NUCLEON STRUCTURE ON THE LATTICE: CONNECTION TO NEW PHYSICS?

Meifeng Lin September 23, 2015

Brookhaven National Laboratory

THINGS TO GET OUT OF THE WAY BEFORE THE "REAL" TALK

- ▶ I am very grateful for the opportunity to be here, thanks to the KITP program organizers and coordinators.
- ► The program is Lattice Gauge Theory for the LHC and Beyond.
- ► Looking at the Wikispace pages, I saw very few talks from the *Nuclear Physics* perspective.
- ► I will try to provide that perspective.
- ► An overview will be given instead of specific calculations.

OUTLINE

- 1. Introduction
- The Proton Size Puzzle
 Experimental Status
 Lattice Calculations
- 4. Conclusions

INTRODUCTION

NUCLEON STRUCTURE

► The internal structure of the nucleon, such as the spin, charge and current distributions of the nucleon, gives us a (more) detailed view of the internal landscape of the nucleon.

Figure 1: Quark transverse charge densities in the proton (left) and neutron (right). Top: Unpolarized. Bottom: Polarized. Images from: http://wwwth.kph.uni-mainz.de/556.php

NUCLEON STRUCTURE ON THE LATTICE

- ▶ Lattice calculations of the nucleon structure are usually done through the nucleon matrix elements $\langle N(P')|O(x)|N(P)\rangle$.
- which can be extracted from the ratios between nucleon three-point and two-point functions.

Figure 2: Nucleon three-point functions. Connected (left) vs. disconnected (right).

Disconnected diagrams need to include

$$C_1(\tau) = \sum_{\vec{x}} Tr[\Gamma D^{-1}(\vec{x}, \tau)]$$
 (1)

Number of matrix inversions $\propto L^3 \times T \Rightarrow$ Computation-intensive!

▶ We often calculate the *isovector* (p - n) quantities in which the disconnected diagrams cancel out.

CONNECTION TO NEW PHYSICS?

Lattice calculations of nucleon structure can have connections to new physics in three ways:

- ► Decipher theory-experiment or experiment-experiment discrepancies, e.g. proton size puzzle.
- ► Provide inputs to BSM phenomenology, e.g. nucleon strangeness content, scalar and tensor charges, ...
- ▶ Direct calculations of BSM nucleon matrix elements, e.g. proton decay.

THE SHRINKING PROTON (I)

Figure 3: Snapshots in 2011.

THE SHRINKING PROTON (II)

Possible explanations:

- New Physics:
 New particles that interact with only muons but not electrons.
 [Karshenboim, McKeen & Pospelov, 2014]
 [Carlson & Rislow, 2012] [Batell, McKeen & Pospelov, 2011]
- New interpretation of the e-p data: [Lorenz, Hammer & Meisner 2012]
 They reanalyzed the Mainz e-p scattering data using a dispersive framework, and found a much smaller proton charge radius.

 0.84(1) fm [reanalysis of e-p] vs 0.84087(39) fm [muonic hydrogen]
- ► Errors are underestimated? [Paz, 2012]

What's the QCD contribution? It's a non-perturbative question.

 \Rightarrow Enters lattice QCD.

Figure 4: The proton charge radius discrepancies in experiments. [Arlington 2015]

ELECTROMAGNETIC FORM FACTORS (I)

The proton charge radius can be determined from the proton electromagentic form factors, defined from the matrix element:

$$\langle \mathcal{N}(P')|J_{EM}^{\mu}(x)|\mathcal{N}(P)\rangle = e^{i(P'-P)\cdot x}\bar{u}(P')\left[\gamma^{\mu}F_{1}(Q^{2}) + i\sigma^{\mu\nu}\frac{q_{\nu}}{2M_{N}}F_{2}(Q^{2})\right]u(P)$$

- $P q = P' P, Q^2 = -q^2.$
- ▶ $F_1(Q^2)$, $F_2(Q^2)$: Dirac and Pauli form factors.

▶ Under one-photon exchange approximation, the elastic e-p scattering cross section

$$\frac{d\sigma}{d\Omega} \propto F_1^2(Q^2) + \frac{Q^2}{4M^2} \left[F_2^2(Q^2) + 2(F_1(Q^2) + F_2(Q^2)) \tan^2 \frac{\theta}{2} \right]$$

► Experiments use Rosenbluth separation method: at fixed Q^2 , from $\frac{d\sigma}{d\Omega}$ vs. $\tan^2\frac{\theta}{2}$ obtain $F_1(Q^2)$ and $F_2(Q^2)$.

ELECTROMAGNETIC FORM FACTORS (II)

Sachs electric and magnetic form factors are commonly used:

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M_N^2} F_2(Q^2)$$

 $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$

▶ The proton charge radius is defined as $r_p = \sqrt{\langle r_E^2 \rangle}$, where

$$\langle r_E^2 \rangle = -6 \frac{dG_E(Q^2)}{dQ^2} |_{Q^2 \to 0}$$

- ▶ Determination of $\langle r_E^2 \rangle$ may be model dependent (derivative of an unknown function).
- ▶ Data of $G_E(Q^2)$ typically fit well with a dipole ansatz.

$$G_E(Q^2) = \frac{1}{(1 + Q^2/M^2)^2},$$

and

$$\langle r_E^2 \rangle = 12/M^2.$$

Figure 5: [Janssens et. al. 1966]

LATTICE METHODS (I)

- ▶ On the lattice we compute the appropriate two- and three-point correlation functions in order to extract $\langle N, \vec{p}', s' | O | N, \vec{p}, s \rangle$.
- ► Nucleon two-point functions:

$$\begin{split} C^{\text{2pt}}_{\beta\alpha}[(t',\vec{p'});(t,\vec{x})] & = & \sum_{\vec{x}'} e^{-i\vec{p}'\cdot\vec{x}'} \langle N_{\beta}(t',\vec{x}')\overline{N}_{\alpha}(t,\vec{x}) \rangle \\ (t'\gg t) & \to & \frac{1}{2E_{\vec{p}'}} e^{-i\vec{p}'\cdot\vec{x}} e^{-E_{\vec{p}'}(t'-t)} \langle 0|N_{\beta}|N,\vec{p}',s \rangle \langle N,\vec{p}',s|\overline{N}_{\alpha}|0 \rangle \end{split}$$

► Nucleon three-point functions:

$$\begin{split} C^{\mathrm{3pt}}_{\beta\alpha}[(t',\vec{p}');(\tau,\vec{q});(t,\vec{x})] &= \sum_{\vec{x}'} e^{-i\vec{p}'\cdot\vec{x}'} \sum_{\vec{y}} e^{i\vec{q}\cdot\vec{y}} \langle N_{\beta}(t',\vec{x}') \frac{O(\tau,\vec{y})}{N_{\alpha}}(t,\vec{x}) \rangle \\ (t'\gg\tau\gg t) &\to \frac{1}{2E_{\vec{p}'}2E_{\vec{p}}} e^{-E_{\vec{p}'}(t'-\tau)} e^{-E_{\vec{p}}(\tau-t)} e^{-i\vec{p}\cdot\vec{x}} \\ &\times \langle 0|N_{\beta}|N,\vec{p}',s'\rangle\langle N,\vec{p},s|\overline{N_{\alpha}}|0\rangle\langle N,\vec{p}',s'|O|N,\vec{p},s\rangle \end{split}$$

LATTICE METHODS (II)

► Proper 3pt-to-2pt ratios give the nucleon MEs.

$$R_{\mathcal{O}}(\tau, p', p) = \frac{C_{\mathcal{O}}^{\text{3pt}}(\tau, p', p)}{C^{\text{2pt}}(t', p')} \left[\frac{C^{\text{2pt}}(t' - \tau + t, p) \ C^{\text{2pt}}(\tau, p') \ C^{\text{2pt}}(t', p')}{C^{\text{2pt}}(t' - \tau + t, p') \ C^{\text{2pt}}(\tau, p) \ C^{\text{2pt}}(t', p)} \right]^{1/2}$$

$$\rightarrow R_{0} \left[1 + ae^{-(t' - \tau)\epsilon(p')} + be^{-(\tau - t)\epsilon(p)} + \dots \right]$$

 If excited-state contributions are small, this ratio should show a plateau.

 A constant fit to the plateau region can then be performed to determine the relevant matrix element

Figure 6: Example plateaus for the isovector Dirac and Pauli form factors. [ML 2014]

- ▶ The discrepancy between ep and μp results is 4%.
- ► To see a 2σ effect, we need 1% to 2% combined error (statistical + systematic) for r_p , or 2-4% combined error for r_p^2 .
- ightharpoonup This is not trivial for lattice.

CURRENT LATTICE RESULTS

- Different lattice calculations have good agreement. (Good)
- As m_{π} in simulations gets smaller, the values go up. (Good)
- Uncertainties are generally still fairly large. (Bad)
- ► The results are systematically below the experimental values, even at or near the physical pion mass. (Bad)

Figure 7: (Incomplete) Lattice results for isovector Dirac radii. [Constantinou, Lattice 2014]

Possible systematic errors:

- ► Excited-state contaminations.
- ► Dipole fits problematic.
- ► Chiral extrapolations.

► Finite lattice spacing and finite volume?

EXCITED-STATE CONTAMINATIONS

Figure 8: [Green et al. 2014]

Figure 9: [Abdel-Rehim et al. 2014]

- Several groups have extensively studied the source-sink separation dependence of the charge radii, to investigate possible excited-state contaminations.
- ▶ Having small short-sink separations tend to give smaller values for the radii.
- ► The effects are bigger at smaller pion masses.

Note:

► Summation method:

$$\sum_{\tau=t}^{t'} R_O(\tau, p', p) \rightarrow const. + \frac{R_0(t'-t)}{t} + \mathcal{O}(e^{-(t'-t)\epsilon(p')}) + \mathcal{O}(e^{-(t'-t)\epsilon(p)})$$

 \rightarrow use multiple source-sink separations (t'-t) to determine the slope of the summed ratio

DIPOLE FIT DEPENDENCE

Figure 10: The dependence of the isovector Dirac radii on Q^2_{max} in the dipole fits. [Green et al. 2014]

- ightharpoonup While the available lattice data do not indicate much dependence on the range of the dipole fits, it is preferable to use small Q^2 data to reduce the model dependence.
- lacktriangle When Q^2 is sufficiently small, simple linear fits will work just as well.
- Ways to calculate r_p directly?

CHIRAL EXTRAPOLATIONS

- Usually we extract the radii from the form factors first, and then perform chiral extrapolations for r².
- ▶ You can also perform chiral extrapolations w.r.t. both Q^2 and m_π dependence.
- ► Caveats:
 - several variants of HBChPT.
 - Convergence not well understood.
 - Many LECs. Need to fix some of them using phenomenological inputs.

Figure 11: [Capitani et al., 2015]

Figure 12: [Green et al. 2014]

PROGRESS TOWARDS REDUCING STATISTICAL UNCERTAINTIES

Nucleon observables are notoriously hard to calculate as the signal-to-noise deceases exponentially with the pion mass.

$$S/N(t) \propto \sqrt{N_{\rm meas}} \exp \left[-(M_N - \frac{3}{2}M_\pi)t \right],$$

- ▶ The error-reduction technique, All-Mode-Averaging [Blum, Izubuchi, Shintani 2013], makes it cheaper to increase $N_{\rm meas}$.
- ▶ The idea is to construct an "improved" operator $O_{\rm imp} = O_{\rm approx} + O_{\rm rest}$ with $O_{\rm approx}$ cheaper to calculate but less precise.
- $ightharpoonup O_{
 m rest}$ can be estimated with fewer, but precise, calculations of the exact (original) operator $O_{
 m exact}$.
- $ightharpoonup O_{approx}$: deflation + sloppy CG.

Figure 13: Error reduction for the form factors with AMA. [ML 2014]

PROTON SIZE SUMMARY

- ► Yes we can calculate the proton charge radius on the lattice.
- ► However, challenges still remain:
 - ► Need to reduce statistical errors.
 - ► Need to thoroughly investigate systematic errors.
 - Disconnected diagrams! More studies are coming in. All suggest contributions are small for the nucleon electric form factors.

Figure 14: [A. Abdel-Rehim et al. 2014]

NUCLEON SIGMA TERM AND STRANGENESS CONTENT

lacktriangleright The nucleon light and strange quark σ terms

$$\sigma_l = m_l \langle N | \bar{u}u + \bar{d}d | N \rangle$$

$$\sigma_s = m_s \langle N | \bar{s}s | N \rangle$$

- ▶ Enters spin-independent WIMP-nucleon scattering cross section in the form of of $f_q = \sigma_q/M_N$. [Ellis, Olive & Savage 2008].
- ► Can be determined in two approaches:
- Direct approach: uses the same method as the form factor calculations.
 You calculate the three-point functions of the nucleon scalar density and determine the scalar matrix element.
 - ► Expensive, as disconnected diagrams cannot be ignored.
- ► Spectrum approach: uses Hellmann-Feynman theorem

$$m_q \langle N | \bar{q}q | N \rangle = m_q \frac{\partial M_N}{\partial m_q}$$

▶ Need to take numerical derivative. Multiple quark masses are needed.

THE STRANGENESS CONTENT

The strangeness of the nucleon is particularly hard to calculate on the lattice.

- ► The direct approach has only the disconnected contributions. → Very noisy!
- ▶ The spectrum approach requires multiple strange quark masses. Partial quenching doesn't work (no valence strange quark in nucleon) \rightarrow Either need new dynamical ensembles or reweighting in m_s .

WHAT'S UP WITH g_a ?

- g_A is known very precisely experimentally. $g_{A, exp} = 1.2701(25)$
- ► In principle a clean quantity to calculate on the lattice (zero recoil, no disconnected diagrams, relatively good signal).
- ► The ability to reproduce the experimental value serves as a precision test.
- ► However, lattice values have been systematically 10-20% lower.
- ► It may be particularly susceptible to finite volume effects.

[Bali et al. 2014]

- ► Lattice nucleon structure calculations are very relevant to the search for new physics.
- ► However, many challenges remain for the lattice to get to the precision level required.
- ▶ A lot of progress has been made in the past few years.
- ► With improved algorithms and more powerful computers, next few years will be an exciting time to see some questions answered.