

Work with: Bipasha Chakraborty, Gordon Donald, Rachel Dowdall, Jonna Koponen, Peter Lepage

Using the Darwin (9600 core) Sandybridge/infiniband cluster at Cambridge, part of STFC's DiRAC HPC facility

Muon anomalous magnetic moment

$$
\vec{\mu}=g \frac{e}{2 m} \vec{S} \quad a_{\mu}=\frac{g-2}{2}
$$

Measure using polarised muons circulating in E and B fields. At a momentum where $\beta \times E$ terms cancel, difference between spin and cyclotron frequencies:

$$
\omega_{a}=-\frac{e}{m} a_{\mu} B
$$

BNL result:
$a_{\mu}^{\text {expt }}=11659208.9(6.3) \times 10^{-10}$

Standard Model theory expectations

Contributions from QED,
 EW and QCD interactions.

Blum et al, QED dominates.

LO Hadronic vacuum polarisation (HVP)

$$
\begin{aligned}
& a_{\mu}^{e x p t}-a_{\mu}^{Q E D}-a_{\mu}^{E W}=721.7(6.3) \times 10^{-10} \\
& =a_{\mu}^{H V P}+a_{\mu}^{H O H V P}+a_{\mu}^{H L B L}+a_{\mu}^{\text {new physics }}
\end{aligned}
$$

$$
a_{\mu}^{H V P, \text { no new physics }}=721.0(6.8) \times 10^{-10}
$$

Best method to date for HVP uses exptl e+e- cross-section

$a_{\mu}^{H V P}=\frac{1}{4 \pi^{3}} \int_{m_{\pi}^{2}}^{\infty} d s \sigma_{h a d}^{0}(s) K(s)$

$e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow$ hadrons
"bare" cross-section but inc. final-state radiation some "tension" between results. Difference is use of BaBar radiative return data

Hagiwara et al:
$a_{\mu}^{H V P}=694.9(4.3) \times 10^{-10}$

Lattice calculation of HVP

 Analytically continue to Euclidean q^{2}.$$
a_{\mu}^{H V P, i}=\frac{\alpha}{\pi} \int_{0}^{\infty} d q^{2} f\left(q^{2}\right)\left(4 \pi \alpha e_{i}^{2}\right) \hat{\Pi}_{i}\left(q^{2}\right)
$$

connected contribution for flavour i
$\mathrm{f}\left(\mathrm{q}^{2}\right)$ is divergent function with scale set by m_{μ} $\hat{\Pi}\left(q^{2}\right)=\Pi\left(q^{2}\right)-\Pi(0)$ is vacuum polarisation function. Test with mesons:

$$
\hat{\Pi}\left(q^{2}\right) \propto \frac{1}{m_{V}^{2}}-\frac{1}{q^{2}+m_{V}^{2}}
$$

Calculation with quarks
For spatial vector currents at zero spatial momentum

$$
\Pi^{j j}\left(q^{2}\right)=q^{2} \Pi\left(q^{2}\right)=a^{4} \sum_{t} e^{i q t} \sum_{\vec{x}}\left\langle j^{j}(\vec{x}, t) j^{j}(0)\right\rangle
$$

Time-moments of lattice current-current correlators

$$
\begin{aligned}
G_{2 n} & \equiv a^{4} \sum_{t} \sum_{\vec{x}} t^{2 n} Z_{V}^{2}\left\langle j^{j}(\vec{x}, t) j^{j}(0)\right\rangle \\
& =\left.(-1)^{n} \frac{\partial^{2 n}}{\partial q^{2 n}} q^{2} \hat{\Pi}\left(q^{2}\right)\right|_{q^{2}=0} \quad \mathrm{~J} \\
\hat{\Pi}\left(q^{2}\right) & =\sum_{j=1}^{\infty} q^{2 j} \Pi_{j} \quad \text { with } \quad \Pi_{j}=(-1)^{j+1} \frac{G_{2 j+2}}{(2 j+2)!}
\end{aligned}
$$

Allows us to reconstruct $\hat{\Pi}\left(q^{2}\right)$ and integrate
Use Pade approximants (ratio of m / n polynomials) rather than Taylor expansion for better large q^{2} behaviour.

Test Pade approximants in similar scenarios (1-loop quark vacuum polarisation, with noise added)

Improved precision allows higher order Pade - we use [2,2]

Part of the set of calculations that gave

$$
m_{c}, M(J / \psi)-M\left(\eta_{c}\right), \Gamma\left(J / \Psi \rightarrow e^{+} e^{-}\right), \Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right)
$$

Used HISQ valence quarks on MILC $2+1$ asqtad configs. Z_{v} from contnm QCD pert. th.
Extrapolation to physical point allows us to compare directly to moments from e+e- expt. in charm region $a_{\mu}^{H V P, c}=14.4(4) \times 10^{-10}$

[^0]BOTTOM contribution

Part of the set of calculations that gave
$m_{b}, M(\Upsilon)-M\left(\eta_{b}\right), M\left(\Upsilon^{\prime}\right)-M\left(\eta_{b}^{\prime}\right), \Gamma\left(\Upsilon \rightarrow e^{+} e^{-}\right), \Gamma\left(\Upsilon^{\prime} \rightarrow e^{+} e^{-}\right)$

Used NRQCD valence quarks on
MILC $2+1+1$ HISQ configs.
Z_{v} from contnm QCD pert. th.

Again, moments can be compared to those extracted from expt.

$$
a_{\mu}^{H V P, b}=0.27(4) \times 10^{-10}
$$

Keep an eye on the 'big'picture whilst doing this

STRANGE contribution

HISQ valence quarks on

 MILC $2+1+1$ HISQ configs. Local Jv nonpert. Z_{v}. multiple a (fixed by W_{0}), m_{1} (inc. phys.), volumes.Tune s from $\eta_{s} \quad \begin{gathered}\uparrow \\ \text { up to }(5.8 \mathrm{fm})^{3}\end{gathered}$

	a_{μ}^{s}
Uncertainty in lattice spacing $\left(w_{0}, r_{1}\right):$	1.0%
Uncertainty in $Z_{V}:$	0.4%
Monte Carlo statistics:	0.1%
$a^{2} \rightarrow 0$ extrapolation:	0.1%
QED corrections:	0.1%
Quark mass tuning:	0.0%
Finite lattice volume:	$<0.1 \%$
Padé approximants:	$<0.1 \%$
Total:	1.1%

$$
\begin{aligned}
& a_{\mu, \text { lat }}^{s}=a_{\mu}^{s} \times \\
& \quad\left(1+c_{a^{2}}\left(a \Lambda_{\mathrm{QCD}} / \pi\right)^{2}+c_{\mathrm{sea}} \delta x_{\mathrm{sea}}+c_{\mathrm{val}} \delta x_{\mathrm{val}}\right) \\
& a_{\mu}^{H V P, s}=53.41(59) \times 10^{-10}
\end{aligned}
$$

Check mass and decay constant of ϕ from these correlators against expt

Results from ETMC, RBC/UKQCD

 continuum limit for strange contribution to a_{μ}

HD $\quad a^{2} / \mathrm{GeV}^{-2}$
$0.014 \mathrm{fm}^{2}$
$a_{\mu}^{H V P, s, E T M C}=53(3) \times 10^{-10}$
Continuum estimate/ upper limit:
$a_{\mu}^{H V P, s, c o n t}=55.3(8) \times 10^{-10}$

LIGHT contribution $\quad m_{u}=m_{d}$
HISQ valence quarks on MILC $2+1+1$ HISQ configs. Use Z_{v} from s calc.

Multiple a (use w_{0}), m_{l} (inc. phys.), volumes (at $\mathrm{ml} / \mathrm{ms}=0.1$). New ingredient since correlators much noisier. Use:

$$
\left.\begin{array}{l}
G(t)=\left\{\begin{array}{ll}
G_{\text {data }}(t) & \text { for } t \leq t^{*} \\
G_{\text {fit }}(t) & \text { for } t>t^{*}
\end{array} \quad\right. \text { from Monte Carlo } \\
\text { from multi-exponential fit }
\end{array}\right] \begin{aligned}
& t^{*}=1.5 \mathrm{fm}=6 / m_{\rho} \quad \text { so } 70 \% \text { of result from } G_{\text {data }}
\end{aligned}
$$

- 80% of result comes from ρ meson pole, so need to understand ρ on lattice, inc. finite-volume from $\pi \pi$.
- 10% from $\pi \pi$, sensitive to finite-volume and m_{π} (so taste-issues for staggered quarks).

One approach is to correct Taylor coefficients

$$
\begin{aligned}
& \hat{\Pi}_{j}^{\text {latt }} \rightarrow\left(\hat{\Pi}_{j}^{\text {latt }}-\hat{\Pi}_{j}^{\text {latt }}(\pi \pi)\right)\left[\frac{m_{\rho}^{2 j+2}}{f_{\rho}^{2}}\right]_{\text {latt }}\left[\frac{f_{\rho}^{2}}{m_{\rho}^{2 j+2}}\right]_{\text {expt }}+\hat{\Pi}_{j}^{\text {cont }}(\pi \pi) \\
& \text { Remove lattice } \pi \pi \\
& \text { using one-loop, } \\
& \text { staggered quark } \\
& \text { chiral pert. theory } \\
& \text { Rescale using exptl } f_{\rho} \\
& \text { and } m_{\rho} \\
& \text { elaborating on }
\end{aligned}
$$

ETMC : 1308.4327.
Reduces lattice
systematics, but intro. uncties from f_{ρ}
$\pi \pi$ contribution distorted at physical point using staggered quarks on these coarse lattices. Important to inc. other masses. But note: need 7 fm lattice to get this piece below 1% for contnm $\pi \pi$

PRELIMINARY analysis

ensemble size 10,000

Improve by estimating systematics with an effective theory that includes $\rho, \gamma, \pi \pi$ e.g. Jegerlehner +Szafron, 1101.2872
Future: improve statistics, finer lattices

DISCONNECTED contribution to HVP

Vanishes if $m_{u}=m_{d}=m_{s}$

$$
\text { since } \quad \sum_{i} e_{i}=0 \quad \begin{gathered}
\text { Blum, hep-lat/ } \\
0212018
\end{gathered}
$$

For real masses, result is disconn. correlator for (l-s) current with charge $1 / 3$ (so e^{2} factor is $1 / 5$ of connected) Focus has been on stochastic methods. Using same source for 1 and s helps

no signal from $50+50$ sources (all-to-all) per config. Onelink J

HadSpec results

Use instead many (~ 150) source vectors (eigenvectors of gauge-covariant Laplacian) for both conn. and disc. correlators to obtain good signal.

PRELIMINARY

Fitting and normalising to connected light, gives HVP disc. contribn of
~-1\%
Hadspec+HPQCD, in prep. anisotropic clover action

Simple (but conservative) argument on size of disc. pieces
1-1 disc.pieces provide key difference between ω and ρ

$$
\begin{aligned}
& 2 D_{l l}=-\frac{f_{\rho}^{2} m_{\rho}}{2} e^{-m_{\rho} t}+\frac{f_{\omega}^{2} m_{\omega}}{2} e^{-m_{\omega} t} \\
& \frac{\hat{\Pi}_{j, d i s c}}{\hat{\Pi}_{j, \text { conn }}}=\frac{1}{2}\left[\frac{m_{\rho}^{2 j+2} f_{\omega}^{2}}{m_{\omega}^{2 j+2} f_{\rho}^{2}}-1\right]
\end{aligned}
$$

We do not have accurate information on decay constants because of width of ρ, mixing of ω etc Taking $f_{\rho}=0.21(1) \mathrm{GeV}, f_{\omega}=0.20(1) \mathrm{GeV}$

HVP : disc-ll/conn-ll $=-1.5(1.5) \%$

Adding contributions to $(\mathrm{g}-2) / 2$ ETMC 1308.4327 567(I I)stat $\times 10^{-10}$ rescaling with largest f_{ρ}

light, connected	662(11)	preliminary
strange connected	53.4(6)	1403.1778
charm connected	14.4(4)	$\begin{aligned} & 1403.1778, \\ & 1208.2855 \end{aligned}$
bottom connected	0.27(4)	1408.5768
disconn. (estimate)	-25(15)	add -7 from $\pi \pi$ to maximum simple estimate
TOTAL	705(20)	

Lattice - continuum comparison

Good agreement but lattice uncty (all from u/d) still too big. Need to add in QED, m_{u} / m_{d} effects ($\sim 1 \%$ and positive?)

[^0]: HPQCD 1403.1778

