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THINGS TO GET OUT OF THE WAY BEFORE THE “REAL” TALK

v

I am very grateful for the opportunity to be here, thanks to the KITP
program organizers and coordinators.

» The program is Lattice Gauge Theory for the LHC and Beyond.

v

Looking at the Wikispace pages, | saw very few talks from the Nuclear
Physics perspective.

v

I will try to provide that perspective.

» An overview will be given instead of specific calculations.
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INTRODUCTION




NUCLEON STRUCTURE

» The internal structure of the nucleon, such as the spin, charge and
current distributions of the nucleon, gives us a (more) detailed view of
the internal landscape of the nucleon.
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Figure 1: Quark transverse charge densities in the proton (left) and neutron
(right). Top: Unpolarized. Bottom: Polarized. Images from:
http://wwwth.kph.uni-mainz.de/556.php




NUCLEON STRUCTURE ON THE LATTICE

» Lattice calculations of the nucleon structure are usually done through
the nucleon matrix elements (N(P")|O(z)| N(P)).

» which can be extracted from the ratios between nucleon three-point
and two-point functions.

Figure 2: Nucleon three-point functions. Connected (left) vs. disconnected (right).

» Disconnected diagrams need to include
Ci(r)=>_ Trl D™*(Z,7)] (1)

Number of matrix inversions o« L x T'= Computation-intensive!
» We often calculate the isovector (p — n) quantities in which the
disconnected diagrams cancel out. 7



CONNECTION TO NEW PHYSICS?

Lattice calculations of nucleon structure can have connections to new
physics in three ways:

» Decipher theory-experiment or experiment-experiment discrepancies,
e.g. proton size puzzle.

» Provide inputs to BSM phenomenology, e.g. nucleon strangeness
content, scalar and tensor charges, ...

» Direct calculations of BSM nucleon matrix elements, e.g. proton decay.



THE PROTON SIZE PUZZLE




THE SHRINKING PROTON (1)

SCIENTIFIC
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Finding could force revisions In the fundamentals of physics

Energy & Sustainability - Evolution = Health~ Mind & Brain - Space~ Technology ~ More,
Home » Nature »

Nature | More Science

The proton shrinks in size

Tiny change in radius has huge implications.

July 7. 2010 | 32
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Blogs / 80beats
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The Incredible Shrinking Proton That Could Rattle
the Physics World

2. arXiv:1101.4073 [pdf, ps, other]
Natural Resolution of the Proton Size Puzzle
G. A. Miller, A. W. Thomas, J. D. Carroll, J. Rafelski

Comments: 6 pages, 1 figure
Subjects: Atomic Physics (physics.atom-ph); High Energy Physics - Phenomenology (hep-ph); Nuclear Experiment (nucl-ex); Nuclear Theory (nucl-th)

3. arXiv:1011.3519 [pdf, ps, other]
Proton size anomaly
Vernon Barger, Cheng-Wei Chiang, Wai-Yee Keung, Danny Marfatia

Comments: 4 pages, 2 figures
Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex); Nuclear Experiment (nucl-ex); Nuclear Theory (nucl-th)

4. arXiv:1008.3861 [pdf, other]
QED is not endangered by the proton's size

A. De Rijula
Comments: Modified following comments in arXiv:1008.4345v1. 4 pages, 2 figures

Journal-ref: Phys.Lett.B693:555-558,2010
Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex); Atomic Physics (physics.atom~ph)

Figure 3: Snapshots in 2011. -



THE SHRINKING PROTON (11)

Possible explanations:

» New Physics:

New particles that interact with only muons but not electrons.
[Karshenboim, McKeen & Pospelov, 2014]
[Carlson & Rislow, 2012] [Batell, McKeen & Pospelov, 2011]

» New interpretation of the e-p data: [Lorenz, Hammer & Meisner 2012]
They reanalyzed the Mainz e-p scattering data using a dispersive
framework, and found a much smaller proton charge radius.
0.84(1) fm [reanalysis of e-p] vs 0.84087(39) fm [muonic hydrogen]

» Errors are underestimated? [Paz, 2012]

What’s the QCD contribution? It's a o=
non-perturbative question. up 2013 1 — 4 electronavg.
= Enters lattice QCD. scatt. dLab

1p 2010 |- ———++———scatt. Mainz

e

H spectroscopy

L L L L I 1 |
08 084 085 086 087 088 059 09
Proton charge radius R | [fm]

Figure 4: The proton charge radius
discrepancies in experiments. [Arlington 2015]
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ELECTROMAGNETIC FORM FACTORS (1)

The proton charge radius can be determined from the proton
electromagentic form factors, defined from the matrix element:

N ()| Fr(@ N (P)) = &7 =Py Py [wa (@) + i 2y ﬂ u(P)
N

> q:P7P7Q2:7q2
F1(Q?), F2(Q*): Dirac and Pauli form factors.

v

» Under one-photon exchange approximation, the elastic e — p scattering
cross section

do 0 Q2 2 2 2 2 0
o} R(Q)+ 15 | Q) + 2R (Q) + Fa(Q)) tan” 5
» Experiments use Rosenbluth separation method:

at fixed @, from 42 vs. tan® £ obtain F1(Q%) and Fa2(@Q?). »



ELECTROMAGNETIC FORM FACTORS (11)

» Sachs electric and magnetic form factors are commonly used:

2
GH@) = R(@)- FzF(@)
Gu(@*) = F(@)+ F(@)
» The proton charge radius is defined as r, = \/(r%), where
dGe(Q”
<7"?E> = _G%WZHO
» Determination of (%) may be Ce

\
model dependent (derivative of an .

unknown function).

» Data of Gp(Q?) typically fit well
with a dipole ansatz.

1

O = e

D

M;r;erv‘tum.Trar:sfer Q? (GeVQI:?)
and
<7"129> = 12/M2. Figure 5: [Janssens et. al. 1966]



» On the lattice we compute the appropriate two- and three-point
correlation functions in order to extract (N, p’, s'| O|N, B, s).

» Nucleon two-point functions:
R PiD] = Y e T Ns(¢,7)Nalt, D)
1
2Ep'/

&>t — e 7% By W= 0| N4 |N, 7, s)(N, 7, 5| N

0)

» Nucleon three-point functions:
CRIE )i (rD; (D) = Z f’ze TNs(¢,7) O(r, §) Na(t, 3))

1 = —7) —Ez(r— —ip-Z
(>0 = gpe T 0w
v 2By

(O[NsIN, B, ') (N, B, ol Nal0) (N, 7, s | O| N, . 5

X



» Proper 3pt-to-2pt ratios give the nucleon MEs.

1/2
Ro(r.p.p) = G5\ (r 0, p) [P =7+ t,p) P (rp) CP(t, )]
Y C’Zpt(tl7p/) Cth(t/ -7+ t7 p,) C’Zpt(7-7 p) CVZpt(t/’p)
— Ro {l F ae (F =) L pe (T DeP)
» |f excited-state contributions are ;
small, this ratio should show a gor s 1
plateau. wos 8
0.7|
A37 4
ch o
By, ]
0

» A constant fit to the plateau
region can then be performed to
determine the relevant matrix
element.

Figure 6: Example plateaus for the
isovector Dirac and Pauli form factors.
[ML 2014]



PRECISION LATTICE QCD REQUIRED

up 2013 + ——e—— electron avg.
— scatt. JLab
up 2010 |« g scatt. Mainz
— o H spectroscopy
05 osd oss - os 0w o8 om0

Proton charge radius R‘h [fm]

» The discrepancy between ep and pup results is 4%.

» To see a 20 effect, we need 1% to 2% combined error (statistical +
systematic) for r,, or 2-4% combined error for r5.

» — This is not trivial for lattice.



CURRENT LATTICE RESULTS

» Different lattice calculations

.

have good agreement. (Good) or x ]

05 B

» As m, in simulations gets ol ]

smaller, the values go up. L { { h%{ it j Ty
I, T b

(Good) Ll %ﬂ F i

» Uncertainties are generally still 011 ¢ RGO B WEND) & qoosPuKach it Gt ]
N 2 v QCDSF 11 (Clover, N

fairly large. (Bad) ool & 5 s R
LHPC Niclove X Wp - |
» The results are systematically ' i, ) o o

below the experimental values,
even at or near the physical
pion mass. (Bad)

Figure 7: (Incomplete) Lattice results for
isovector Dirac radii. [Constantinou, Lattice

2014]
Possible systematic errors:
» Excited-state contaminations. » Finite lattice spacing and finite
» Dipole fits problematic. volume? ”

» Chiral extrapolations.



EXCITED-STATE CONTAMINATIONS
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Figure 8: [Green et al. 2014] Figure 9: [Abdel-Rehim et al. 2014]

» Several groups have extensively studied the source-sink separation dependence
of the charge radii, to investigate possible excited-state contaminations.

» Having small short-sink separations tend to give smaller values for the radii.

» The effects are bigger at smaller pion masses.

Note:

» Summation method:
t, ! / !
Z Ro(7,p',p) — const. + Ro(t — t) + O(e_(t —t)e(® )) + (’)(e_(" _t)e(m)
T=
— use multiple source-sink separations (¢ — t) to determine the slope of the
summed ratio. L



DIPOLE FIT DEPENDENCE
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Figure 10: The dependence of the isovector Dirac radii on @2,,, in the dipole fits.
[Green et al. 2014]

» While the available lattice data do not indicate much dependence on
the range of the dipole fits, it is preferable to use small @? data to
reduce the model dependence.

» When @7 is sufficiently small, simple linear fits will work just as well.
» Ways to calculate r, directly?



CHIRAL EXTRAPOLATIONS

» Usually we extract the radii from
the form factors first, and then o
perform chiral extrapolations
for 72, -

2o

» You can also perform chiral
extrapolations w.rt. both @?
and m, dependence.

» Caveats:

» several variants of HBChPT.

» Convergence not well

understood. ;

» Many LECs. Need to fix some of ! L
them using phenomenological P N E—
inputs. e

Figure 12: [Green et al. 2014]
20



PROGRESS TOWARDS REDUCING STATISTICAL UNCERTAINTIES

» Nucleon observables are notoriously hard to calculate as the
signal-to-noise deceases exponentially with the pion mass.

S/N(t) < v/ Nieas €Xp {—(MN - ng)t} )

The error-reduction technique, All-Mode-Averaging [Blum, Izubuchi, Shintani
2013], makes it cheaper to increase Nmeas.

The idea is to construct an “improved” operator Oimp = Oapprox + Orest
with Oapprox Cheaper to calculate but less precise.

Orest CaN be estimated with fewer, but precise, calculations of the exact
(original) operator Ocxact.

> Oapprox: deflation + sloppy CG.

v

v
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Figure 13: Error reduction for the form factors with AMA. [ML 2014] g



PROTON SIZE SUMMARY

» Yes we can calculate the proton charge radius on the lattice.
» However, challenges still remain:
» Need to reduce statistical errors.
» Need to thoroughly investigate systematic errors.
» Disconnected diagrams! More studies are coming in. All suggest
contributions are small for the nucleon electric form factors.

0.8 T T T T

0.6 —

0.2} q

2l

0.0

Ratio of Disconnected/Connected
18

-0.4 = - m n

Figure 14: [A. Abdel-Rehim et al. 2014]

22



NUCLEON CHARGES




NUCLEON SIGMA TERM AND STRANGENESS CONTENT

» The nucleon light and strange quark o terms

o = ml(N\ﬂu+ Zid\N)
os = ms(N|3s|N)
» Enters spin-independent WIMP-nucleon scattering cross section in the
form of of f; = o4/ M. [Ellis, Olive & Savage 2008].

» Can be determined in two approaches:

» Direct approach: uses the same method as the form factor calculations.
You calculate the three-point functions of the nucleon scalar density
and determine the scalar matrix element.

» Expensive, as disconnected diagrams cannot be ignored.

» Spectrum approach: uses Hellmann-Feynman theorem

_ oM
mg(N[gglN) = my— =~
q

> Need to take numerical derivative. Multiple quark masses are needed.

24



THE STRANGENESS CONTENT

The strangeness of the nucleon is particularly hard to calculate on the
lattice.

» The direct approach has only the disconnected contributions. — Very
noisy!

» The spectrum approach requires multiple strange quark masses. Partial
quenching doesn’'t work (no valence strange quark in nucleon) — Either
need new dynamical ensembles or reweighting in m;.

b
—a— 0.063(11) [29]ny=2+1
3 —— 0.032(2) [22]ny =2
k] —a— 0.012(*17) [24]n; =2
] - 0.014(06) [25]n;=2+1+1
4 —.— 0.048(15) [26]n;=2+1
-— 0.035(33) [36]ny =2+ 1
3 0.009(22) 7nj=2+1
- I =, 0046011 [Blmy=2+1
0.058(09) B0 =2+1
i e s - - - il 0.023(0) " TRAR;=2ii T
§ —.— 0.033(17) [21]ny = 2+1, SU(3)
£ —— 0036(*%)  Bllnj=2+1
I 0.076(73) [82]ny=2+1
& 0.024(22) [33]ny=2+1, SU(3)
] 0022(74)  [34ln;=2+1,50(3)
K3 - [85]n; =2+1, SU(3)
—— 0.053(19) present work
A 0.043(11) Iattice average (see text)
0.00 0.05 0.10

fe [ Junnarkar & Walker-Loud 2013] 25



WHAT'S UP WITH g,?

> ga is known very precisely experimentally. ga,exp = 1.2701(25)
» In principle a clean quantity to calculate on the lattice (zero recoil, no
disconnected diagrams, relatively good signal).

» The ability to reproduce the experimental value serves as a precision
test.

» However, lattice values have been systematically 10-20% lower.
» It may be particularly susceptible to finite volume effects.

14
1 “r 0008 fm —x—i
13 -8 145 | am007fm
a~0.06fm —x—i
F i 1P i
12 % ;} i { %} 135 |-
Pk . L o
S 11| )
= H } I 9 125
g I
s 3 12
QCDSF Ny =2 ETMC Ny =2+1+1 15
Mainz Ny =2 +—a—fi PNDME Ny=2+1+1 r—k—
0.9 - © ETMC Ny =2 RQCD Ny =2 —@— 1+
LHPC Ny =2+1 r—e—  RQCD Ny =2, g4/F, mmmm
08 RBCNy =241 14— ) | Ewt e 105 - s
L h
- 10 | I L H
0.02 0.04 0.06 O.OSMQO.[IG(‘\O/.%]? 0.14 0.16 0.18 0.2 0.05 o1 015 02 0.25
w T m?2 [GeV?|

[Bali et al. 2014]
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CONCLUSIONS




CONCLUSIONS

v

Lattice nucleon structure calculations are very relevant to the search
for new physics.

» However, many challenges remain for the lattice to get to the precision
level required.

v

A lot of progress has been made in the past few years.

v

With improved algorithms and more powerful computers, next few years
will be an exciting time to see some questions answered.

28
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