrections for any ω_{0}

$$
\mathcal{L}_{\chi, L O}=\frac{f^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma_{p h} D_{\mu} \Sigma_{p h}^{\dagger}\right)-\frac{f^{2}}{4}\left|\chi^{\prime}\right| \operatorname{Tr}\left(\Sigma_{p h}+\Sigma_{p h}^{\dagger}\right)
$$

NLO result: $O(a)$ improvement at $\omega_{0}=\pi / 2$

- express chiral Lagrangian in terms of χ^{\prime} :

$$
\begin{aligned}
\mathcal{L}_{\chi, \mathrm{NLO}}= & \text { continuum terms }+\tilde{W} \operatorname{Tr}\left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right) \operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right) \\
& -W \operatorname{Tr}\left(\chi^{\prime \dagger} \Sigma+\Sigma^{\dagger} \chi^{\prime}\right) \operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right)+O\left(a^{2}\right)
\end{aligned}
$$

- Lagrangian is invariant under symmetry:
- $\pi \rightarrow-\pi, \omega_{0} \rightarrow-\omega_{0} \Rightarrow \Sigma \leftrightarrow \Sigma^{\dagger}, \chi^{\prime} \leftrightarrow \chi^{\prime \dagger}$ which implies:
- $\operatorname{Tr}\left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right)$ and $\operatorname{Tr}\left(\chi^{\dagger \dagger} \Sigma+\Sigma^{\dagger} \chi^{\prime}\right)$ are even in π
- $\operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right)=\cos \omega_{0} \times($ even in $\pi)+\sin \omega_{0} \times($ odd in $\pi)$
- for $\omega_{0}=\pi / 2$, physical vertices, with an even number of pions, receive no $O(a)$ contributions
- unphysical vertices with an odd number of pions are $O(a)$
\Rightarrow automatic $O(a)$ improvement valid even if $m_{q} \sim a \Lambda_{Q C D}^{2}$ as long as use ω_{0} and not ω

Recall: Kinematics of continuum tmQCD

Currents and densities:

$$
A_{\mu}^{j}=\bar{\psi} \gamma_{\mu} \gamma_{5} \tau_{j} \psi, \quad V_{\mu}^{j}=\bar{\psi} \gamma_{\mu} \tau_{j} \psi, \quad P^{j}=\bar{\psi} \gamma_{5}\left(\tau_{j} / 2\right) \psi, \quad S^{0}=\bar{\psi} \psi
$$

Relation between operators in twisted and physical bases ($a=1,2$) :

$$
\begin{aligned}
\widehat{A}_{\mu}^{a} & =\cos \omega A_{\mu}^{a}+\epsilon^{3 a b} \sin \omega V_{\mu}^{b}, \quad \widehat{A}_{\mu}^{3}=A_{\mu}^{3}, \\
\widehat{V}_{\mu}^{a} & =\cos \omega V_{\mu}^{a}+\epsilon^{3 a b} \sin \omega A_{\mu}^{b}, \quad \widehat{V}_{\mu}^{3}=V_{\mu}^{3}, \\
\widehat{P}^{3} & =\cos \omega P^{3}+i \sin \omega S^{0} / 2, \quad \widehat{P}^{a}=P^{a}, \\
\widehat{S}^{0} & =\cos \omega S^{0}+2 i \sin \omega P^{3}
\end{aligned}
$$

Specific NLO results: twist angle

- How determine m^{\prime} and thus ω_{0} ?
(1) enforce $\left\langle\hat{V}_{\mu}^{2}(x) \hat{P}^{1}(y)\right\rangle=0$ implying

$$
\tan \omega_{A} \equiv \frac{\left\langle V_{\mu}^{2}(x) P^{1}(y)\right\rangle}{\left\langle A_{\mu}^{1}(x) P^{1}(y)\right\rangle}
$$

(2) enforce $\left\langle\hat{S}^{0}(x) \hat{A}_{\mu}^{3}(y)\right\rangle=0$ implying

$$
\tan \omega_{P} \equiv \frac{i\left\langle S^{0}(x) A_{\mu}^{3}(y)\right\rangle}{2\left\langle P^{3}(x) A_{\mu}^{3}(y)\right\rangle}
$$

- result: ω_{0} determined to $O(a)$ accuracy

$$
\begin{aligned}
& \qquad \begin{array}{l}
\omega_{0}=\omega_{A}+\frac{16 \hat{a} s}{f^{2}}\left(W+W_{10} / 4+2 \hat{a} c W^{\prime} /\left(2 B_{0} m_{q}\right)\right) \\
\omega_{P}=\omega_{A}+\frac{4 \hat{a} s\left(4 W+W_{10}\right)}{f^{2}} \\
\text { with } c=\cos \omega_{A} \text { and } s=\sin \omega_{A}
\end{array} \text {. }
\end{aligned}
$$

Required accuracy for twist angle?

- $O(a)$ ambiguity in ω is inevitable due to discretization errors
- ambiguity does not impact automatic $O(a)$ improvement

$$
\begin{aligned}
\mathcal{Q}_{\text {lat }} & =\mathcal{Q}_{\mathrm{cont}}\left[1+a \cos \omega+O\left(a^{2}\right)\right] \\
\delta Q_{\text {lat }} & =\mathcal{Q}_{\mathrm{cont}} a \delta(\cos \omega)+O\left(a^{2}\right) \\
& =-\mathcal{Q}_{\mathrm{cont}} a \sin \omega \delta \omega+O\left(a^{2}\right) \\
& =O\left(a^{2}\right)
\end{aligned}
$$

$$
\Rightarrow \quad \text { can set either } \omega_{A}=\pi / 2 \text { or } \omega_{P}=\pi / 2
$$

- we propose $\omega_{A}=\pi / 2$ as canonical choice since easier to implement in simulations

Specific NLO results: pion masses

- Charged pion mass is automatically improved:
result agrees with [Scorzato]

$$
\begin{aligned}
m_{\pi_{ \pm}}^{2}= & \left|\chi^{\prime}\right|+\frac{16}{f^{2}}\left[\left|\chi^{\prime}\right|^{2}\left(2 L_{68}-L_{45}\right)\right. \\
& \left.+\left|\chi^{\prime}\right| \hat{a} c(2 W-\widetilde{W})+2 \hat{a}^{2} c^{2} W^{\prime}\right]+ \text { cont. 1-loop }+\ldots
\end{aligned}
$$

- Pion isospin splitting is $O\left(a^{2}\right)$ and maximal for $\omega=\pi / 2$:

$$
\begin{aligned}
m_{\pi_{3}}^{2}-m_{\pi_{1,2}}^{2} & =-\frac{32}{f^{2}} \hat{a}^{2} s^{2} W^{\prime}+O\left(a^{3}\right) \\
& =-W^{\prime} \frac{32}{f^{2}} \frac{\hat{a}^{2} \mu^{2}}{m^{\prime 2}+\mu^{2}}+O\left(a^{3}\right)
\end{aligned}
$$

- Harder to calculate numerically as requires quark-disconnected contractions
- Measures constant W^{\prime}

Specific NLO results: matrix elements

- Pion decay constant agrees with [Münster \& Schmidt]

$$
f_{A}=f\left\{1+\frac{4}{f^{2}}\left[2\left|\chi^{\prime}\right| L_{45}+\hat{a} c\left(2 \tilde{W}+W_{10}\right)\right]+\text { cont. 1-loop }\right\}
$$

- flavor breaking only at NNLO
- Results for $\langle 0| P|\pi\rangle$, scalar and vector form factors, have similar form showing automatic $O(a)$ improvement and no flavor breaking
- can measure physical condensate using P^{3}

$$
\left\langle 2 i P^{3}\right\rangle=-2 f^{2} B_{0} s\left\{1+\frac{4}{f^{2}}\left[\left|\chi^{\prime}\right|\left(8 L_{68}+H_{2}\right)+\hat{a} c\left(4 W+W_{10}\right)\right]+1 \text {-loop }\right\}
$$

Parity violating matrix elements

Axial and pseudoscalar form factors of pion non-vanishing, e.g.

$$
\left\langle\pi_{a}\right| \hat{A}_{\mu}^{a}\left|\pi_{3}\right\rangle,\left\langle\pi_{a}\right| \hat{A}_{\mu}^{3}\left|\pi_{a}\right\rangle,\left\langle\pi_{3}\right| \hat{A}_{\mu}^{3}\left|\pi_{3}\right\rangle
$$

Example of results:
$\left\langle\pi_{a}\left(p_{2}\right)\right| \hat{P}^{3}\left|\pi_{a}\left(p_{1}\right)\right\rangle=\frac{16 \hat{a} s i B_{0}}{f^{2}}\left[\frac{-W_{10}}{4}+W-\widetilde{W}+\frac{2 \hat{a} c W^{\prime}}{q^{2}+m_{\pi_{3}}^{2}}+\frac{(\widetilde{W} / 2-W) q^{2}}{q^{2}+m_{\pi_{3}}^{2}}\right]$

- present at maximal twisting $s=1, c=0$
- use to determine all W 's and then to test $\mathrm{tm} \chi$ PT at NLO

Summary for $m_{q} \sim a \Lambda_{Q C D}^{2}$

- Predicted functional forms for pionic quantities for all μ, m^{\prime}
- Can determine maximal twisting non-perturbatively using $\omega_{A}=\pi / 2$ or $\omega_{P}=\pi / 2$ (or by maximizing pion mass splitting)
- automatically includes $O(a)$ shift in m_{c}
- $O(a)$ ambiguity in ω cannot be avoided
- Automatic $O(a)$ improvement at maximal twist holds in GSM regime
- Parity-flavor violating quantities $\left(\omega_{A}-\omega_{P}\right.$, axial and pseudoscalar form factors) are $O(a)$
- provide measure of discretization errors, i.e. size of W^{\prime} 's
- provide tests of $\operatorname{tm} \chi$ PT at NLO
- can correct a posteriori $O(a)$ errors in untwisted simulations
- Flavor breaking in physical quantities occurs at $O\left(a^{2}\right)$
- only example in NLO calculation is pion mass splitting

Results for Aoki regime

- Work to LO in power counting $m_{q} \sim a^{2} \Lambda_{Q C D}^{3}$
- Lagrangian collapses to:

$$
\begin{aligned}
\mathcal{L}_{\chi}= & \frac{f^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger}\right)-\frac{f^{2}}{4} \operatorname{Tr}\left(\chi^{\prime \dagger} \Sigma+\Sigma^{\dagger} \chi^{\prime}\right)-W^{\prime}\left[\operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right)\right]^{2} \\
& +\tilde{W} \operatorname{Tr}\left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right) \operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right)-W \operatorname{Tr}\left(\chi^{\prime \dagger} \Sigma+\Sigma^{\dagger} \chi^{\prime}\right) \operatorname{Tr}\left(\hat{A}^{\dagger} \Sigma+\Sigma^{\dagger} \hat{A}\right) \\
& +W_{10} \operatorname{Tr}\left(D_{\mu} \hat{A}^{\dagger} D_{\mu} \Sigma+D_{\mu} \Sigma^{\dagger} D_{\mu} \hat{A}\right)+O\left(a^{3}\right)
\end{aligned}
$$

- Competition between m_{q} and a^{2} terms leads to non-trivial phase structure [Aoki, Creutz, SRS \& Singleton, Münster, Scorzato, SRS \& Wu]
- Phase structure depends on sign of W^{\prime} (which also determines the sign of pion mass splitting [Scorzato])
- Can extend calculations from GSM regime into Aoki regime

Possible phase diagrams in Aoki regime

(a) Phase diagram for $c_{2}>0$

(b) Phase diagram for $c_{2}<0$

$$
c_{2}=-16 W^{\prime} \hat{a}^{2}, \quad \alpha=2 B_{0} f^{2} m^{\prime} /\left|c_{2}\right|, \quad \beta=2 B_{0} f^{2} \mu /\left|c_{2}\right|
$$

- Solid lines are first-order phase transistions with second-order endpoints

$W^{\prime}<0$: Aoki phase

- Condensate:

$$
\langle 0| \Sigma|0\rangle=A_{m}+i B_{m} \tau_{3}
$$

- Aoki phase washed out for $\mu \propto \beta \neq 0$
- Note $A_{m}=0$ for $\alpha=m^{\prime}=0$

(a) Mass of π_{1} and π_{2}
(b) Mass of π_{3}

$W^{\prime}>0$: no Aoki phase

Along Wilson axis:

(a) Global minimum, $\beta=0$

(b) Pion masses, $\beta=0$

At top of phase transition: dashed: charged; solid: neutral

(e) Global minimum, $\beta=2$

(f) Pion masses, $\beta=2$

More on $W^{\prime}>0$

Above phase transition: dashed: charged; solid: neutral

(g) Global minimum, $\beta=3$

(h) Pion masses, $\beta=3$

- Can use minimum of pion masses as an alternative for determining where $m^{\prime}=0$
- Away from transition, condensate has $A_{m}=0$ for maximal twisting, i.e. lies along direction of quark mass as in continuum
\Rightarrow Automatic $O(a)$ improvement at maximal twist still holds in Aoki regime away from phase transitions [Aoki \& Bär]

Predictions from tm $\chi \mathbf{P T}$

Contour plot of charged m_{π}^{2} from $\operatorname{tm} \chi$ PT with parameters roughly tuned to match those of hep-lat/0410031, Farchioni et al.

Comparing $\chi \mathbf{P T}$ with [Farchioni et al,hep-lat/0410031]

- Qualitative comparison only
- Difference in slopes for positive and negative m^{\prime} caused by a $30 \% \hat{a}(2 W-\tilde{W}) \cos \left(\omega_{A}\right)$ correction

Comparing $\chi \mathbf{P T}$ with [Farchioni et al,hep-lat/0410031]

- Qualitative comparison only
- Difference in slopes for positive and negative m^{\prime} caused by a $30 \% \hat{a}(2 W-\tilde{W}) \cos \left(\omega_{A}\right)$ correction

Comparing $\chi \mathbf{P T}$ with [Farchioni et al,hep-lat/0410031]

- Qualitative comparison only
- Difference in slopes for positive and negative m^{\prime} caused by $\hat{a} \cos \left(\omega_{A}\right)$ correction

Comparing χ PT with [Farchioni et al,hep-lat/0410031]

- χ PT does not explain the change in relative slopes as μ increases

Comparing $\chi \mathbf{P T}$ with [Farchioni et al,hep-lat/0410031]

- Data goes to lighter pion mass because of metastability

Comparing χ PT with [Farchioni et al,hep-lat/0410031]

- $\chi \mathrm{PT}$ curve is above phase boundary so no minimum $m_{P C A C}$

Summary and outlook

- Automatic $O(a)$ improvement works for $m_{q} \geq c^{\prime} a^{2} \Lambda_{Q C D}^{3}$
- But essential to use an appropriate definition of twisting angle
- Parity-flavor violating quantities provide interesting window on theory, and will allow test of our understanding
- Flavor violation in most parity conserving quantities requires NNLO calculation (underway)
- Many interesting quantities have disconnected contractions so hard to calculate
- Use partially quenched tm $\chi \mathrm{PT}$ to separate connected and disconnected contractions?
- tmLQCD is a potential competitor to improved staggered fermions matching its advantages but without its major drawback and merits intensive study

