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Introduction

• Lattice QCD is entering an exciting era
• Terascale computers (e.g. UKQCD’s QCDOC)
• Unquenched simulations with mπ → 250 MeV and below
• Potential for few percent control over all systematics

• Choices for light fermion action:
• Improved staggered fermions

• Fastest, but not unitary, and possibly not local, at O(a2)

• Chirally symmetric fermions
• The ultimate choice, but slowest

• Improved Wilson fermions
• Straightforward, but slow

• Twisted-mass
• Maybe as fast as staggered, but potential not yet clear

• Are twisted-mass fermions a viable alternative to staggered
fermions?
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tmLQCD

Variant of unimproved Wilson fermions with twisted mass
[Frezzotti, Grassi, Sint & Weisz, 2000]

• Advantages
+ WYSIWYG: no roots of determinant
+ speed comparable to staggered
+ at “maximal twist"

• errors ∼ a2 automatically [Frezzotti & Rossi, 2003]
• operator mixing as in continuum [Frezzotti & Rossi, 2004]

• Disadvantages
− flavor is broken for a 6= 0: SU(2) → U(1)

Detailed numerical studies underway [DESY-Zeuthen]

We use analytical methods to study its properties
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What happens to Istvan’s circles?
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Contour plot of charged m2
π from tmχPT with parameters roughly tuned to match those

of hep-lat/0410031, Farchioni et al.
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What is tmLQCD?

Begin in the continuum.

• Action in “twisted basis” for two degenerate flavors (τ2
3 = 1):

Ltm = ψ̄(D/+mqe
iγ5τ3ω)ψ = ψ̄(D/+m+ iγ5τ3µ)ψ

cosω = m/mq , sinω = µ/mq , mq =
√
m2 + µ2

• Maximal twist is m = 0, ω = π/2.

• Flavor-breaking is fake: non-singlet axial transformation

ψ̂ = exp(iγ5τ3ω/2)ψ ,
̂̄ψ = ψ̄ exp(iγ5τ3ω/2)

brings L into usual form (“physical basis”):

Ltm = ̂̄ψ(D/+mq)ψ̂
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Kinematics of continuum tmQCD

Currents and densities:

Aj
µ = ψ̄γµγ5τjψ , V

j
µ = ψ̄γµτjψ , P

j = ψ̄γ5(τj/2)ψ , S
0 = ψ̄ψ

Relation between operators in twisted and physical bases
(a = 1, 2):

Âa
µ = cosωAa

µ + ε3ab sinω V b
µ , Â3

µ = A3
µ ,

V̂ a
µ = cosω V a

µ + ε3ab sinωAb
µ , V̂ 3

µ = V 3
µ ,

P̂ 3 = cosω P 3 + i sinω S0/2 , P̂a = Pa ,

Ŝ0 = cosω S0 + 2i sinω P 3

Note: A3
µ and P a create physical pions for all ω
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What is tmLQCD?

Lattice action [Frezzotti, Grassi, Sint & Weisz] :

SL
F = a4

∑

x

ψ̄l(x)
[ 1

2

∑

µ

γµ(∇?
µ + ∇µ) +m0 + iγ5τ3µ0 −

r

2

∑

µ

∇?
µ∇µ

]
ψl(x)

• cannot rotate away twist in mass
⇒ parity and flavor broken, though breaking vanishes in naive continuum limit

• Wilson term ∇?
µ∇µ mixes with identity

⇒ usual additive renormalization of m0: m = Zm(m0 −mc)/a

• µ0 is multiplicatively renormalized, like mq in continuum:
µ = Zµµ0/a

• renormalized twist angle and quark mass:
tanω = µ/m+O(a) , mq =

√
m2 + µ2 +O(a)
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Computational advantage of tmLQCD

Rewrite action:

SL
F = a4

∑

x

ψ̄l(x)
[
DW +m0 + iγ5τ3µ0

]
ψl(x)

= a4
∑

x

ψ̄l(x)γ5
[
HW + iτ3µ0

]
ψl(x)

with HW the Hermitian Wilson-Dirac operator:

HW = γ5(DW +m0) = H†
W

• computational problem: zero eigenvalues of HW

⇒ fermion determinant vanishes, slows algorithms

• solved by twisting: µ0 provides IR cut-off

det(HW + iτ3µ0) =
∏

λ

(λ+ iµ0)(λ− iµ0) =
∏

λ

(λ2 + µ2
0)

• Simulations comparable in speed to staggered fermions
[Kennedy, Lattice 04]
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Automatic O(a) improvement

Key property of tmLQCD at maximal twist [Frezzotti & Rossi] :

Qlat = Qcont

[
1 + ca2Λ2

QCD + c′a2m2
q +O(a4)

]

Why does this work? We will study for a ∼ mq so
aΛQCD � amq ∼ a2

• At maximal twist, have m0 = mc, so

m0 −
r

2

∑

µ

∇?
µ∇µ + iµγ5τ3 = iµγ5τ3 + ac′(D2

µ)|cont +O(a2)

−→ µ− ac′iγ5τ3(D2
µ)|cont +O(a2)

when rotate to physical basis

⇒ O(a) corrections necessarily violate parity and flavor

⇒ physical (parity-flavor conserving) quantities corrected only at O(a2)
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Range of validity of automatic improvement

• Possibilities are: (a−1 = 2 GeV, ΛQCD = 300 MeV)

(A) mq � aΛ2
QCD ∼ 45 MeV

(B) mq ∼ aΛ2
QCD � a2Λ3

QCD ∼ 7 MeV

(C) mq ≥ ca2Λ3
QCD ∼ 7 MeV, with c = O(1)

• Since (mu +md)/2 ≈ 3 MeV, want (B) or, better, (C)

• [Frezzotti & Rossi] argue that (A) is needed:
• Vacuum should be determined by O(mq) and not O(a) effects

• We claim that can relax to (B) with appropriate definition of ω

• We agree with [Aoki & Bär] that (C) can also hold, although
with c 6= 0 in general.
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Our method: tmχPT

• We study long-distance physics (vacuum & pion properties)
using the chiral Lagrangian extended to include
discretization errors
• understand, analytically, competition between O(mq) and O(a) effects

• interpret and guide simulations (which are in new territory)

• consider 2 light degenerate flavors
• results valid for 2+1 flavors if p2 ∼ m2

π � m2
K

• use two step method of [SRS + Singleton, 1998]

(1) construct continuum Leff describing lattice theory [Symanzik]

Leff = LQCD + aL1 + a2L2 + . . .

(2) construct chiral effective theory for Leff

• power counting: work to NLO using p2 ∼ mq ∼ a
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Step 1: effective continuum Lagrangian

Need most general Lagrangian consistent with lattice
symmetries, which include

• Parity + discrete flavor (ψl → iτ1ψl)

• Parity + µ0 → −µ0

Result is simple [Münster & Schmidt, SRS & Wu] :
L0 = Lglue + ψ̄(D/+m+ iγ5τ3µ)ψ

L1 = b1[g
2(a)]ψ̄iσµνFµνψ

• same as for Wilson fermions aside from twisted mass in L0

• other potential operators in L1 vanish by LO equations of motion, or are NNLO in
our power counting, e.g. ψ̄σµνFµνγ5τ3ψ requires factor of aµ

• L2 is same as for Wilson theory [Bär, Rupak, Shoresh] , but can ignore as introduces
no additional symmetry breaking
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Step 2: map onto chiral Lagrangian

Leff = Lglue + ψ̄(D/+m+ iγ5τ3µ)ψ + ab1ψ̄iσµνFµνψ

• For m = µ = a = 0 have SU(2)L× SU(2)R chiral symmetry:

ψL,R −→ UL,RψL,R , UL,R ∈ SU(2)L,R

• Symmetry broken by mass and a terms in same way
• ψ̄(m+ iγ5τ3µ)ψ = ψ̄LMψR + ψ̄RM†ψL with

M = m+ iτ3µ = mq exp(iωτ3)

• aψ̄σµνFµνψ ∝ ψ̄LÂσµνFµνψR + ψ̄RÂ
†σµνFµνψL

• Leff invariant if treat M, Â as spurions:
M → ULMU†

R
and Â→ ULÂU

†
R

⇒ standard χPT analysis can be used for M and Â
[SRS & Singleton; Bär, Rupak & Shoresh]
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Resulting chiral Lagrangian

Lχ =
f2

4
Tr(DµΣDµΣ†) −

f2

4
Tr(χ†Σ + Σ†χ) −

f2

4
Tr(Â†Σ + Σ†Â)

−L1Tr(DµΣDµΣ†)2 − L2Tr(DµΣDνΣ†)Tr(DµΣDνΣ†)

+L45Tr(DµΣ†DµΣ)Tr(χ†Σ + Σ†χ) − L68

[
Tr(χ†Σ + Σ†χ)

]2

+W45Tr(DµΣ†DµΣ)Tr(Â†Σ + Σ†Â) −W68Tr(χ†Σ + Σ†χ)Tr(Â†Σ + Σ†Â)

−W ′
68

[
Tr(Â†Σ + Σ†Â)

]2
+W10Tr(DµÂ

†DµΣ +DµΣ†DµÂ)

where

Σ ∼ 〈ψLψ̄R〉 −→ ULΣU†
R
, DµΣ = ∂µΣ − i`µΣ + iΣrµ ,

χ = 2B0(s+ ip) → 2B0M , Â → â = 2W0a

and constants are not determined by symmetries

• f , B0 and Li are from continuum χPT

• Wi, W ′
i are introduced by discretization errors
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tmχPT at leading order

Lagrangian takes continuum form if use variable χ′ = χ+ Â:

Lχ,LO =
f2

4
Tr(DµΣDµΣ†) −

f2

4
Tr(χ†Σ + Σ†χ) −

f2

4
Tr(Â†Σ + Σ†Â)

=
f2

4
Tr(DµΣDµΣ†) −

f2

4
Tr(χ′†Σ + Σ†χ′)

• corresponds to O(a) shift in m and mc:

m→ m′ = m+aW0/B0 , mq →
√
m′2 + µ2 , tanω0 ≡ µ/m′ , χ′ = 2B0mqe

iω0τ3

• condensate aligns with χ′:

Σ = exp(iω0τ3/2)Σph exp(iω0τ3/2) , Σph = exp(i~π · ~τ/f)

⇒ LO pion interactions have no O(a) corrections for any ω0

Lχ,LO =
f2

4
Tr(DµΣphDµΣ†

ph
) −

f2

4
|χ′|Tr(Σph + Σ†

ph
)

S. Sharpe, “Studying twisted mass: . . . ”, KITP, 2/17/2005 – p. 16/37



NLO result: O(a) improvement at ω0 = π/2

• express chiral Lagrangian in terms of χ′:
Lχ,NLO = continuum terms + W̃ Tr(DµΣ†DµΣ)Tr(Â†Σ + Σ†Â)

−W Tr(χ′†Σ + Σ†χ′)Tr(Â†Σ + Σ†Â) +O(a2)

• Lagrangian is invariant under symmetry:
• π → −π, ω0 → −ω0 ⇒ Σ ↔ Σ†, χ′ ↔ χ′†

which implies:
• Tr(DµΣ†DµΣ) and Tr(χ′†Σ + Σ†χ′) are even in π

• Tr(Â†Σ + Σ†Â) = cosω0 × (even in π) + sinω0 × (odd in π)

• for ω0 = π/2, physical vertices, with an even number of
pions, receive no O(a) contributions

• unphysical vertices with an odd number of pions are O(a)

⇒ automatic O(a) improvement valid even if mq ∼ aΛ2
QCD as long as

use ω0 and not ω
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Recall: Kinematics of continuum tmQCD

Currents and densities:

Aj
µ = ψ̄γµγ5τjψ , V

j
µ = ψ̄γµτjψ , P

j = ψ̄γ5(τj/2)ψ , S
0 = ψ̄ψ

Relation between operators in twisted and physical bases
(a = 1, 2):

Âa
µ = cosωAa

µ + ε3ab sinω V b
µ , Â3

µ = A3
µ ,

V̂ a
µ = cosω V a

µ + ε3ab sinωAb
µ , V̂ 3

µ = V 3
µ ,

P̂ 3 = cosω P 3 + i sinω S0/2 , P̂a = Pa ,

Ŝ0 = cosω S0 + 2i sinω P 3
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Specific NLO results: twist angle

• How determine m′ and thus ω0?
(1) enforce 〈V̂ 2

µ (x)P̂ 1(y)〉 = 0 implying

tanωA ≡
〈V 2

µ (x)P 1(y)〉

〈A1
µ(x)P 1(y)〉

(2) enforce 〈Ŝ0(x)Â3
µ(y)〉 = 0 implying

tanωP ≡
i〈S0(x)A3

µ(y)〉

2〈P 3(x)A3
µ(y)〉

• result: ω0 determined to O(a) accuracy

ω0 = ωA +
16âs

f2

(
W +W10/4 + 2âcW ′/(2B0mq)

)

ωP = ωA +
4âs(4W +W10)

f2

with c = cosωA and s = sinωA
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Required accuracy for twist angle?

• O(a) ambiguity in ω is inevitable due to discretization errors

• ambiguity does not impact automatic O(a) improvement

Qlat = Qcont

[
1 + a cosω +O(a2)

]

δQlat = Qcont a δ(cosω) +O(a2)

= −Qcont a sinω δω +O(a2)

= O(a2)

⇒ can set either ωA = π/2 or ωP = π/2

• we propose ωA = π/2 as canonical choice since easier to
implement in simulations
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Specific NLO results: pion masses

• Charged pion mass is automatically improved:
result agrees with [Scorzato]

m2
π±

= |χ′| +
16

f2

[
|χ′|2(2L68 − L45)

+|χ′|âc(2W − W̃ ) + 2â2c2W ′
]

+ cont. 1-loop + . . .

• Pion isospin splitting is O(a2) and maximal for ω = π/2:

m2
π3

−m2
π1,2

= −
32

f2
â2s2W ′ +O(a3)

= −W ′ 32

f2

â2µ2

m′2 + µ2
+O(a3)

• Harder to calculate numerically as requires quark-disconnected contractions

• Measures constant W ′
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Specific NLO results: matrix elements

• Pion decay constant agrees with [Münster & Schmidt]

fA = f

{
1 +

4

f2

[
2|χ′|L45 + âc(2W̃ +W10)

]
+ cont. 1-loop

}

• flavor breaking only at NNLO

• Results for 〈0|P |π〉, scalar and vector form factors, have
similar form showing automatic O(a) improvement and no
flavor breaking

• can measure physical condensate using P 3

〈2iP 3〉 = −2f2B0 s

{
1 +

4

f2

[
|χ′|(8L68 +H2) + âc(4W +W10)

]
+ 1-loop

}
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Parity violating matrix elements

Axial and pseudoscalar form factors of pion non-vanishing, e.g.
〈πa|Â

a
µ|π3〉 , 〈πa|Â

3
µ|πa〉 , 〈π3|Â

3
µ|π3〉 ,

p1 −p2

πl πm

Ak
µ

q = p2 − p1

p1 −p2

Ak
µ

πl πm

Example of results:

〈πa(p2)|P̂
3|πa(p1)〉 =

16âsiB0

f2

[
−W10

4
+W − W̃ +

2âcW ′

q2 +m2
π3

+
(W̃/2 −W )q2

q2 +m2
π3

]

• present at maximal twisting s = 1, c = 0

• use to determine all W ’s and then to test tmχPT at NLO
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Summary for mq ∼ aΛ2
QCD

• Predicted functional forms for pionic quantities for all µ, m′

• Can determine maximal twisting non-perturbatively using
ωA = π/2 or ωP = π/2 (or by maximizing pion mass
splitting)
• automatically includes O(a) shift in mc

• O(a) ambiguity in ω cannot be avoided

• Automatic O(a) improvement at maximal twist holds in GSM
regime

• Parity-flavor violating quantities (ωA − ωP , axial and
pseudoscalar form factors) are O(a)
• provide measure of discretization errors, i.e. size of W ’s

• provide tests of tmχPT at NLO

• can correct a posteriori O(a) errors in untwisted simulations

• Flavor breaking in physical quantities occurs at O(a2)
• only example in NLO calculation is pion mass splitting
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Results for Aoki regime

• Work to LO in power counting mq ∼ a2Λ3
QCD

• Lagrangian collapses to:

Lχ =
f2

4
Tr(DµΣDµΣ†) −

f2

4
Tr(χ′†Σ + Σ†χ′) −W ′

[
Tr(Â†Σ + Σ†Â)

]2

+W̃ Tr(DµΣ†DµΣ)Tr(Â†Σ + Σ†Â) −W Tr(χ′†Σ + Σ†χ′)Tr(Â†Σ + Σ†Â)

+W10 Tr(DµÂ
†DµΣ +DµΣ†DµÂ) +O(a3)

• Competition between mq and a2 terms leads to non-trivial
phase structure [Aoki, Creutz, SRS & Singleton, Münster, Scorzato,
SRS & Wu]

• Phase structure depends on sign of W ′ (which also
determines the sign of pion mass splitting [Scorzato] )

• Can extend calculations from GSM regime into Aoki regime
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Possible phase diagrams in Aoki regime
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(b) Phase diagram for c2 < 0

c2 = −16W ′â2 , α = 2B0f
2m′/|c2| , β = 2B0f

2µ/|c2|

• Solid lines are first-order phase transistions with
second-order endpoints
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W ′ < 0: Aoki phase

• Condensate:

〈0|Σ|0〉 = Am + iBmτ3

• Aoki phase washed out for µ ∝ β 6= 0

• Note Am = 0 for α = m′ = 0
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W ′ > 0: no Aoki phase

Along Wilson axis:
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(a) Global minimum, β = 0
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(b) Pion masses, β = 0

At top of phase transition: dashed: charged; solid: neutral
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More on W ′ > 0

Above phase transition: dashed: charged; solid: neutral
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(g) Global minimum, β = 3
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(h) Pion masses, β = 3

• Can use minimum of pion masses as an alternative for determining where m′ = 0

• Away from transition, condensate has Am = 0 for maximal twisting, i.e. lies along
direction of quark mass as in continuum

⇒ Automatic O(a) improvement at maximal twist still holds in Aoki regime away from
phase transitions [Aoki & Bär]
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Predictions from tmχPT
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Contour plot of charged m2
π from tmχPT with parameters roughly tuned to match those

of hep-lat/0410031, Farchioni et al.
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Comparing χPT with [Farchioni et al,hep-lat/0410031]
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• Qualitative comparison only

• Difference in slopes for positive and negative m′ caused by
a 30% â(2W − W̃ ) cos(ωA) correction
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Comparing χPT with [Farchioni et al,hep-lat/0410031]
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• Difference in slopes for positive and negative m′ caused by
a 30% â(2W − W̃ ) cos(ωA) correction
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Comparing χPT with [Farchioni et al,hep-lat/0410031]
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• Qualitative comparison only

• Difference in slopes for positive and negative m′ caused by
â cos(ωA) correction
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Comparing χPT with [Farchioni et al,hep-lat/0410031]
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• χPT does not explain the change in relative slopes as µ
increases
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Comparing χPT with [Farchioni et al,hep-lat/0410031]
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• Data goes to lighter pion mass because of metastability
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Comparing χPT with [Farchioni et al,hep-lat/0410031]
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• χPT curve is above phase boundary so no minimum mPCAC
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Summary and outlook

• Automatic O(a) improvement works for mq ≥ c′a2Λ3
QCD

• But essential to use an appropriate definition of twisting angle

• Parity-flavor violating quantities provide interesting window
on theory, and will allow test of our understanding

• Flavor violation in most parity conserving quantities requires
NNLO calculation (underway)

• Many interesting quantities have disconnected contractions
so hard to calculate
• Use partially quenched tm χPT to separate connected and disconnected

contractions?

• tmLQCD is a potential competitor to improved staggered
fermions matching its advantages but without its major
drawback and merits intensive study
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