XYZ States and Hadronic Transitions

Estia Eichten
 (Fermilab)

Outline: - Quarkonium physics below threshold

- Surprises above threshold
- Hadronic transitions
- XYZ states
- Disentangling the XYZ states
- New dynamics for hadronic transitions above threshold
- Role for Lattice QCD

```
Workshop on Lattice Gauge Theory
    for the LHC and Beyond
        Aug 3-Sept 25,2015
        KITP Santa Barbara
```


Quarkonium physics below threshold

- Qualitative predictions of QCD inspired potential models reproduce the spectrum and EM transitions well

Quarkonium physics below threshold

- Now superseded by lattice calculations for the spectrum

Low lying charmonium levels

Reasonably well understood

Glasgow 1411.1318 Continuum limit, Physical quark masses

Regensburg 1503.08440
No continuum limit

Charmonium spectrum

C. DeTar, Lepton-Photon 2015

Hadronic Transitions

- Below threshold the QCD multipole expansion works well to describe the hadronic transitions.
- The transition rates are small.
- Heavy-quark symmetry (HQS) dictates that the leading transitions do not flip the spin of the heavy quarks (as with the usual EM transitions in non-relativistic systems E1, M1, E2, ...).
- Isospin breaking is suppressed.
- But detailed results rely on a specific phenomenological model of Kuang-Yan.
- A few puzzles remain.
N. Brambilla, et al.,Eur.Phys.J. C71 (2011) 1534

Transition	$\Gamma_{\text {partial }}(\mathrm{keV})$ (Experiment)	$\Gamma_{\text {partial }}(\mathrm{keV})$ (KY Model)
$\psi(2 S)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	102.3 ± 3.4	input ($\left\|C_{1}\right\|$)
$\rightarrow J / \psi+\eta$	10.0 ± 0.4	input (C_{3} / C_{1})
$\rightarrow J / \psi+\pi^{0}$	0.411 ± 0.030 [446]	0.64 [522]
$\rightarrow h_{c}(1 P)+\pi^{0}$	0.26 ± 0.05 [47]	0.12-0.40 [527
$\psi(3770)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	52.7 ± 7.9	input $\left(C_{2} / C_{1}\right)$
$\rightarrow J / \psi+\eta$	24 ± 11	
$\psi(3 S)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	< 320 (90\% CL)	
$\Upsilon(2 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	5.79 ± 0.49	8.7 [528]
$\rightarrow \Upsilon(1 S)+\eta$	$(6.7 \pm 2.4) \times 10^{-3}$	0.025 [521]
$\Upsilon\left(1^{3} D_{2}\right)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	0.188 ± 0.046 [63]	0.07 [529]
$\chi_{b 1}(2 P)$		
$\rightarrow \chi_{b 1}(1 P)+\pi^{+} \pi^{-}$	0.83 ± 0.33 [523]	0.54 [530]
$\rightarrow \Upsilon(1 S)+\omega$	1.56 ± 0.46	
$\chi_{b 2}(2 P)$		
$\rightarrow \chi_{b 2}(1 P)+\pi^{+} \pi^{-}$	0.83 ± 0.31 [523]	0.54 [530]
$\rightarrow \Upsilon(1 S)+\omega$	1.52 ± 0.49	
$\Upsilon(3 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	0.894 ± 0.084	1.85 [528]
$\rightarrow \Upsilon(1 S)+\eta$	$<3.7 \times 10^{-3}$	0.012 [521]
$\rightarrow \Upsilon(2 S)+\pi^{+} \pi^{-}$	0.498 ± 0.065	0.86 [528]
$\Upsilon(4 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	1.64 ± 0.25	4.1 [528]
$\rightarrow \Upsilon(1 S)+\eta$	4.02 ± 0.54	
$\rightarrow \Upsilon(2 S)+\pi^{+} \pi^{-}$	1.76 ± 0.34	1.4 [528]

Basics of the QCDME

- QCD multipole expansion (QCDME) in a nutshell
- Analogous to the QED multipole expansion with gluons replacing photons.

$$
\begin{aligned}
& H_{\mathrm{QCD}}^{\mathrm{eff}}=H_{\mathrm{QCD}}^{(0)}+H_{\mathrm{QCD}}^{(1)}+H_{\mathrm{QCD}}^{(2)} \quad H_{\mathrm{QCD}}^{(1)} \equiv Q_{a} A_{0}^{a}(\mathbf{X}, t) \\
& \text { zero for color singlet } \\
& H_{\mathrm{QCD}}^{(2)} \equiv-\mathbf{d}_{a} \cdot \mathbf{E}^{a}(\mathbf{X}, \mathbf{t})-\mathbf{m}_{\mathbf{a}} \cdot \mathbf{B}^{\mathbf{a}}(\mathbf{X}, \mathbf{t})+\cdots
\end{aligned}
$$

E1 M1 ...

- color singlet physical states means lowest order terms involve two gluon emission. So lowest multipoles E1 E1, E1 M1, E1 E2,
- factorize the heavy quark and light quark dynamics

$$
\begin{aligned}
& \mathcal{M}\left(\Phi_{i} \rightarrow \Phi_{f}+h\right)= \\
& \frac{1}{24} \sum_{K L} \frac{\left.\langle f| d_{m}^{i a}|K L\rangle\langle | K L\left|d_{m a}^{j}\right| i\right\rangle}{E_{i}-E_{K L}}\langle h| \mathbf{E}^{a i} \mathbf{E}_{a}^{j}|0\rangle \quad+\text { higher order multipole terms. }
\end{aligned}
$$

- assume a model for the heavy quarkonium states $\Phi_{\mathrm{i}}, \Phi_{\mathrm{f}}$ and a model for the intermediate states IKL> hybrid states.
- use chiral effective lagrangians to parameterize the light hadronic system.

Remaining puzzles

- QCDME $n^{3} S_{1}->m^{3} S_{1}+\pi \pi$ transitions:

Bottomonium

- E1E1 dominates

$$
\left.\mathcal{M}_{i f}^{g g}=\frac{1}{16}<B\left|\mathbf{r}_{\mathbf{i}} \xi^{a} \mathcal{G} \mathbf{r}_{\mathbf{j}} \xi^{a}\right| A>\frac{g_{\mathrm{E}}^{2}}{6}<\pi_{\alpha} \pi_{\beta}\left|\operatorname{Tr}\left(\mathbb{E}^{\mathbf{i}} \mathbb{E}^{j}\right)\right| 0\right\rangle
$$

- Chiral symmetry
$\alpha_{A B}^{E E}$

$$
\frac{\delta_{\alpha \beta}}{\sqrt{\left(2 \omega_{1}\right)\left(2 \omega_{2}\right)}}\left[C_{1} \delta_{k l} q_{1}^{\mu} q_{2 \mu}+C_{2}\left(q_{1 k} q_{2 l}+q_{1 l} q_{2 k}-\frac{2}{3} \delta_{k l}\left(q_{1} \cdot q_{2}\right)\right)\right]
$$

Charmonium
2->1
D/S wave
J. Z. Bai, et al (BES) Phys.Rev. D62 (2000) 032002

- $3->1$ and $4->2$ puzzling behavior
- dynamical cancellations: M. Voloshin [arXiv:hep-ph/0606258]
- final state ($\pi \pi$) interactions: Y. Surovtsev, el al[arXiv:1506.0306]

D. Cronin-Hennessy, et al

PRD76:072001,2007 (CLEO III)

Remaining puzzles

- QCDME η transitions:
- E1-M2 dominates:

$$
\begin{array}{cc}
\mathcal{M}_{i f}^{g g}=\frac{1}{16}<B\left|\mathbf{r}_{\mathbf{r}} \xi^{a} \mathcal{G r}_{\mathbf{j}} \xi^{a}\right| A> & \frac{g_{e} g_{M}}{6}\langle\eta| \mathbb{E}_{i} \partial_{j} \mathrm{~B}_{k}|0\rangle \\
\downarrow \\
\alpha_{A B}^{E E} & : i(2 \pi)^{3 / 2} C_{3} q_{k}
\end{array}
$$

- Ratio of η to $\pi \pi$ transitions: same initial and final quarkonium states at ($M_{m}=M_{\eta}$)

$$
R_{Q \bar{Q}}(n \rightarrow m) \equiv \frac{\Gamma\left(n^{3} S_{1} \rightarrow m^{3} S_{1}+\eta\right)}{\Gamma\left(n^{3} S_{1} \rightarrow m^{3} S_{1}+\pi^{+} \pi^{-}\right)}=\frac{8 \pi^{2}}{27} \frac{1}{m_{Q}^{2}}\left(\frac{C_{3}}{C_{1}}\right)^{2}\left[\frac{\left.\left[\left(M_{i}+M_{f}\right)^{2}-M_{\eta}^{2}\right)\left(\left(M_{i}-M_{f}\right)^{2}-M_{\eta}^{2}\right)\right]^{3 / 2}}{G}\right]
$$

is independent of the details of the intermediate states.
[kinematic factor]

- Comparing theory (KY) and experiment.

$\begin{gathered} \hline \hline R_{\eta / \pi \pi}\left({ }^{3} S_{1}(n) \rightarrow{ }^{3} S_{1}(m)\right) \\ (Q \bar{Q}) n \rightarrow m \\ \hline \end{gathered}$	theory	experiment	
$(c \bar{c}): 2 \rightarrow 1$	3.39×10^{-3}	1.0×10^{-1}	$\sim 30>$ model
$(c \bar{c}): 3 \rightarrow 1$	6.35×10^{-3}	1.0	$\sim 150>$ model
$(b \bar{b}): 2 \rightarrow 1$	1.99×10^{-2}	1.99×10^{-2}	sets $\mathrm{C}_{3} / \mathrm{C}_{1}=0.143 \pm 0.024$
$(b \bar{b}): 3 \rightarrow 1$	4.57×10^{-3}	$<2.3 \times 10^{-2}$	
$(b \bar{b}): 4 \rightarrow 1$	2.23×10^{-3}	24	~ 1000 > model
$(b \bar{b}): 5 \rightarrow 1$	9.58×10^{-4}	4.8	~ 2000 > model
$(b \bar{b}): 5 \rightarrow 2$	5.33×10^{-3}	1.6	~ 300 > model

- Transitions near and above threshold violate expectations of QCDME and sizable rates require large SU(3) breaking.
- We will see this is associated with the large SU(3) breaking in virtual and real heavy-light meson pair contributions to the states.

Why does it work so well?

- When should the QCDME work?
- Transitions between tightly bound quarkonium states
- Small radius ($\mathrm{R} \ll \Lambda_{\mathrm{QCD}}$)
- bottomonium 1S, 1P, 2S, 1D, 2P, 3S, ...
- charmonium 1S, 1P, ...
- Small contributions from excitations involving QCD additional degrees of freedom.
- This is essential to the factorization assumption!
- Above threshold
- light quark pairs
- $\overline{\left.D^{*}\right)} D^{(*)}$ thresholds in 1D to 3S region
- $\overline{B^{*}} \mathrm{~B}^{(*)}$ thresholds in $4 S$ region
- gluonic string excitations
- Hybrid states associated with the potentials Π_{u}, \ldots
- In the static limit this occurs at separation $r \approx 1.2 \mathrm{fm}$.
- Between the $3 S$ and $4 S$ in (cc) system
- Just above the 5 S in the (bb) system
- New mechanisms can be expected for hadronic transitions above threshold.

Cornell

Potential Model

$D \bar{D}, \bar{B}$

The Threshold Region

- $R=\sigma\left(e+e-->\gamma^{*}->\right.$ hadrons $) / \sigma\left(e+e-->\gamma^{*}->\mu+\mu-\right) J P C=1^{--}$
- Resonance region: $\left(\sqrt{ } \mathrm{s}-2 \mathrm{~m}_{\mathrm{H}}\right) \leqslant 1 \mathrm{GeV}$
- Two body decays
- $\mathrm{DO}=(\mathrm{cu}), \mathrm{D}+=(\mathrm{cd})$
- $M\left(D^{0} D^{0}\right)=3,729.72 \mathrm{MeV}$
- $M\left(D^{+} D^{-}\right)=3,739.26 \mathrm{MeV}$
- $B-=(b u), B 0=(b d)$
- $M\left(B^{+} B^{-}\right)=10,578.52 \mathrm{MeV}$
- $M\left(B^{0} B^{0}\right)=10,579.16 \mathrm{MeV}$
$-e_{c}=2 / 3 ; \quad e_{b}=-1 / 3$

The Threshold Region

- Two pictures of R

$$
\Delta R(W)=\frac{6 \pi}{W^{2}} \rho_{c}(W) \quad-\left(g_{\mu \nu} q^{2}-q_{\mu} q_{\nu}\right) \rho_{c}(W)
$$

$$
=\left.\int d^{4} x e^{i q x}\langle 0| j_{\mu}(x) j_{\nu}(0)|0\rangle\right|_{\text {charm }}
$$

Heavy-Light Mesons

- Observed low-lying (1S, 1P, and 1D) charm and bottom mesons:
- Very similar excitation spectrum - HQS

Charm Meson Spectrum

Bottom Meson Spectrum

- There are 9 narrow ($<2 \mathrm{MeV}$) charm meson states [and 10 bottom mesons states]. Any pair of these might have a cusp at S-wave threshold.
- The wide states can originate sequential decay chains.

Complicated Decay Amplitudes

- For resonances (with no radial nodes) as expected:
luds_1s_1

IPuds_1s_0_0

- But complicated dependence on heavy-light momentum for radially" excited resonances.

- $\Delta E=E-m_{1}-m_{2}=\sqrt{ }\left(m_{1}^{2}+p^{2}\right)+\sqrt{ }\left(m_{2}^{2}+p^{2}\right)-m_{1}-m_{2} \approx\left(m_{1}+m_{2}\right) p^{2} /\left(2 m_{1} m_{2}\right)$

Individual Decay Channels Above Threshold

- $\Psi(3 S)$
$-\mathrm{M}=4039 \pm 1 \mathrm{MeV} \quad \Gamma=80 \pm 10 \mathrm{MeV}$;
- Open decay channels:

Charm threshold region has very large induced HQS breaking effects due to spin splitting in ji heavy-light multiplets

- $M\left(\bar{D}^{0} D^{0}\right)=3,729.72 \mathrm{MeV}, M\left(D^{+} D^{-}\right)=3,739.26 \mathrm{MeV}$
- $M\left(\bar{D}^{0} D^{* 0}\right)=3,871.85 \mathrm{MeV}, M\left(D^{+} D^{*-}\right)=3,879.92 \mathrm{MeV}$
- $M\left(\bar{D}_{s^{\prime}} D_{s}-\right)=3,937 . \mathrm{MeV}$
- $M\left(\overline{D^{*}} D^{*} 0\right)=4,013.98 \mathrm{MeV}, M\left(D^{*}+D^{*}\right)=4,020.58 \mathrm{MeV}$

Table 4: Selected $\psi(3 S)$ decays.

Decay Mode	Branching Rate
$D * \bar{D} *$	
$D_{s}^{+} D_{s}^{-} *+c . c$.	
$D D *$	$\frac{\Gamma(D * \bar{D}+c . c .)}{\Gamma(D * \bar{D} *}=0.34 \pm 0.14 \pm 0.05$
$D \bar{D}$	$\frac{\Gamma(D * \bar{D}+\text { c.c. })}{\Gamma(D \bar{D} *)}=0.02 \pm 0.03 \pm 0.02$
$\psi(1 S) \eta$	$(5.2 \pm 0.7) \times 10^{-3}$

The Threshold Region

- Effects of heavy-light meson virtual loops
- Shift masses and properties of states near threshold. Because the lowest quarkonium states feel more of the Coulomb interaction they are least affected by the large loop effects.
- Lattice calculations (some already in hand) could provide valuable information on the meson loop effects. The variation of quarkonium masses as a function of light quark masses (physical values $<\mathrm{m}_{\mathrm{q}}<\Lambda_{\mathrm{Q} C D}$) is directly related to the meson loops contributions.
- Couplings are independent of the particular mesons in the loop within a heavy-light multiplet (up to CG coefficients) and are approximately SU(3) flavor invariant.
- SU(3) breaking and HQS Spin breaking in quarkonium masses and transitions are induced by the mass splittings of physical heavy-light mesons. These effects are only large near the relevant threshold. For example isospin splitting is only important for the $\mathrm{X}(3872)$.

Known XYZ States

- Notation
- Y denotes states observed directly in the charm contribution to $\mathrm{e}^{+} \mathrm{e}^{-}-\mathrm{>}$ hadrons:
$\Rightarrow \quad \mathrm{JPC}=1^{-}$and $\mathrm{I}=0$
- $\mathrm{Y}_{\mathrm{c}}(4260), \mathrm{Y}_{\mathrm{c}}(4360), \mathrm{Y}_{\mathrm{c}}(4650)$
$-Z$ denotes states with $\mathrm{I}=1$

$-Z^{+}{ }^{+}(3885), Z^{+}{ }^{+}(4025)$
$Z^{+}{ }^{+}(10610), Z^{+}{ }^{+}(10650)$

- $\mathrm{Z}^{+}{ }_{\mathrm{c}}(4430)$
- X denotes anything else
- $\mathrm{X}_{\mathrm{c}}(3872), \ldots \quad \Rightarrow$ see PDG table

- Pentaquarks: $\mathrm{X}(4450)\left(\mathrm{JP}=5 / 2^{+}\right), \ldots$

Additional XYZ Candidates

- From PDG - other X states with undetermined quantum numbers

State	$m(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (mode)	Experiment (\# ${ }^{(\#)}$	Year	Status
$\chi_{c 0}(3915)$	3917.4 ± 2.7	28_{-9}^{+10}	0^{++}	$B \rightarrow K(\omega J / \psi)$	Belle [66] (8.1), BABAR [67,65] (19)	2004	OK
$\chi_{c 2}(2 P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$e^{+} e^{-} \rightarrow e^{+} e^{-}(D \bar{D})$	Belle [68] (5.3), BABAR [69,45] (5.8)	2005	OK
				$e^{+} e^{-} \rightarrow e^{+} e^{-}(\omega J / \psi)$	Belle [70] (7.7), BABAR [45] (np)		
$X(3940)$	3942_{-8}^{+9}	37_{-17}^{+27}	??+	$e^{+} e^{-} \rightarrow J / \psi\left(D \bar{D}^{*}\right)$	Belle [71] (6.0)	2007	NC!
				$e^{+} e^{-} \rightarrow J / \psi(\ldots)$	Belle [21] (5.0)		
$Y(4008)$	4008_{-49}^{+121}	226 ± 97	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right)$	Belle [72] (7.4)	2007	NC!
$Z_{1}(4050)^{+}$	4051_{-43}^{+24}	82_{-55}^{+51}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [73] (5.0), BABAR [74] (1.1)	2008	NC!
$Y(4140)$	4145.8 ± 2.6	18 ± 8	? ${ }^{+}$	$B^{+} \rightarrow K^{+}(\phi J / \psi)$	CDF [75,76](5.0), Belle [77](1.9), LHCb [78](1.4), CMS [79] (> 5)	2009	NC!
					D0 [80](3.1)		
$X(4160)$	4156_{-25}^{+29}	$139{ }_{-65}^{+113}$? ${ }^{+}$	$e^{+} e^{-} \rightarrow J / \psi\left(D \bar{D}^{*}\right)$	Belle [71] (5.5)	2007	NC!
$Z_{2}(4250)^{+}$	4248_{-45}^{+185}	177_{-72}^{+321}	?	$B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$	Belle [73] (5.0), BABAR [74] (2.0)	2008	NC!
$Y(4260)$	$4263{ }_{-9}^{+8}$	95 ± 14	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right)$	BABAR [81,82] (8.0)	2005	OK
					CLEO [83] (5.4), Belle [72] (15)		
				$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right)$	CLEO [84] (11)		
				$e^{+} e^{-} \rightarrow\left(\pi^{0} \pi^{0} J / \psi\right)$	CLEO [84] (5.1)		
				$e^{+} e^{-} \rightarrow\left(f_{0}(980) J / \psi\right)$	BaBar [85] (np), Belle [57] (np)	2012	OK
				$e^{+} e^{-} \rightarrow\left(\pi^{-} Z_{c}(3900)^{+}\right)$	BESIII [56](8), Belle [57] (5.2)	2013	OK
				$e^{+} e^{-} \rightarrow(\gamma X(3872))$	BESIII [86] (5.3)	2013	NC!
$Y(4274)$	4293 ± 20	35 ± 16	$?^{?+}$	$B^{+} \rightarrow K^{+}(\phi J / \psi)$	$\begin{gathered} \text { CDF [76](3.1), LHCb [78](1.0), } \\ \text { CMS }[79](>3), \text { D0 }[80](\mathrm{np}) \end{gathered}$	2011	NC!
$X(4350)$	$4350.6_{-5.1}^{+4.6}$	$13.3_{-10.0}^{+18.4}$	$0 / 2^{++}$	$e^{+} e^{-} \rightarrow e^{+} e^{-}(\phi J / \psi)$	Belle [87] (3.2)	2009	NC!
$Y(4360)$	4361 ± 13	74 ± 18	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	BABAR [88] (np), Belle [89] (8.0)	2007	OK
$Z(4430)^{+}$	4458 ± 15	166_{-32}^{+37}	1^{+-}	$\bar{B}^{0} \rightarrow K^{-}\left(\pi^{+} J / \psi\right)$	Belle $[90,91,92]$ (6.4), BaBar [93](2.4)	2007	OK
				$B^{0} \rightarrow \psi(2 S) \pi^{-} K^{+}$	LHCb [94](13.9)		
$X(4630)$	4634_{-11}^{+9}	92_{-32}^{+41}	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-}\right)$	Belle [95] (8.2)	2007	NC!
$Y(4660)$	4664 ± 12	48 ± 15	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	Belle [89] (5.8)	2007	NC!
$\Upsilon(10860)$	10876 ± 11	55 ± 28	1^{--}	$e^{+} e^{-} \rightarrow\left(B_{(s)}^{(*)} \bar{B}_{(s)}^{(*)}(\pi)\right)$	PDG [96]	1985	OK
				$e^{+} e^{-} \rightarrow(\pi \pi \Upsilon(1 S, 2 S, 3 S))$	Belle $[97,62,63](>10)$	2007	OK
				$e^{+} e^{-} \rightarrow\left(f_{0}(980) \Upsilon(1 S)\right)$	Belle $[62,63](>5)$	2011	OK
				$e^{+} e^{-} \rightarrow\left(\pi Z_{b}(10610,10650)\right)$	Belle $[62,63](>10)$	2011	OK
				$e^{+} e^{-} \rightarrow(\eta \Upsilon(1 S, 2 S))$	Belle [98] (10)	2012	OK
				$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} \Upsilon(1 D)\right)$	Belle [98](9)	2012	OK
$Y_{b}(10888)$	10888.4 ± 3.0	$30.7_{-7.7}^{+8.9}$	1^{--}	$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} \Upsilon(n S)\right)$	Belle [99](2.3)	2008	NC!

$Y(4260)$

- $\mathrm{Y}(4260)$ - not standard charmonium state. $\mathrm{JPC}=1^{--} \mathrm{M}=4259 \pm 9 \quad \Gamma=120 \pm 12 \mathrm{MeV}$
- Decays observed: $\quad J / \psi \pi^{+} \pi^{-}$

$$
J / \psi f_{0}(980), \quad f_{0}(980) \rightarrow \pi^{+} \pi^{-}
$$

$$
X(3900)^{ \pm} \pi^{\mp}, X^{ \pm} \rightarrow J / \psi \pi^{ \pm}
$$

$$
J / \psi \pi^{0} \pi^{0}
$$

$$
J / \psi K^{+} K^{-}
$$

$$
X(3872) \gamma
$$

1. Charmonium hybrid

- Many models:

2. D_{1} D molecule

3. Hadrocharmonium
4. Tetraquark (ccss)
5. Cusp/nonresonance

ZHU S L. Phys. Lett. B, 2005, 625: 212
Kou E and Pene O. Phys. Lett. B, 2005, 631: 164 Close F E and Page P R. Phys. Lett. B, 2005, 628: 215 DING G J, Zhu J J and YAN M L. Phys. Rev. D, 2008, 77: 014033
Ding G J. Phys. Rev. D, 2009, 79: 014001
WANG Q, Hanhart C and ZHAO Q. Phys. Rev. Lett., 2013, 111: 132003
Voloshin M B. Prog. Part. Nucl. Phys., 2008, 61: 455 S. Dubynskiy and Voloshin M B. Phys. Lett. B, 2008, 666: 344 LI X and Voloshin M B. Phys. Rev. D, 2013, 588: 034012

Maiani L, Riquer V, Piccinini F and Polosa A D. Phys. Rev D, 2005, 72: 031502

Beveren E van and Rupp G. arXiv:0904.4351 [hep-ph]
Beveren E van and Rupp G. Phys. Rev. D, 2009, 79: 111501 Beveren E van, Rupp G and Segovia J. Phys. Rev. Lett., 2010, 105102001
CHEN D Y, HE J and LIU X. Phys. Rev. D, 2011, 83054021

- Lattice results from the hadron spectroscopy collaboration suggest the possibility of a hybrid
- HQS expectations require to see an analog state in the bottomonium system
- 1, Using the static potential of the excited string Π_{u} : Hybrid state should be $\sim 10,870 \mathrm{MeV}$
- 2. At threshold of $B_{1} B: 11,000 \mathrm{MeV}$
- 3. Deeper bound systems :

Charmonium on the lattice

- L. Liu et al (HSC) [arXiv:1204.5425]

X(3872)

- $\mathrm{X}(3872)-\mathrm{JPC}=1^{++} \mathrm{M}=3871.69 \pm 0.16 \pm 0.19 \Gamma<1.2 \mathrm{MeV}$ from J / ψ mim mode
- Decays observed:

$$
\begin{array}{lll}
\pi^{+} \pi^{-} J / \psi(1 S) & >2.6 \% & \\
\rho^{0} J / \psi(1 S) & & \text { large Isospin violation } \\
\omega J .9 \% & \\
D^{0} \bar{D}^{0}(1 S) & >32 \% & \\
\bar{D}^{*} \pi^{0} D^{0} & >24 \% & \\
\gamma \psi(2 S) & {[a]>3.0 \%} &
\end{array}
$$

$$
\frac{\mathcal{B}(\mathrm{X}(3872) \rightarrow \psi(2 \mathrm{~S}) \gamma)}{\mathcal{B}(\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \gamma)}=2.46 \pm 0.64 \pm 0.29
$$

suggests 2P state
$-M_{x}-M_{D}-M_{D^{*}}=-0.11 \pm 0.23 \mathrm{MeV}$
suggests molecule

- Two primary models:

1. $\mathrm{X}_{\mathrm{c}}{ }^{\prime}\left(2^{3} \mathrm{P}_{1}\right)$ state
2. $\mathrm{D}^{0} \overline{\mathrm{D}}^{0 *}$ molecule

M. Suzuki, hep-ph/0307118.

DeRujula, Georgi, Glashow, PRL 38(1997)317
F. Close and P. Page, Phys. Lett. B578 (2004) 119
M. Voloshin, Phys. Letts. B579 (2004) 316.
E. Braaten [arXiv1503.04791]

- Mixed state with sizable quarkonium component likely.
- For LQCD: Where is the $\chi_{c o}{ }^{\prime}\left(2^{3} P_{0}\right)$ state?

X(3872)

- B $\rightarrow X(3872) K->\left(D^{0} \bar{D}^{*}\right) K$
- Strong peaking at threshold for S-wave observed experimentally.
B. A. Galloway, P. Knecht, J. Koponen, C. T. H. Davies, and G. P. Lepage, PoS LATTICE2014, 092 (2014), 1411.1318.
S. Prelovsek and L. Leskovec, Phys.Rev.Lett. 111, 192001 (2013), 1307.5172.

Fermilab Lattice, MILC, S.-h. Lee, C. DeTar, H. Na, and D. Mohler, (2014) 1411.1389.
M. Padmanath, C. B. Lang, and S. Prelovsek, Phys. Rev. D92, 034501 (2015), 1503.03257.

Belle Phys.Rev. D81 (2010) 031103

- Suggests there is a significant ($\overline{\mathrm{c}}$) component of the $\mathrm{X}(3872)$
- No pole observed in the I = 1 channel.
- Lattice calculations:
- `A pole appears just below threshold in the $J P C=1^{++} I=0$ channel.
- But requires both the (Cc) and the $\mathrm{D} \overline{\mathrm{D}}^{*}$ components.
- $\quad X_{b}(10604)$??
- No isospin breaking: X is $\mathrm{I}=0=>$ G-parity forbids the decay $X->\pi \pi \gamma(1 S)$.
- Dominate decay X -> $\omega \curlyvee(1 S)$
- $\mathrm{M}\left(\mathrm{X}_{\mathrm{b} 1}(3 \mathrm{P})\right)-\mathrm{M}(\mathrm{B})-\mathrm{M}\left(\mathrm{B}^{*}\right) \approx-75 \mathrm{MeV}$
- So the (bb) state is decoupled.
- Expect no analogy of the $\mathrm{X}(3872)$ in the bottomonium system

arXiv:1503.03257

FIG. 5. The spectrum of states (Eq. (11)) with $J^{P C}=1^{++}$ and quark content $\bar{c} c(\bar{u} u+\bar{d} d) \& \bar{c} c$. (i) Optimized basis (without $O_{17}^{M M}$), (ii) optimized basis without $\bar{c} c$ operators (and without $O_{17}^{M^{M}}$) and (iii) basis with only $\bar{c} c$ operators. Note that candidate for $X(3872)$ disappears when removing $\bar{c} c$ operators although diquark-antidiquark operators are present in the basis, while it is not clear to infer on the dominant nature of this state just from the third panel. The $O_{17}^{M M}=\chi_{c 1}(0) \sigma(0)$ is excluded from the basis to achieve better signals and clear comparison.

Hadronic Transitions Above Threshold

- With BaBar, BES III, LHCb, BELLE and (CMS, ATLAS, CDF/DO) many new details of hadronic transitions have been observed.
- A clearer theoretical understanding hadronic transitions for quarkonium-like states above threshold should now be possible.
- However there are many the questions which arise as well:
- The QCD Multipole Expansion fails above threshold. Why and how?
- What are the remaining constraints of Heavy Quark Symmetry?
- What explains the large rate of transitions for some states above threshold?
- Can the pattern of transitions be understood?
- Can detailed predictions be made?
- First let's look at the details of the transitions.

Hadronic Transitions Above Threshold

- Bottomonium systems:
- $\mathbf{Y}(4 \mathrm{~S})$
$-\mathrm{M}=10,579.4 \pm 1.2 \mathrm{MeV} \Gamma=20.5 \pm 2.5 \mathrm{MeV}$;
- Open decay channels:
- $M\left(B^{+} B^{-}\right)=10,578.52 \mathrm{MeV}, \quad M\left(B^{0} \bar{B}^{0}\right)=10,579.16 \mathrm{MeV}$
- Essentially no isospin breaking in the masses.
- Normal pattern of 2π decays, large η decays:

Table 1: Selected $\Upsilon(4 S)$ decays.

Decay Mode	Branching Rate
$B^{+} B^{-}$	$(51.4 \pm 0.6) \%$
$B^{0} \bar{B}^{0}$	$(48.6 \pm 0.6) \%$
total $B \bar{B}$	$>96 \%$
$\Upsilon(1 S) \pi^{+} \pi^{-}$	$(8.1 \pm 0.6) \times 10^{-5}$
$\Upsilon(2 S) \pi^{+} \pi^{-}$	$(8.6 \pm 1.3) \times 10^{-5}$
$h_{b}(1 P) \pi^{+} \pi^{-}$	$($not seen $)$
$\Upsilon(1 S) \quad \eta$	$(1.96 \pm 0.28) \times 10^{-4}$
$h_{b}(1 P) \quad \eta$	$(1.83 \pm 0.23) \times 10-4$

$$
\begin{array}{ll}
& \\
\cline { 1 - 1 } & \\
& \\
& \text { SU(3) partial rate }=1.66 \pm 0.23 \mathrm{keV} \\
\rightarrow \text { partial rate }=4.02 \pm 0.89 \mathrm{keV} \\
& \text { HQS violating }
\end{array}
$$

Heavy Quark Spin Symmetry

- Large heavy quark spin symmetry breaking induced by the B^{*} - B mass splitting. [Same for $D^{*}-D$ and $D_{s}{ }^{*}-D_{s}$]
- Coupled channel calculations show a large virtual B B component to the $\mathbf{Y}(4 \mathrm{~S})$. This accounts for the observed violation of the spin-flip rules of the usual QCDME.
$-J^{P C}=1^{-}$in terms of $B\left(^{*}\right), B\left({ }^{*}\right)$ mass eigenstates:
Voloshin [arXiv:1201.1222]

$$
\begin{aligned}
& \text { - } J_{s L B}=\text { jsLb }+\mathrm{L} \\
& B \bar{B}: \quad \frac{1}{2 \sqrt{3}} \psi_{10}+\frac{1}{2} \psi_{11}+\frac{\sqrt{ } 5}{2 \sqrt{3}} \psi_{12}+\frac{1}{2} \psi_{01} ; \\
& \frac{B^{*} \bar{B}-\bar{B}^{*} B}{\sqrt{2}}: \quad \frac{1}{\sqrt{3}} \psi_{10}+\frac{1}{2} \psi_{11}-\frac{\sqrt{5}}{2 \sqrt{3}} \psi_{12} ; \\
& \left(B^{*} \bar{B}^{*}\right)_{S=0}: \quad-\frac{1}{6} \psi_{10}-\frac{1}{2 \sqrt{3}} \psi_{11}-\frac{\sqrt{5}}{6} \psi_{12}+\frac{\sqrt{3}}{2} \psi_{01} ; \\
& \left(B^{*} \bar{B}^{*}\right)_{S=2}: \quad \frac{\sqrt{5}}{3} \psi_{10}-\frac{\sqrt{5}}{2 \sqrt{3}} \psi_{11}+\frac{1}{6} \psi_{12} . \\
& \psi_{10}=1_{H}^{--} \otimes 0_{S L B}^{++}, \quad \psi_{11}=1_{H}^{--} \otimes 1_{S L B}^{++}, \quad \psi_{12}=1_{H}^{--} \otimes 2_{S L B}^{++}, \quad \text { and } \quad \psi_{01}=0_{H}^{-+} \otimes 1_{S L B}^{+-} .
\end{aligned}
$$

$-I^{G}\left(J^{P}\right)=1^{-}\left(1^{+}\right)$

$$
\begin{aligned}
\text { - S-wave }(\mathrm{L}=0) & \left(B^{*} \bar{B}-\bar{B}^{*} B\right) \sim \frac{1}{\sqrt{2}}\left(0_{H}^{-} \otimes 1_{S L B}^{-}+1_{H}^{-} \otimes 0_{S L B}^{-}\right) \\
& B^{*} \bar{B}^{*} \sim \frac{1}{\sqrt{2}}\left(0_{H}^{-} \otimes 1_{S L B}^{-}-1_{H}^{-} \otimes 0_{S L B}^{-}\right),
\end{aligned}
$$

Strange heavy-light meson thresholds

- What about $\operatorname{SU}(3)$?
- If there was no $\operatorname{SU}(3)$ breaking: only $\mathrm{SU}(3)$ singlet light hadron states could be produced. So single light hadron production (except the η^{\prime}) would be forbidden.

$$
\begin{aligned}
U & =\exp \left(i \gamma_{5} \frac{\varphi_{a} \lambda_{a}}{f_{\pi}}\right) \\
\varphi_{a} \lambda_{a} & =\sqrt{2}\left(\begin{array}{ccc}
\frac{\eta}{\sqrt{6}}+\frac{\pi^{0}}{\sqrt{2}}, & \pi^{+}, & K^{+} \\
\pi^{-}, & \frac{\eta}{\sqrt{6}}-\frac{\pi^{0}}{\pi^{5}}, & K^{0} \\
K^{-}, & \bar{K}^{0}, & -\frac{2 \eta}{\sqrt{6}}
\end{array}\right)
\end{aligned}
$$

- BUT: SU(3) breaking is induced by the mass splitting of the ($\mathrm{Q} q$) mesons with $\mathrm{q}=\mathrm{u}, \mathrm{d}$ (degenerate if no isospin breaking) and $\mathrm{q}=\mathrm{s}$.
- These splittings are large ($\sim 100 \mathrm{MeV}$) so there is large $\mathrm{SU}(3)$ breaking in the threshold dynamics.
- This leads to large effects in the threshold region.
- This greatly enhances the final states with $\eta+(\bar{Q} Q)$.

Yu.A. Simonov and A.I. Veselov [arXiv:0810.0366]

- Similarly important in ω and ϕ production.

Hadronic Transitions Above Threshold

- $\mathbf{Y}(5 \mathrm{~S})$ hadronic transitions
$-\mathrm{M}=10,876 \pm 11 \mathrm{MeV} \Gamma=55 \pm 26 \mathrm{MeV}$;
- Open Ground State ($\mathrm{j}={ }^{1 / 22^{-}}$) Decay Channels:
- $M(B \bar{B})=10,559 \mathrm{MeV}, M\left(B^{*} \bar{B}\right)=10,604 \mathrm{MeV}, M\left(B^{*} \bar{B}^{*}\right)=10,650 \mathrm{MeV}$
- $M\left(B_{s} \bar{B}_{s}\right)=10,734 \mathrm{MeV}, \mathrm{M}\left(\mathrm{B}^{*}{ }_{\mathrm{s}} \overline{\mathrm{B}}_{s}\right)=10,782 \mathrm{MeV}, \mathrm{M}\left(\mathrm{B}^{*}{ }_{\mathrm{s}} \bar{B}^{*}{ }_{s}\right)=10,831 \mathrm{MeV}$
- Also some P state ($\left(\mathrm{jp}=1 / 2^{+}\right.$) Decay Channels are essentially open
- $M\left(B\left[1^{1 / 2}+P_{0}\right] \bar{B}^{*}\right)=11,055 \mathrm{MeV} \quad$ (notation: $n^{\mathrm{j}} \mathrm{L}_{\mathrm{J}}$)
- $M\left(B\left[1^{1 / 2+} P_{1}\right] \bar{B}\right)=11,045 \mathrm{MeV}, \quad M\left(B\left[1^{1 / 2}+P_{1}\right] \bar{B}^{\star}\right)=11,091 \mathrm{MeV}$
- I have assumed: $\Gamma\left(B\left[1^{1 / 2+} \mathrm{P}_{\{0,1]}\right]\right) \sim 300 \mathrm{MeV}$ (wide) $\Gamma\left(\mathrm{B}\left[1^{\left.3 / 2+P_{\{1,2\}}\right]}\right)\right.$ are narrow

B

B_{s}

Hadronic Transitions Above Threshold

- $\mathbf{Y}(5 \mathrm{~S})$ hadronic transitions
$-\mathrm{M}=10,876 \pm 11 \mathrm{MeV} \Gamma=55 \pm 26 \mathrm{MeV}$;
- Open Ground State ($\mathrm{j} \mathrm{p}=1 / 2^{-}$) Decay Channels:
- $M(B B)=10,559 \mathrm{MeV}, M\left(B^{*} B\right)=10,604 \mathrm{MeV}$,
- $M\left(B^{*} B^{*}\right)=10,650 \mathrm{MeV}$
- $M\left(B_{s} B_{s}\right)=10,734 \mathrm{MeV}, M\left(B^{*}{ }_{s} B_{s}\right)=10,782 \mathrm{MeV}$,
- $\mathrm{M}\left(\mathrm{B}^{*}{ }_{\mathrm{s}} \mathrm{B}^{*}{ }_{\mathrm{s}}\right)=10,831 \mathrm{MeV}$
- Also some P state ($\mathrm{j}^{\mathrm{p}}=1 / 2^{+}$) decay channels are essentially open
- $M\left(B\left[1^{1 / 2+}+P_{0}\right] B^{*}\right)=11,055 \mathrm{MeV}$
$\Upsilon(5 S)$ nearby thresholds

- $M\left(B\left[1^{1 / 2}+P_{1}\right] B\right)=11,045 \mathrm{MeV}$,
- $\mathrm{M}\left(\mathrm{B}\left[1^{1 / 2+} \mathrm{P}_{1}\right] \mathrm{B}^{*}\right)=11,091 \mathrm{MeV}$
- I have assumed: $\Gamma\left(B\left[1^{1 / 2+} \mathrm{P}_{\{0,1\}}\right]\right) \sim 300 \mathrm{MeV}$ (wide) $; \Gamma\left(B\left[1^{3 / 2+} \mathrm{P}_{\{1,2\}}\right]\right)<$ few MeV (narrow)

Low-lying thresholds

Low-lying (Narrow) Bottom Meson Pair Thresholds

Hadronic Transitions Above Threshold

$-\Upsilon(5 S)$ decay pattern:
Table 2: Selected $\Upsilon(5 S)$ decays.

Decay Mode	Branching Rate	Decay Mode	Branching Rate	\rightarrow partial rate $=0.29 \pm 0.13 \mathrm{MeV}$
$B \bar{B}$	(5.5 $\pm 1.0) \%$	$\Upsilon(1, S) \pi^{+} \pi^{-}$	$(5.3 \pm 0.6) \times 10^{-3}$	
$B \bar{B}^{*}+$ c.c.	$(13.7 \pm 1.6) \%$	$\Upsilon(2 S) \pi^{+} \pi^{-}$	$(7.8 \pm 1.3) \times 10^{-3}$	
$B^{*} \bar{B}^{*}$	$(38.1 \pm 3.4) \%$	$\Upsilon(3 S) \pi^{+} \pi^{-}$	$\left(4.8{ }_{-1.7}^{+1.9}\right) \times 10^{-3}$	
		$\Upsilon(1, S) K \bar{K}$	$(6.1 \pm 1.8) \times 10^{-4}$	
$B_{s} \bar{B}_{s}$	$(5 \pm 5) \times 10^{-3}$	$h_{b}(1 P) \pi^{+} \pi^{-}$	$\left(3.5{ }_{-1.3}^{+1.0}\right) \times 10^{-3}$	
$B_{s} \bar{B}_{s}^{*}+$ c.c.	(1.35 $\pm 0.32) \%$	$h_{b}(1 P) \pi^{+} \pi^{-}$	$\left(6.0{ }_{-1.8}^{+2.1}\right) \times 10^{-3}$	
$B_{s}^{*} \bar{B}_{s}^{*}$	$(17.6 \pm 2.7) \%$	$\chi_{61} \quad \pi^{+} \pi^{-} \pi^{0}$ (total)	$(1.85 \pm 0.33) \times 10^{-3}$	\rightarrow partial rate $=86 \pm 41 \mathrm{keV}$
$B \bar{B} \pi$	$(0.0 \pm 1.2) \%$	$\chi_{b 2} \quad \pi^{+} \pi^{-} \pi^{0}$ (total)	$(1.17 \pm 0.30) \times 10^{-3}$	
$B^{*} \bar{B} \pi+B \bar{B}^{*} \pi$	$(7.3 \pm 2.3) \%$	$\chi_{b 1} \omega$	$(1.57 \pm 0.32) \times 10^{-3}$	
$B^{*} \bar{B}^{*} \pi$	$(1.0 \pm 1.4) \%$	$\chi_{62} \quad \omega$	$(0.60 \pm 0.27) \times 10^{-3}$	
$B \bar{B} \pi \pi$	< 8.9%	$\Upsilon(1 S) \eta$	$(0.73 \pm 0.18) \times 10^{-3}$	
		$\Upsilon(2 S) \eta$	$(2.1 \pm 0.8) \times 10^{-3}$	
		$\Upsilon(1 D) \eta$	$(2.8 \pm 0.8) \times 10^{-3}$	\rightarrow partial rate $=0.15 \pm 0.08 \mathrm{MeV}$
total $B \bar{B} \mathrm{X}$	$\left(76.2{ }_{-4.0}^{+2.7}\right) \%$			

- Very large 2π hadronic transitions [>100 times $\mathbf{Y (4 S)}$ rates]
- Very large η (single light hadron) transitions. Related to nearby $B_{s}{ }^{*} B_{s}{ }^{*}$ threshold?

$$
Z_{b} \pm(10,610) \text { and } Z_{b^{ \pm}}(10,650)
$$

- BELLE observed two new charged states in the $Y(5 S)->Y(n S)+\pi^{+\pi}(n=1,2,3)$ and the $Y(5 S)->$ $h_{b}(n P)+\pi+\pi(n=1,2)$

TABLE 1. Masses, widths, and relative phases of peaks observed in $h_{b} \pi$ and $\Upsilon \pi$ channels, from fits described in text.

	$h_{b}(1 \mathrm{P}) \boldsymbol{\pi}^{ \pm} \boldsymbol{\pi}^{\mp}$	$h_{b}(2 \mathrm{P}) \boldsymbol{\pi}^{ \pm} \boldsymbol{\pi}^{\mp}$	$\Upsilon(1 S) \pi^{ \pm} \pi^{\mp}$	$\Upsilon(2 S) \pi^{ \pm} \pi^{\mp}$	$\Upsilon(3 S) \boldsymbol{\pi}^{ \pm} \boldsymbol{\pi}^{\mp}$	Average
$M_{1}\left(\mathrm{MeV} / c^{2}\right)$	$10605.1 \pm 2.2{ }^{+3.0}$	$10596 \pm 7_{-2}^{+5}$	$10609 \pm 3 \pm 2$	$10616 \pm 2_{-4}^{+3}$	$10608 \pm 2_{-2}^{+5}$	10608 ± 2.0
$\Gamma_{1}(\mathrm{MeV})$	$11.44_{-3.9}^{+4.5+2.1}{ }^{2.1}$	16_{-10}^{+16+14}	$22.9 \pm 7.3 \pm 2$	$21.1 \pm 4_{-3}^{+2^{+}}$	$12.2 \pm 1.7 \pm 4$	15.6 ± 2.5
$M_{2}\left(\mathrm{MeV} / c^{2}\right)$	$10654.5 \pm 2.5_{-1.9}^{+1.0}$	$10651 \pm 4 \pm 2$	$10660 \pm 6 \pm 2$	$10653 \pm 2 \pm 2$	$1-652 \pm 2 \pm 2$	10653 ± 1.5
$\begin{gathered} \Gamma_{2}(\mathrm{MeV}) \\ \phi\left({ }^{\circ}\right) \end{gathered}$		12_{-9}^{+11+8} $255_{-72-183}^{+56-12}$	$12 \pm 10 \pm 3$ $53 \pm 61^{+5}$	$16.4 \pm 3.6_{-6}^{+4}$ $-20 \pm 18_{-9}^{+14}$	$10.9 \pm 2.6^{+4}$ $6 \pm 24^{+23}$	14.4 ± 3.2

- Explicitly violates the factorization assumption of the QCDME.
- The $Z_{b}{ }^{ \pm}(10610)$ is a narrow state $(\Gamma=15.6 \pm 2.5 \mathrm{MeV})$ at the $B \bar{B}^{\star}$ threshold (10605).
- The $Z_{b}{ }^{ \pm}(10650)$ is a narrow state $(\Gamma=14.4 \pm 3.2 \mathrm{MeV})$ at the $B^{\star} \bar{B}^{\star}$ threshold (10650).

$\mathrm{Z}_{\mathrm{b}}+(10610) \quad \mathrm{Z}_{\mathrm{b}}+(19650)$

- Strong threshold dynamics
- Strong peaking at threshold BB^{*} and $\mathrm{B}^{*} \mathrm{~B}^{*}$
- Z+(10610) and $\mathrm{Z}+(10650)$ states

$$
\frac{\mathcal{B}\left(Z_{b}(10610) \rightarrow B B^{*}\right)}{\sum_{n} \mathcal{B}\left(Z_{b}(10610) \rightarrow \Upsilon(n S) \pi\right)+\sum_{m} Z_{b}(10610) \rightarrow h_{b}(m P)}=6.2 \pm 0.7 \pm 1.3_{-1.8}^{+0.0}
$$

and

$$
\frac{\mathcal{B}\left(Z_{b}(10650) \rightarrow B^{*} B^{*}\right)}{\sum_{n} \mathcal{B}\left(Z_{b}(10650) \rightarrow \Upsilon(n S) \pi\right)+\sum_{m} Z_{b}(10650) \rightarrow h_{b}(m P)}=2.8 \pm 0.4 \pm 0.6_{-0.4}^{+0.0} .
$$

- HQS implies that the same mechanism applies for charmonium-like states

New Dynamics for Hadronic Transitions

- Contributions of P-state decays:
- $\mathrm{n}^{3} \mathrm{~S}_{1}(\overline{\mathrm{Q} Q})->1^{1 / 2+P_{J}}(\overline{\mathrm{Q}} \mathrm{q})+1^{1 / 2}-\mathrm{S}_{J}(\overline{\mathrm{q}})$:

S-wave decays

$C\left(J, J^{\prime}\right)$	$J^{\prime}=0$	$J^{\prime}=1$
$J=0$	0	$2 / 3$
$J=1$	$2 / 3$	$4 / 3$

- $1^{1 / 2}+P_{J}(\bar{Q} q)->1^{1 / 2}-S_{J}\left(\bar{Q} q{ }^{\prime}\right)+{ }^{1} S_{0}\left(\bar{q} q^{\prime}\right)$ for S-wave $J=J^{\prime}$
- Dominant two body decays of the $\Upsilon(5 S)$

(1) $\quad \mathrm{r}(5 \mathrm{~S})$ strong decay is S -wave
(2) The large width of the $B_{1}(1 P)$ implies that the first π is likely emitted while the $B_{1}(1 P)$ and $B^{(*)}$ are still nearby.
The $B_{1}(1 P)$ decay is S-wave
(3)
(4) Therefore the $B^{(*)} B^{*}$ system is in a relative S -wave and near threshold.
(5) No similar BB system is possible.

New Dynamics for Hadronic Transitions

- A new factorization for hadronic transitions above threshold.
- Production of a pair of heavy-light mesons $\left(\mathrm{H}^{\prime}{ }_{1} \mathrm{H}_{2}\right)$ near threshold. Where $H^{\prime}{ }_{1}=\mathrm{H}_{1}$ or H^{\prime} decays rapidly to $\mathrm{H}_{1}+$ light hadrons (h_{b}), yielding $\mathrm{H}_{1} \mathrm{H}_{2}<h_{b}>$
- Followed by recombination of this ($\mathrm{H}_{1} \mathrm{H}_{2}$) state into a narrow quarkonium state $\left(\phi_{\mathrm{f}}\right)$ and light hadrons $\left(\mathrm{h}_{\mathrm{a}}\right)$.

$$
\begin{aligned}
& \mathcal{M}\left(\Phi_{i} \rightarrow \Phi_{f}+h>=\right. \\
& \left.\sum_{H_{1} H_{2} p_{1}, p_{2}}\left\langle\Phi_{f} h_{a}\right| \mathcal{H}_{I}^{\prime}\left|H_{1}\left(p_{1}\right) \bar{H}_{2}\left(p_{2}\right)\right\rangle \frac{1}{\left(E_{f}+E_{a}\right)-\left(E_{1}+E_{2}\right)}\left\langle H_{1} \bar{H}_{2}\left[h_{b}\right]\right| \mathcal{H}_{I}| | \phi_{i}\right\rangle
\end{aligned}
$$

- The time scale of the production process has to be short relative to the time scale over which $\mathrm{H}_{1} \mathrm{H}_{2}$ rescattering can occur.
- The relative velocity in the $\mathrm{H}_{1} \mathrm{H}_{2}$ system must be low. This is only possible near threshold.
- Here we need not speculate on whether the observed rescattering is caused by a threshold bound state, cusp, or other dynamical effect.
F.K. Gao, C. Hanhart, Q. Wang, Q. Zhao [arXiv:1411.5584]

New Dynamics for Hadronic Transitions

- Production modes
- e+e-
- direct

- Can compute using coupled channel formalism
- B decays
- More quantum numbers accessible

sequential (dominate terms)

New Dynamics for Hadronic Transitions

- Physical Expectations for Threshold Dynamics:

1. There is a large rescattering probability into light hadrons and quarkonium states for two heavy light mesons both near threshold and nearby in position.

2. For direct decays of a quarkonium resonance: New S-wave channels peak rapidly near threshold. This is an expected property of the decay amplitudes into two narrow two heavy mesons and is an explicit feature of coupled channel calculations.
3. For sequential decays: the strong scattering dynamics of two narrow heavy-light mesons is peaked near threshold for S-wave initial states.

Ratios determined by LQCD calculations and judicious use of $S U(3)$.
M. Padmanath, C. B. Lang and S. Prelovsek [arXix:1503.03257]

Heavy Quark Symmetry

- Charmonium-like states: $\mathrm{e}^{+} \mathrm{e}^{-}->\pi^{+} \pi \mathrm{J} / \psi$ at $\sqrt{ } \mathrm{s}=4.26 \mathrm{GeV} \quad[\mathrm{Y}(4260)]$
- $Z_{c}(3885), Z_{c}(4020)$ both have $I^{G}(J P)=1^{-\left(1^{+}\right)}$.
- As expected by HQS between the bottomonium and charmonium systems

$$
M\left(D^{0}+D^{*-}\right)=3.8752
$$

$$
\begin{aligned}
M_{\text {pole }} & =3883.9 \pm 1.5 \pm 4.2 \mathrm{MeV} \\
\Gamma_{\text {pole }} & =24.8 \pm 3.3 \pm 11.0 \mathrm{MeV}
\end{aligned}
$$

$$
M\left(D^{* 0}+D^{*-}\right)=4.0178
$$

vile re r-т.01to
$\frac{\Gamma\left[Z_{c}(3900) \rightarrow D D^{*}\right]}{\Gamma\left[Z_{c}(3900) \rightarrow \pi J / \psi\right]}=6.2 \pm 1.1_{\text {stat }} \pm 2.7_{\text {sys }}$.

BESIII Z. Lin
[arXiv:1504.06102]
$\frac{\Gamma\left[Z_{c}(4025) \rightarrow D^{*} D^{*}\right]}{\Gamma\left[Z_{c}(4020) \rightarrow \pi h_{c}\right]} \sim 9$.

$$
M=4022.9 \pm 0.8 \pm 2.7 \mathrm{MeV}
$$

$\overline{\Gamma\left[Z_{\underline{C}}(3900) \rightarrow \pi J / \psi\right]}=6.2 \pm 1.1_{\text {stat }} \pm 2.1_{\text {sys }}$.

$$
\Gamma=7.9 \pm 2.7 \pm 2.6 \mathrm{MeV}
$$

$$
5
$$

More States and Transitions

- Charmonium systems:
- $\Psi(1 \mathrm{D})$
$-\mathrm{M}=3773.15 \pm 0.33 \mathrm{MeV} \quad \Gamma=27.2 \pm 1.1 \mathrm{MeV}$;
- Open decay channels:
- $M\left(\bar{D}^{0} D^{0}\right)=3,729.72 \mathrm{MeV}, M\left(D^{+} D^{-}\right)=3,739.26 \mathrm{MeV}$
- Normal pattern

Decay Mode	Branching Rate	
$D^{0} \bar{D}^{0}$	$(52 \pm 5) \%$	
$D^{+} D^{-}$	$(41 \pm 4) \%$	
total $D \bar{D}$	$93_{-9}^{+8} \%$	
$\psi(1 S) \pi^{+} \pi^{-}$	$(1.93 \pm 0.28) \times 10^{-3}$	$->$ partial rate $=52.5 \pm 7.6 \mathrm{keV}$
$\psi(1 S) \eta$	$(9 \pm 4) \times 10^{-4}$	

- Puzzle is the total $D \bar{D}$ branching fraction

$\Psi(3770), \Psi(4040)$

- Only ground state heavy-light meson pair decays allowed
$\psi(3770)$ nearby thresholds

Systematics: $\Psi(4040)$ and Below

- Charmonium-like state transitions for masses at or below the $\Psi(3 \mathrm{~S})$

State	Mass Transition Observed	Width Branching Fraction	$J^{P C}$	Comments
$\psi(3770)$	$\begin{gathered} 3773.15 \pm 0.33 \\ \pi^{+} \pi^{-} J / \psi \\ \pi^{0} \pi^{0} J / \psi \\ \eta J / \psi \end{gathered}$	$\begin{gathered} 27.2 \pm 1.0 \\ (1.93 \pm 0.28) \times 10^{-3} \\ (8.0 \pm 3.0) \times 10^{-4} \\ (9 \pm 4) \times 10^{-4} \end{gathered}$	1^{--}	$1^{3} D_{1}$
$X(3872)$	$\begin{gathered} 3871.68 \pm 0.17 \\ \pi^{+} \pi^{-} J / \psi \\ \omega J / \psi \\ D^{0} \bar{D}^{0} \pi^{0} \\ D^{* 0} \bar{D}^{0} \end{gathered}$	$<1.2 \mathrm{MeV}$	1^{++}	large ρ component off shell
X (3915)	$\begin{gathered} 3918.4 \pm 1.9 \\ \omega J / \psi \end{gathered}$	20 ± 5	0^{++}	$2^{3} P_{0}$
$\chi_{c 2}(2 P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$2^{3} \mathrm{P}_{2}$
$Z(3900)^{+}$	$\begin{gathered} 3899.0 \pm 3.6 \pm 4.9 \\ \pi^{+} J / \psi \end{gathered}$	$\begin{gathered} 46 \pm 10 \pm 20 \\ \left(\frac{Z_{c}(3885) \rightarrow D \bar{D}^{*}}{Z_{c} \rightarrow \pi J / \psi}\right)=6.2 \pm 1.1 \pm 2.7 \end{gathered}$	$1+$ 1^{+}	$e^{+} e^{-}(4260) \rightarrow \pi^{+} \pi^{-} J / \psi$
$Z(3900)^{0}$	$\begin{gathered} 3894.8 \pm 2.3 \pm 2.7 \\ \pi^{0} J / \psi \end{gathered}$	$29.2 \pm 3.3 \pm 11$	1^{+}	
X (3940)	$\begin{gathered} 3942 \pm 7 / 6 \pm 6 \\ \omega J / \psi \end{gathered}$	$37 \pm 26 / 15 \pm 8$?	
$Z(4020)^{+}$	$\begin{aligned} & 4022.9 \pm 0.8 \pm 2.7 \\ & 4026.3 \pm 2.6 \pm 3.7 \end{aligned}$	$\begin{gathered} 7.9 \pm 2.7 \pm 2.6 \\ 24.8 \pm 5.6 \pm 7.7 \end{gathered}$	$\begin{aligned} & 1^{+} \\ & 1^{+} \end{aligned}$	$\begin{aligned} e^{+} e^{-}(4260) & \rightarrow \pi^{+} \pi^{-} h_{c} \\ e^{+} e^{-}(4260) & \rightarrow \pi^{ \pm}\left(D^{*} \bar{D}^{*}\right)^{\mp} \end{aligned}$
$\begin{aligned} & Z(4020)^{0} \\ & \psi(4040) \end{aligned}$	$\begin{gathered} 4023.9 \pm 2.2 \pm 3.8 \\ 4039 \pm 1 \\ \eta J / \psi \end{gathered}$	$\begin{gathered} \text { fixed to } Z^{+} \\ 60 \pm 10 \\ (5.2 \pm 0.5 \pm 0.2 \pm 0.5) \times 10^{-3} \end{gathered}$	1^{--}	$\begin{aligned} & I=1 \\ & 3^{3} S_{1} \end{aligned}$

Low-lying thresholds

Low-lying (Narrow) Charm Meson Pair Thresholds

Systematics: $\Psi(4160), \Psi(4415)$

- Many open channels for heavy-light meson pair decays.

Hadronic Transitions Above Threshold

- $\Psi(4 \mathrm{~S})$
$-\mathrm{M}=4421 \pm 4 \mathrm{MeV} \quad \Gamma=62 \pm 20 \mathrm{MeV}$;
- Open decay channels:
- Many

```
Decay Mode Branching Rate
D* \overline{D}+\textrm{cc}\quad\frac{\Gamma(\mp@subsup{D}{}{*}\overline{D})}{\Gamma(\mp@subsup{D}{}{*}\mp@subsup{\overline{D}}{}{*})}=0.17\pm0.25\pm0.03
        D* }\mp@subsup{\overline{D}}{}{*}\quad\mathrm{ seen
        Ds** Deen
DD** (2460) (10\pm4)%
    \etaJ/\psi <6\pm10-3
```


Systematics: $\Psi(4160), \Psi(4415)$

- Charmonium-like state transitions for masses above the $\Psi(3 S)$

State	Mass Transition Observed	Width Branching Fraction	$J^{P C}$	Comments
$X(4140)$	$\begin{gathered} 4148.0 \pm 3.9 \pm 6.3 \\ \phi J / \psi \end{gathered}$	$28 \pm 15 \pm 19$?	
$\begin{aligned} & X(4160) \\ & \psi(4160) \end{aligned}$	$\begin{gathered} 4156 \pm 25 / 20 \pm 15 \\ 4153 \pm 3 \\ \eta J / \psi \end{gathered}$	$\begin{gathered} 139 \pm 111 / 61 \pm 21 \\ 103 \pm 8 \end{gathered}$	$\begin{gathered} ? \\ 1^{--} \end{gathered}$	$2^{3} D_{1}$
$\begin{aligned} & Z(4200)^{+} \\ & Y(4260) \end{aligned}$	$\begin{gathered} 4196_{-29}^{81}{ }_{-13}^{+17} \\ 4250 \pm 9 \\ \pi^{+} \pi^{-} J / \psi \\ \pi^{0} \pi^{0} J / \psi \\ K^{+} K^{-} J / \psi \\ \gamma X(3872) \end{gathered}$	$\begin{gathered} 370 \pm 70{ }_{-132}^{+70} \\ 108 \pm 12 \end{gathered}$	$\begin{gathered} 1^{+} \\ 1^{--} \end{gathered}$	
$X(4350)$	$\begin{gathered} 4350.6 \pm 4.6 / 5.1 \pm 0.7 \\ \phi J / \psi \end{gathered}$	$13 \pm 18 / 9 \pm 4$	$2^{++} / 0^{++}$	$3^{3} P_{2}$
$Y(4360)$	$\begin{gathered} 4337 \pm 6 \pm 3 \\ \pi^{+} \pi^{-} \psi(2 S) \\ \eta J / \psi \\ \pi^{ \pm}\left(D \bar{D}^{*}\right)^{\mp} \\ \pi^{+} \psi(2 S) \end{gathered}$	$103 \pm 9 \pm 5$	1^{--}	
$\begin{aligned} & \psi(4415) \\ & Z(4430)^{+} \end{aligned}$	$\begin{gathered} 4421 \pm 4 \\ 4475 \pm 7_{-25}^{+15} \\ \pi^{+} \psi(2 S) \\ \pi^{+} J / \psi \end{gathered}$	$\begin{gathered} 62 \pm 20 \\ 172 \pm 13+{ }_{-34}^{+37} \end{gathered}$	$\begin{gathered} 1^{--} \\ 1^{+} \end{gathered}$	$4^{3} S_{1}$
$Y(4660)$	$\begin{gathered} 4652 \pm 10 \pm 8 \\ \pi^{+} \pi^{-} \psi(2 S) \\ \eta J / \psi \\ \pi^{ \pm}\left(D \bar{D}^{*}\right)^{\mp} \end{gathered}$	$68 \pm 11 \pm 1$	1^{--}	

Strange heavy-light meson thresholds

- What happens at strange heavy-light meson thresholds?
- There should be threshold enhancements for strange heavy-light meson pair production leading to sizable production of single η and ϕ light hadrons.

- No wide P-states -> no sequential transitions with these states.
$-M\left(D_{s}{ }^{+} D_{s}{ }^{-*}\right)=4,081 \mathrm{MeV}, M\left(D_{s^{+}} D_{s^{-*}}\right)=4,225 \mathrm{MeV}$; $\mathrm{M}\left(3^{3} \mathrm{P}_{1}\right)=4,310 \mathrm{MeV}->$ no analogy of $\mathrm{X}(3872)$
- Direct transitions?
- Narrow $D\left({ }^{1 / 2+P}\right)+D(1 / 2-S)$ thresholds? (and B analogs)
- At higher energies the $D_{s}(2 S)$ wide states could play a role in sequential transitions.

Systematics: Other States

- Same mechanism in B-decays with $2 \mathrm{~S}_{\{0,1\}}\left(\mathrm{D}_{\mathrm{s}}\right)$ states: $\mathrm{Z}^{+}(4430)$ P. Pakhlov [arXiv:1105.2945]
$-D_{s}{ }^{*}(2 S) M=2,709 \pm 4 \mathrm{MeV} \quad \Gamma=117 \pm 13 \mathrm{MeV}$
- $D_{s}(2 S) \quad M=2,610-2660 \mathrm{MeV}$
- Relevant open thresholds:
- $M(D D(2 S))=4,449 \mathrm{MeV} ; \quad M\left(D D^{*}(2 S)\right)=4,519 \mathrm{MeV}$
- $M\left(D^{*} D(2 S)\right)=4,586 \mathrm{MeV} ; M\left(D^{*} D^{*}(2 S)\right)=4,659 \mathrm{MeV}$

P. Pakhlov and T. Uglov
[arXiv:1408.5295]

Summary

- Near threshold of the effects of heavy-light meson loops on quarkonium transiton rates are pronounced.
- Hadronic transition rates are much larger than then usual QCDME.
- The SU(3) breaking and Heavy Quark Spin Symmetry violation seen in these transitions are induced by the HL meson mass differences of nearby threshold
- The factorization assumption fails. Heavy quark and light hadronic dynamics interact strongly due to heavy flavor meson pair (four quark) contributions to the quarkonium wavefunctions.
- A new mechanism, in which the dynamics is factored differently, is purposed. HQS as well as the usual SU(3) and chiral symmetry expectations are recovered for amplitudes. Magnetic transitions not suppressed. The puzzles in η transitions are resolved.
- The known X and Z states are associated with threshold S-wave scattering of narrow HL state meson pairs. The $\mathrm{Y}(4260)$ may be a hybrid state.
- With BES III and LHCb and soon BELLE 2. I expect even more progress in understanding hadronic transitions and XYZ states in the near future.
- Lattice QCD can play an important role in disentangling this situation

Two requests for LQCD

- Calculate the quarkonium spectrum (and transitions) as a function of the light quark masses for masses $\leq \Lambda_{\text {Qcd }}$. This provides model independent insight into the role of meson loops.
- Calculate the behavior of scattering of heavy-light meson pairs in the threshold region.
- Consider S-wave amplitudes
- Include the mixing between two HL mesons and quarkonium + a single light hadron.
- Can use the HQSS and approximate $\mathrm{SU}(3)$ of the amplitudes to greatly simplify the task.
- This is an difficult challenge but initial progress is very encouraging.

Backup Slides

Pentaquarks

- X(4450) F. K. Guo et al [arXiv:1507.04950]
- Resonance is at threshold of $\chi_{c 1} p=3510.66+938.27=4448.93 \mathrm{MeV}$
- Also triangle diagram involving the $\Lambda(1890)$ can give a leading Laudau singularity which would appear at $\chi_{c 1} \mathrm{P}$ threshold.

(a)

(b)
- Purpose tests in: $\Lambda b->K \chi_{c 1} p$ and $Y(1 S)->J / \Psi p \bar{p}$

Decay Model

Decay Amplitudes

Cornell Model:

where
$\left\langle C_{1}\left(\overrightarrow{\mathrm{P}} \lambda_{1}\right) \bar{C}_{2}\left(\overrightarrow{\mathrm{P}} \lambda_{2}\right)\right| H_{I}\left|\psi_{n}\right\rangle=-i(2 \pi)^{-3 / 2} \delta^{3}\left(\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{p}}^{\prime}\right) 3^{-1 / 2} A_{12}\left(\overrightarrow{\mathrm{P}} \lambda_{1} \lambda_{2} ; n\right)$,
$d V(x) / d x=1 / a^{2}+\kappa / x^{2} \rightarrow$ ignoring κ term
similar form as vacuum pair creation (QPC) model

Hence

$$
\Omega_{n L, m L^{\prime}}(W)=\sum_{i} \int_{0}^{\infty} P^{2} d P \frac{H_{n L, m L^{\prime}}^{i}(P)}{W-E_{1}(P)-E_{2}(P)+i 0}
$$

where

Decay Model

$I_{n L}^{l}(P)=\int_{0}^{\infty} d t \Phi(t) R_{n L}\left(t \beta^{-1 / 2}\right) j_{l}\left(\mu_{c} \beta^{-1 / 2} P t\right)$
Key point: The only part of $I(p)$ that depends on the pair production model is the function $\Phi(t)$:
For the $\operatorname{CCCM}(\kappa=0): \quad\left(t=y \sqrt{\beta_{S}}\right)$

$$
\Phi(t)=t e^{-t^{2}}+(\pi / 2)^{1^{2} / 2}\left(t^{2}-1\right) e^{-t^{2} / 2} \operatorname{erf}(t / \sqrt{2})
$$

Using HQET this function $\Phi(t)$ is the same for all final states in a j^{P} multiplet.

Apart from overall light quark mass factors $\Phi(t)$ is approximately $S U(3)$ invariant. So independent of light quark flavor (u, d, s).

One universal function, $\Phi(t)$, determines R_{Q} in the threshold region.

Sample decay amplitudes $I(p)$

Other Decay Structures

- $2{ }^{3} P_{1}(c c)$
- Strong S-wave decay
- Large width attained quickly

Other Decay Structures

- $1^{3} \mathrm{D}_{3}(\mathrm{cc})$
- very small decay width
- How to observe?

- $2^{3} \mathrm{P}_{0}$ (cc)
- wide state but complex structure in line shape.
$-\mathrm{M}\left(\mathrm{D}_{\mathrm{s}^{+}}+\mathrm{D}_{\mathrm{s}}{ }^{-}\right)=3,937 \mathrm{MeV}$
- large SU(3) breaking
- hadronic transitions observable near dip.

Partial Waves for Various Decays

- Decays Near Threshold in e+e-

S	Partial Wave (L) of Two Body Decay to Heavy-Light Meson Pairs					
	$\mathrm{ji}^{\mathrm{P}}=0{ }^{-}\left[\mathrm{n}^{3} S_{1}\right]$	$j_{1}{ }^{P}=1 / 2^{-}$	$j 1^{P}=1 / 2^{+}$	$j 1^{P}=3 / 2^{+}$	$j 1^{P}=3 / 2^{-}$	$j i^{P}=5 / 2^{-}$
	$\mathrm{j} 1^{P}=1 / 2^{-}$	L=1	L=0	$\mathrm{L}=2$	L=1	-
$D\{$	$\mathrm{j}^{\mathrm{P}}=1 / 2^{+}$	L=0	L=1	L=1	$L=2$	-
	$\mathrm{ji}_{1}=3 / 2^{+}$	L=2	L=1	L=1,3	L=0,2	L=1,3
	j1 ${ }^{P}=3 / 2^{-}$	L=1	L=2	$L=0,2$	L=1,3	$L=2,4$
	$j i^{P}=5 / 2^{-}$	-	-	L=1,3	$\mathrm{L}=2,4$	L=1,3,5
	$\mathrm{j}_{1}{ }^{\mathrm{P}}=0{ }^{-}\left[\mathrm{n}^{3} \mathrm{D}_{1}\right]$	$\mathrm{j}^{\mathrm{P}}=1 / 2^{-}$	$\mathrm{j}^{P}=1 / 2^{+}$	$\mathrm{j}_{1}{ }^{\text {P }}=3 / 2^{+}$	$\mathrm{j}^{\mathrm{P}}=3 / 2^{-}$	j $1^{P}=5 / 2^{-}$
	$\mathrm{j}_{1}{ }^{\text {d }}$ = $1 / 2^{-}$	L=1,3	L=2	$L=0,2,4$	L=1,3	$L=1,3,5$
$P\{$	$\mathrm{j}_{1} \mathrm{P}=1 / 2^{+}$	L=2	L=1,3	L=1,3	L=0,2,4	L=0,2,4
	$\mathrm{j}_{1}=3 / 2^{+}$	L=0,2,4	L=1,3	L=1,3,5	L=0,2,4	$L=0,2,4,6$
D $\{$	$\mathrm{j}^{P}=3 / 2^{-}$	L=1,3	$L=0,2,4$	L=0,2,4	$L=1,3,5$	L=1,3,5
	$j i^{P}=5 / 2^{-}$	$\mathrm{L}=1,3,5$	$\mathrm{L}=0,2,4$	$L=0,2$	$L=1,3,5$	$L=1,3$,

Complicated pattern in ΔR_{c}

- $\Psi(3 \mathrm{~S})$ in exclusive channels (2006 CCM)
- At 4.04 GeV:
- $p(D D)=0.77 ; p\left(D^{*}\right)=0.57 ; p\left(D^{*} D^{*}\right)=0.20$
- At 4.00 GeV :
- $p(D D)=0.72 ; p\left(D^{*}\right)=0.49 ; p\left(D^{*} D^{*}\right)=0.0$
- At 3.96 GeV:
luds_3s_1 $\left.\cdots \cdots \cdots \cdots{ }^{*} \cdot \cdots\right)=-$

Decay Couplings

TABLE II: Statistical recoupling coefficients C, defined by Eq. D19 of Ref. [10], that enter the calculation of charmonium decays to pairs of charmed mesons. Paired entries correspond to $\ell=L-1$ and $\ell=L+1$.

State	$D \bar{D}$	$D \bar{D}^{*}$	$D^{*} \bar{D}^{*}$
${ }^{1} \mathrm{~S}_{0}$	$-: 0$	$-: 2$	$-: 2$
${ }^{3} \mathrm{~S}_{1}$	$-: \frac{1}{3}$	$-: \frac{4}{3}$	$-: \frac{7}{3}$
${ }^{3} \mathrm{P}_{0}$	1	$: 0$	$0: 0$
${ }^{3} \mathrm{P}_{1}$	$0: 0$	$\frac{4}{3}: \frac{2}{3}$	$\frac{1}{3}: \frac{8}{3}$
${ }^{1} \mathrm{P}_{1}$	$0: 0$	$\frac{2}{3}: \frac{4}{3}$	$\frac{2}{3}: \frac{4}{3}$
${ }^{3} \mathrm{P}_{2}$	$0: \frac{2}{5}$	$0: \frac{6}{5}$	$\frac{4}{3}: \frac{16}{15}$
${ }^{3} \mathrm{D}_{1}$	$\frac{2}{3}: 0$	$\frac{2}{3}: 0$	$\frac{4}{15}: \frac{12}{5}$
${ }^{3} \mathrm{D}_{2}$	$0: 0$	$\frac{6}{5}: \frac{4}{5}$	$\frac{2}{5}: \frac{8}{5}$
${ }^{1} \mathrm{D}_{2}$	$0: 0$	$\frac{4}{5}: \frac{6}{5}$	$\frac{4}{5}: \frac{6}{5}$
${ }^{3} \mathrm{D}_{3}$	$0: \frac{3}{7}$	$0: \frac{8}{7}$	$\frac{8}{5}: \frac{29}{35}$
${ }^{3} \mathrm{~F}_{2}$	$\frac{3}{5}: 0$	$\frac{4}{5}: 0$	$\frac{11}{35}: \frac{16}{7}$
${ }^{3} \mathrm{~F}_{3}$	$0: 0$	$\frac{8}{7}: \frac{6}{7}$	$\frac{4}{7}: \frac{10}{7}$
${ }^{1} \mathrm{~F}_{3}$	$0: 0$	$\frac{6}{7}: \frac{8}{7}$	$\frac{6}{7}: \frac{8}{7}$
${ }^{3} \mathrm{~F}_{4}$	$0: \frac{4}{9}$	$0: \frac{10}{9}$	$\frac{12}{7}: \frac{46}{63}$
${ }^{3} \mathrm{G}_{3}$	$\frac{4}{7}: 0$	$\frac{6}{7}: 0$	$\frac{22}{63}: \frac{20}{9}$
${ }^{3} \mathrm{G}_{4}$	$0: 0$	$\frac{10}{9}: \frac{8}{9}$	$\frac{2}{3}: \frac{4}{3}$
${ }^{1} \mathrm{G}_{4}$	$0: 0$	$\frac{8}{9}: \frac{10}{9}$	$\frac{8}{9}: \frac{10}{9}$
${ }^{3} \mathrm{G}_{5}$	$0: \frac{5}{11}$	$0: \frac{12}{11}$	$\frac{16}{9}: \frac{67}{99}$

Potential model states

Transitions

Transition	$\Gamma_{\text {partial }}(\mathrm{keV})$ (Experiment)	$\Gamma_{\text {partial }}(\mathrm{keV})$ (KY Model)
$\psi(2 S)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	102.3 ± 3.4	input ($\left\|C_{1}\right\|$)
$\rightarrow J / \psi+\eta$	10.0 ± 0.4	input (C_{3} / C_{1})
$\rightarrow J / \psi+\pi^{0}$	0.411 ± 0.030 [446]	0.64 [522]
$\rightarrow h_{c}(1 P)+\pi^{0}$	$0.26 \pm 0.05[47]$	0.12-0.40 [527]
$\psi(3770)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	52.7 ± 7.9	input (C_{2} / C_{1})
$\rightarrow J / \psi+\eta$	24 ± 11	
$\Upsilon(2 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	5.79 ± 0.49	8.7 [528]
$\rightarrow \Upsilon(1 S)+\eta$	$(6.7 \pm 2.4) \times 10^{-3}$	0.025 [521]
$\Upsilon\left(1^{3} D_{2}\right)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	$0.188 \pm 0.046[63]$	0.07 [529]
$\chi_{b 1}(2 P)$		
$\rightarrow \chi_{b 1}(1 P)+\pi^{+} \pi^{-}$	0.83 ± 0.33 [523]	0.54 [530]
$\rightarrow \Upsilon(1 S)+\omega$	1.56 ± 0.46	
$\chi_{62}(2 P)$		
$\rightarrow \chi_{b 2}(1 P)+\pi^{+} \pi^{-}$	0.83 ± 0.31 [523]	0.54 [530]
$\rightarrow \Upsilon(1 S)+\omega$	1.52 ± 0.49	
$\Upsilon(3 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	0.894 ± 0.084	1.85 [528]
$\rightarrow \Upsilon(1 S)+\eta$	$<3.7 \times 10^{-3}$	0.012 [521]
$\rightarrow \Upsilon(2 S)+\pi^{+} \pi^{-}$	0.498 ± 0.065	0.86 [528]
$\Upsilon(4 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	1.64 ± 0.25	4.1 [528]
$\rightarrow \Upsilon(1 S)+\eta$	4.02 ± 0.54	
$\rightarrow \Upsilon(2 S)+\pi^{+} \pi^{-}$	1.76 ± 0.34	1.4 [528]

Heavy quarkonium: progress, puzzles, and opportunities
N. Brambilla et.al. [arXiv:1010.5827]

Determining the Hybrid Potentials

- Putting the ends together
- Toy model - minimal parameters

$$
V_{n}(R)=\frac{\alpha_{s}}{6 R}+\sigma R \sqrt{1+\frac{2 \pi}{\sigma R^{2}}\left(n(R)-\frac{1}{24}(d-2)\right)}+V_{0} \quad(n>0)
$$

$$
V_{\Sigma_{g}^{+}}(R)=-\frac{4 \alpha_{s}}{3 R}+\sigma R+V_{0} \quad(n=0)
$$

Fixes $M c=1.84 \mathrm{GeV}, \sqrt{ } \sigma=.427 \mathrm{GeV}, \alpha_{\mathrm{s}}=0.39$

$$
\begin{aligned}
& n(R)=[n] \quad \text { (string level) if no level crossing } \\
& {\left[n-2 \tanh \left(R_{0} / R\right)\right] \text { for } \sum \text { u potential }(n=3)}
\end{aligned}
$$

FIG. 2: Short-distance degeneracies and crossover in the spectrum. The solid curves are only shown for visualization. The dashed line marks a lower bound for the onset of mixing effects with glueball states which requires careful interpretation.

Spectrum of Low-Lying Hybrid States

- Only interested in states below 4.8 GeV for cc system.
higher states will be narrow (DD, glueball+J/ ψ, etc)

Only $\Pi_{u}, \Sigma_{u}{ }^{-}$, and $\Sigma_{g}{ }^{+1}$ systems have sufficiently light states.

Spectrum of Low-Lying Hybrid States

- $\Pi_{u}(1 S) \mathrm{m}=4.132 \mathrm{GeV}$
$\Pi_{u}(2 S) \quad \mathrm{m}=4.465 \mathrm{GeV} \quad \mathrm{JPC}=0^{++}, 0^{-}, 1^{+-}, 1^{-+}$
$\Pi_{u}(1 P) \quad m=4.445 \mathrm{GeV}$
$\Pi_{u}(2 P) \quad \mathrm{m}=4.773 \mathrm{GeV} \quad \mathrm{JPC}=1^{--}, 1^{++}, 0^{-+}, 0^{+-}, 1^{+-}, 1^{-+}, 2^{+-}, 2^{-+}$

- $\Sigma_{g}{ }^{+}(1 \mathrm{~S}) \mathrm{m}=4.547 \mathrm{GeV} \quad \mathrm{JPC}=0^{-+}, 1^{--}$
- The $\Pi_{u}(1 P), \Pi_{u}(2 P)$ and $\Sigma_{g}+^{\prime}(1 S)$ have 1 - states with spacing seen in the $Y(4260)$ system
- $\Sigma_{u} \cdot(1 \mathrm{~S}) \mathrm{m}=4.292 \mathrm{GeV}$

$$
\Sigma_{u}-(1 \mathrm{P}) \quad \mathrm{m}=4.537 \mathrm{GeV} \quad \Sigma_{u}-(2 \mathrm{~S}) \mathrm{m}=4.772 \mathrm{GeV}
$$

- Numerous states with $\mathrm{C}=+$ in the 4.2 GeV region.

Spectrum of Low-Lying Hybrid States

- The spectrum of bottomonium hybrids is completely predicted as well
- For the Π_{u} states

(cC) L	n	mass(GeV)	(bb)	L	n
mass(GeV)					

