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things to get out of the way before the “real” talk

▶ I am very grateful for the opportunity to be here, thanks to the KITP
program organizers and coordinators.

▶ The program is Lattice Gauge Theory for the LHC and Beyond.
▶ Looking at the Wikispace pages, I saw very few talks from the Nuclear

Physics perspective.
▶ I will try to provide that perspective.

▶ An overview will be given instead of specific calculations.
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the real talk



outline

1. Introduction

2. The Proton Size Puzzle
Experimental Status
Lattice Calculations

3. Nucleon Charges
Nucleon Sigma Term and Strangeness Content
What’s Up with gA??

4. Conclusions
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introduction



nucleon structure

▶ The internal structure of the nucleon, such as the spin, charge and
current distributions of the nucleon, gives us a (more) detailed view of
the internal landscape of the nucleon.

Figure 1: Quark transverse charge densities in the proton (left) and neutron
(right). Top: Unpolarized. Bottom: Polarized. Images from:
http://wwwth.kph.uni-mainz.de/556.php
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nucleon structure on the lattice

▶ Lattice calculations of the nucleon structure are usually done through
the nucleon matrix elements ⟨N(P′)|O(x)|N(P)⟩.

▶ which can be extracted from the ratios between nucleon three-point
and two-point functions.

t t’

τ

t t’

τ

Figure 2: Nucleon three-point functions. Connected (left) vs. disconnected (right).

▶ Disconnected diagrams need to include
C1(τ) =

∑
x⃗

Tr[ΓD−1(⃗x, τ)] (1)

Number of matrix inversions ∝ L3 × T ⇒ Computation-intensive!
▶ We often calculate the isovector (p − n) quantities in which the

disconnected diagrams cancel out. 7



connection to new physics?

Lattice calculations of nucleon structure can have connections to new
physics in three ways:

▶ Decipher theory-experiment or experiment-experiment discrepancies,
e.g. proton size puzzle.

▶ Provide inputs to BSM phenomenology, e.g. nucleon strangeness
content, scalar and tensor charges, ...

▶ Direct calculations of BSM nucleon matrix elements, e.g. proton decay.
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the proton size puzzle



the shrinking proton (i)

Figure 3: Snapshots in 2011. 10



the shrinking proton (ii)

Possible explanations:
▶ New Physics:

New particles that interact with only muons but not electrons.
[Karshenboim, McKeen & Pospelov, 2014]
[Carlson & Rislow, 2012] [Batell, McKeen & Pospelov, 2011]

▶ New interpretation of the e-p data: [Lorenz, Hammer & Meisner 2012]
They reanalyzed the Mainz e-p scattering data using a dispersive
framework, and found a much smaller proton charge radius.
0.84(1) fm [reanalysis of e-p] vs 0.84087(39) fm [muonic hydrogen]

▶ Errors are underestimated? [Paz, 2012]

What’s the QCD contribution? It’s a
non-perturbative question.
⇒ Enters lattice QCD.

Figure 4: The proton charge radius
discrepancies in experiments. [Arlington 2015] 11



electromagnetic form factors (i)

The proton charge radius can be determined from the proton
electromagentic form factors, defined from the matrix element:

⟨N (P′)|Jµ
EM(x)|N (P)⟩ = ei(P′−P)·xū(P′)

[
γµF1(Q2) + iσµν qν

2MN
F2(Q2)

]
u(P)

▶ q = P′ − P,Q2 = −q2.
▶ F1(Q2),F2(Q2): Dirac and Pauli form factors.

p’

p q=P’ − P

P
P’

▶ Under one-photon exchange approximation, the elastic e − p scattering
cross section

dσ
dΩ ∝ F2

1(Q2) +
Q2

4M2

[
F2

2(Q2) + 2(F1(Q2) + F2(Q2)) tan2 θ

2

]
▶ Experiments use Rosenbluth separation method:

at fixed Q2, from dσ
dΩ vs. tan2 θ

2 obtain F1(Q2) and F2(Q2). 12



electromagnetic form factors (ii)

▶ Sachs electric and magnetic form factors are commonly used:

GE(Q2) = F1(Q2)− Q2

4M2
N

F2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

▶ The proton charge radius is defined as rp =
√

⟨r2
E⟩, where

⟨r2
E⟩ = −6dGE(Q2)

dQ2 |Q2→0

▶ Determination of ⟨r2
E⟩ may be

model dependent (derivative of an
unknown function).

▶ Data of GE(Q2) typically fit well
with a dipole ansatz.

GE(Q2) =
1

(1 + Q2/M2)2 ,

and
⟨r2

E⟩ = 12/M2. Figure 5: [Janssens et. al. 1966]
13



lattice methods (i)

▶ On the lattice we compute the appropriate two- and three-point
correlation functions in order to extract ⟨N, p⃗′, s′|O|N, p⃗, s⟩.

▶ Nucleon two-point functions:

C2pt
βα[(t

′, p⃗′); (t, x⃗)] =
∑

x⃗′
e−i⃗p′̇⃗x′⟨Nβ(t′, x⃗′)Nα(t, x⃗)⟩

(t′ ≫ t) → 1
2Ep⃗′

e−i⃗p′ ·⃗xe−Ep⃗′ (t′−t)⟨0|Nβ |N, p⃗′, s⟩⟨N, p⃗′, s|Nα|0⟩

▶ Nucleon three-point functions:

C3pt
βα[(t

′, p⃗′); (τ, q⃗); (t, x⃗)] =
∑

x⃗′
e−i⃗p′ ·⃗x′ ∑

y⃗

ei⃗q·⃗y⟨Nβ(t′, x⃗′)O(τ, y⃗)Nα(t, x⃗)⟩

(t′ ≫ τ ≫ t) → 1
2Ep⃗′2Ep⃗

e−E⃗p′ (t′−τ)e−Ep⃗(τ−t)e−i⃗p·⃗x

× ⟨0|Nβ |N, p⃗′, s′⟩⟨N, p⃗, s|Nα|0⟩⟨N, p⃗′, s′|O|N, p⃗, s⟩
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lattice methods (ii)

▶ Proper 3pt-to-2pt ratios give the nucleon MEs.

RO(τ, p′, p) =
C3pt

O (τ, p′, p)
C2pt(t′, p′)

[
C2pt(t′ − τ + t, p) C2pt(τ, p′) C2pt(t′, p′)

C2pt(t′ − τ + t, p′) C2pt(τ, p) C2pt(t′, p)

]1/2

→ R0

[
1 + ae−(t′−τ)ϵ(p′) + be−(τ−t)ϵ(p) + ...

]
▶ If excited-state contributions are

small, this ratio should show a
plateau.

▶ A constant fit to the plateau
region can then be performed to
determine the relevant matrix
element.
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Figure 6: Example plateaus for the
isovector Dirac and Pauli form factors.
[ML 2014]
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precision lattice qcd required

▶ The discrepancy between ep and µp results is 4%.
▶ To see a 2σ effect, we need 1% to 2% combined error (statistical +

systematic) for rp, or 2-4% combined error for r2
p.

▶ → This is not trivial for lattice.
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current lattice results

▶ Different lattice calculations
have good agreement. (Good)

▶ As mπ in simulations gets
smaller, the values go up.
(Good)

▶ Uncertainties are generally still
fairly large. (Bad)

▶ The results are systematically
below the experimental values,
even at or near the physical
pion mass. (Bad)
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Figure 10: Dirac (left) and Pauli (right) radii as a function of mπ . The lattice data correspond to:
Nf=2+1 DWF (RBC/UKQCD [12, 39]), Nf=2 TMF (ETMC [40]), Nf=2+1 DWF (LHPC [41]), Nf=2+1
DWF on asqtad sea (LHPC [15]), Nf=2 Clover (QCDSF/UKQCD [17], QCDSF [42], CLS/MAINZ [43]),
Nf=2+1+1 TMF (ETMC [24]), Nf=2+1+1 HISQ (PNDME [25]), Nf=2+1 Clover (LHPC [33]), Nf=2
TMF with Clover (ETMC [34]). The experimental points have been taken from Refs. [2, 3].

In the left panel of Fig. 11 we plot r1 for a range of pion mass as the sink-source separation
increases. The study is carried out by LHPC [33] and ETMC [34] and it include the result of the
summation method. There is a clear upward tendency as the sink-source time separation increases.
Although the results from the summation method agree with the value extracted from the plateau
method for the largest sink-source time separation, the errors on the results at lowest values of the
pion masses are still large and currently do not allow to reach a definite conclusion.

sequential method, 1200 confs
y-summation GM (k̂2 = 0)

y-summation, qmax = 4, 300 confs

(ak̂)2

G
M

(k̂
2
)

0.60.40.20

5

4

3

2

1

0

Figure 11: Left: Isovector ⟨r2
1⟩ for various ensembles and different source-sink separations [33, 34]. Right:

Isovector GM for TMF extracted from a position space method [44].

In order to extract the anomalous magnetic moment one needs to fit the Q2-dependence of GM .
Typically one employs a dipole form to extrapolate at Q2 = 0 introducing a model-dependence.
Exploratory studies based on a position space method can yield GM(0) directly without having to
perform a fit. This method involves taking the derivative of the relevant correlator with respect
to the momentum, allowing access to zero momentum data. Thus, there is no need to assume a
functional form for the momentum dependence. Such a study is performed for GM [44] and the
results are shown in the right panel of Fig. 11.
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Figure 7: (Incomplete) Lattice results for
isovector Dirac radii. [Constantinou, Lattice
2014]

Possible systematic errors:

▶ Excited-state contaminations.
▶ Dipole fits problematic.
▶ Chiral extrapolations.

▶ Finite lattice spacing and finite
volume? 17



excited-state contaminations

Figure 8: [Green et al. 2014] Figure 9: [Abdel-Rehim et al. 2014]
▶ Several groups have extensively studied the source-sink separation dependence

of the charge radii, to investigate possible excited-state contaminations.
▶ Having small short-sink separations tend to give smaller values for the radii.
▶ The effects are bigger at smaller pion masses.

Note:

▶ Summation method:
t′∑

τ=t
RO(τ, p′, p) → const.+ R0(t′ − t) +O(e−(t′−t)ϵ(p′)) +O(e−(t′−t)ϵ(p))

→ use multiple source-sink separations (t′ − t) to determine the slope of the
summed ratio. 18



dipole fit dependence
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Figure 5. Dipole fits to F v
1

(Q2) with varying Q2

max

. The upper-right plot shows the dependence on Q2

max

of the isovector Dirac
radius derived from the fits.

the m⇡ = 149 MeV ensemble, these data su↵er from excited-state contamination, and the fit has �2 = 43(13) for 23
degrees of freedom. Because the data at larger source-sink separations have larger uncertainties, it is unclear whether
this amount of deviation from a dipole form persists when excited-state e↵ects are reduced. The 243⇥48 and 243⇥24
ensembles at m⇡ ⇡ 250 MeV also su↵er from poor fit quality; this is caused by two momenta that have higher values
of F v

1

than other nearby momenta (visible in Fig. 5; specifically, these are momenta #2 and #4 in Fig. 19). This
appears to be a fluctuation, as such a large di↵erence between nearby momenta is not seen on other ensembles.

To study the dependence on the fit form, we perform dipole fits for 0  Q2 < Q2

max

with varying Q2

max

, to the
summation data on three ensembles; these are shown in Fig. 5. In all three cases, the fit parameters vary with Q2

max

by
less than the statistical uncertainty, with the largest variation occurring on the 149 MeV ensemble, where (r2

1

)v ⌘ 12

m2
D

varies between 0.463(88) fm2 and 0.507(58) fm2, and our choice of Q2

max

= 0.5 GeV2 yields (r2
1

)v = 0.498(55) fm2.
Therefore we conclude that errors caused by fitting are smaller than the statistical uncertainty.

2. Isovector Pauli form factor F v
2

(Q2)

For the isovector Pauli form factor, we again perform two-parameter dipole fits [Eq. (22)] in the range 0 < Q2 <
0.5 GeV2; the main di↵erence is that, because of the kinematic factor in Eq. (1), we have no measurement of F

2

at Q2 = 0. Therefore, understanding behavior near zero momentum transfer requires an extrapolation below the
smallest accessible Q2

min

⇠ ( 2⇡Ls
)2, and this extrapolation is more di�cult on ensembles with smaller volumes. The

quality of fits is generally reasonable, particularly when not using the shortest source-sink separation, which has the
most precise data. The most-consistently bad fits are on the 323 ⇥ 48, m⇡ = 254 MeV ensemble, where �2 varies
between 11 and 15, depending on how the matrix elements are computed, for fits with 6 degrees of freedom.

We again study dependence on the fit form by varying the maximum momentum transfer included in the fit, Q2

max

,
on three ensembles, using form factors computed using the summation method; these are shown in Fig. 6. Because of
the need to extrapolate to Q2 = 0, the fit parameters have a greater variation with Q2

max

than occurred for the Dirac
form factor; although on the two shown m⇡ = 254 MeV ensembles, this variation is roughly within the statistical
uncertainty of the fit done with our choice of Q2

max

= 0.5 GeV2. On the 149 MeV ensemble, this also holds true for

Figure 10: The dependence of the isovector Dirac radii on Q2
max in the dipole fits.

[Green et al. 2014]

▶ While the available lattice data do not indicate much dependence on
the range of the dipole fits, it is preferable to use small Q2 data to
reduce the model dependence.

▶ When Q2 is sufficiently small, simple linear fits will work just as well.
▶ Ways to calculate rp directly?

19



chiral extrapolations

▶ Usually we extract the radii from
the form factors first, and then
perform chiral extrapolations
for r2.

▶ You can also perform chiral
extrapolations w.r.t. both Q2

and mπ dependence.

▶ Caveats:

▶ several variants of HBChPT.

▶ Convergence not well
understood.

▶ Many LECs. Need to fix some of
them using phenomenological
inputs.

13

Standard fit Variants Label
Impose pion mass cut of mcut

⇡

 330MeV mcut

⇡

 300MeV 1
No mass cut 2

Fit entire available range in Q2 Impose cut of Q2 < 0.5GeV2 3
Use experimental values for m

N

,m
⇢

Use lattice input for m
N

,m
⇢

4
Fit data obtained using the summation method Fit data extracted from two-state fits 5

TABLE V. The standard procedure for fitting nucleon form factors to the expressions from baryonic ChPT and the variants
applied in order to estimate the systematic error.

FIG. 9. Pion mass dependence of electric and magnetic radii extracted by fitting the Q2-dependence of form factors to a
dipole form. Chiral fits to HBChPT for m

⇡

 330MeV and their statistical uncertainty are represented by the bands. The
yellow points denote the results obtained by directly fitting the form factors to the EFT expressions. The associated systematic
uncertainties are shown by the dashed error bars.

FIG. 10. Pion mass dependence of the anomalous magnetic moment. For an explanation of symbols, see Fig. 9.

more than two standard deviations in the case of hr2
E

i,
which, however, becomes insignificant when systematic
errors are taken into account. Interestingly, the result
for the electric radius obtained from the HBChPT fit is
statistically compatible with both the CODATA estimate
and the value determined from muonic hydrogen. How-
ever, a number of comments are in order: firstly, we note

that HBChPT fits including terms parameterizing lattice
artefacts mostly fail. This may be due to the lack of a
clear trend in the data for the charge radii as the lat-
tice spacing is varied. Secondly, fits based on HBChPT
depend much more strongly on whether the input data
originate from applying the summation method or two-
state fits.

Figure 11: [Capitani et al., 2015]

Figure 12: [Green et al. 2014]
20



progress towards reducing statistical uncertainties

▶ Nucleon observables are notoriously hard to calculate as the
signal-to-noise deceases exponentially with the pion mass.

S/N(t) ∝
√

Nmeas exp
[
−(MN − 3

2Mπ)t
]
,

▶ The error-reduction technique, All-Mode-Averaging [Blum, Izubuchi, Shintani
2013], makes it cheaper to increase Nmeas.

▶ The idea is to construct an “improved” operator Oimp = Oapprox + Orest

with Oapprox cheaper to calculate but less precise.
▶ Orest can be estimated with fewer, but precise, calculations of the exact

(original) operator Oexact.
▶ Oapprox: deflation + sloppy CG.

Nucleon form factors with 2+1 flavors of DWF and AMA Meifeng Lin

over the whole Q2 range. The statistical errors are reduced by a factor of 4.6 to 6.4 over the whole
Q2 range (Figure 1(b)). Näively this would require a factor of 21 to 41 more computations if no
improvements were implemented. As one sloppy calculation costs roughly about 1/65 of one exact
calculation, taking into account the cost of the eigenmodes, the actual AMA cost is only 1.4 times
that of the exact calculation without deflation. In this example, the speedup with AMA is 15 to 29
times.
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1 at the first non-zero momentum with

Mp = 170 MeV. Points are shifted slightly for clarity.

0 0.05 0.1 0.15 0.2
(aQ)2

0.5

0.6

0.7

0.8

0.9
1

1.1

F 1
p-
n (
Q
2 )

apprx
exact
AMA

(b) Isovector Dirac form factor, F p�n
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Figure 1: Comparison of the exact, approximate and all-mode-averaged results on the light ensemble with
a pion mass of about 170 MeV.

3. Preliminary Results

We have increased the statistics for the 250 MeV ensemble from four source locations per
lattice to seven source locations per lattice (tsrc = 8n,n= 0, ...,6). While we did not employ AMA in
this ensemble, we sped up the calculations with the coherent-sink sequential propagators [8, 9] for
the source locations at tsrc = 8,24 and 40. For the calculations with Mp = 170 MeV, we performed
4 exact calculations and 112 sloppy calculations per lattice on 39 configurations. The details of the
calculation are summarized in Table 1. For the error analysis, we blocked different sources on each
lattice, and treated different lattice configurations as independent. Further blocking consecutive
configurations did not increase the statistical errors significantly.

aml ams L3 ⇥T Ls mp [MeV] mpL amres # of configs. # of meas.
0.001 0.045 323 ⇥64 32 170 4.0 0.0018 39 4368
0.0042 0.045 323 ⇥64 32 250 5.8 0.0018 165 1155

Table 1: Details of the calculations.

Our results for the isovector Dirac and Pauli form factors can be fit with the empirical dipole
form: Fi = Ai/(1 + Q2/M2

i )
2, from which we obtain the results for the isovector Dirac radius

hr2
1i

1/2
p�n, Pauli radius hr2

2i
1/2
p�n and the anomalous magnetic moment kp�n. These results, together

with the previous calculations with 2-flavor [10] and 2+1-flavor [11] domain wall fermions, are
shown in Figure 3. We also show the comparison between the 2012 results [7] without AMA
(brown empty diamonds) and this year’s improved results (red filled diamonds). It is clear that
AMA has offered substantial error reduction in the calculations with Mp = 170 MeV. While the

4

Figure 13: Error reduction for the form factors with AMA. [ML 2014] 21



proton size summary

▶ Yes we can calculate the proton charge radius on the lattice.
▶ However, challenges still remain:

▶ Need to reduce statistical errors.
▶ Need to thoroughly investigate systematic errors.
▶ Disconnected diagrams! More studies are coming in. All suggest

contributions are small for the nucleon electric form factors.
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Figure 14: [A. Abdel-Rehim et al. 2014]
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nucleon charges



nucleon sigma term and strangeness content

▶ The nucleon light and strange quark σ terms

σl = ml⟨N|ūu + d̄d|N⟩

σs = ms⟨N|̄ss|N⟩

▶ Enters spin-independent WIMP-nucleon scattering cross section in the
form of of fq = σq/MN. [Ellis, Olive & Savage 2008].

▶ Can be determined in two approaches:
▶ Direct approach: uses the same method as the form factor calculations.

You calculate the three-point functions of the nucleon scalar density
and determine the scalar matrix element.

▶ Expensive, as disconnected diagrams cannot be ignored.

▶ Spectrum approach: uses Hellmann-Feynman theorem

mq⟨N|q̄q|N⟩ = mq
∂MN

∂mq

▶ Need to take numerical derivative. Multiple quark masses are needed.

24



the strangeness content

The strangeness of the nucleon is particularly hard to calculate on the
lattice.

▶ The direct approach has only the disconnected contributions. → Very
noisy!

▶ The spectrum approach requires multiple strange quark masses. Partial
quenching doesn’t work (no valence strange quark in nucleon) → Either
need new dynamical ensembles or reweighting in ms.

[ Junnarkar & Walker-Loud 2013] 25



what’s up with ga?

▶ gA is known very precisely experimentally. gA,exp = 1.2701(25)
▶ In principle a clean quantity to calculate on the lattice (zero recoil, no

disconnected diagrams, relatively good signal).
▶ The ability to reproduce the experimental value serves as a precision

test.
▶ However, lattice values have been systematically 10-20% lower.
▶ It may be particularly susceptible to finite volume effects.

[Bali et al. 2014]
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conclusions



conclusions

▶ Lattice nucleon structure calculations are very relevant to the search
for new physics.

▶ However, many challenges remain for the lattice to get to the precision
level required.

▶ A lot of progress has been made in the past few years.

▶ With improved algorithms and more powerful computers, next few years
will be an exciting time to see some questions answered.
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