A non-perturbative mechanism for elementary particle mass generation

R. Frezzotti & G.C. Rossi

Dipartimento di Fisica - Università di Roma Tor Vergata

INFN - Sezione di Roma Tor Vergata

Roma - ITALY

Based on R. Frezzotti & G.C. Rossi arXiv:1402.0389 and PRD to appear

August 7, 2015

Frezzotti & Rossi (Roma - Tor Vergata)

NP mass generation

Outline of the talk

- Motivation & Introduction
 - Unconventional alternative to the Higgs mechanism
- A Non Perturbative effect
 - Lattice QCD
- Instally ight NP elementary particle masses
 - A toy-model
- Mass hierarchy
 - The stronger the interaction, the larger the mass
 - Super-strongly interacting particles are predicted
- Omments, conclusions & outlook
 - Towards a BSM model?

Part I Motivation & Introduction

Frezzotti & Rossi (Roma - Tor Vergata)

NP mass generation

August 7, 2015 3 / 34

Standard Model and beyond ...

- Higgs discovery: spectacular confirmation of Standard Model
- Open problems
 - Fermion mass hierarchy ($m_{el} \sim 3 \cdot 10^{-6} m_{top}$, neutrino masses)
 - What sets the electro-weak scale in the ~TeV region?
 - Naturalness 't Hooft
 - Cabibbo-Kobayashi-Maskawa matrix
 - Dark Matter
 - Magnitude of CP violation (matter vs. antimatter)
 - Gravity
- Beyond-the-Standard-Model models
 - Supersymmetric Standard Model
 - O(100) parameters, too many?
 - How to break Supersymmetry?
 - LHC bounds?
 - Many Standard Model variants
 - Ad hoc particle content
 - Don't provide (elegant) explanations to most of the problems above

- SM has O(20) free parameters (too many?)
 - coupling constants
 - quark and lepton masses
 - CKM matrix elements
 - neutrino mass and mixing parameters
- SM describes fermion (& weak boson) masses, but
 - why $m_{quark} > m_{lepton} \gg m_{neutrino}$?
 - why $m_t \sim 80000 \, m_u \, (m_\tau \sim 4000 \, m_e),$
 - though t & $u(\tau \& e)$ have identical quantum numbers?
 - why $v_{SM} \simeq 250~{
 m GeV} \sim m_{Higgs} \sim m_W$ is this "natural"?
- SM works extremely well
- SM is maybe the LE theory of some more fundamental model
 - SM renormalizability makes very hard to guess what's beyond
- A deeper understanding of masses, a window on New Physics?

A very unconventional approach ...

- ... where fermion masses are dynamically generated
 - by the similar kind of physics that in QCD makes $\langle \bar{q}q \rangle \neq 0$
 - i.e. a dynamical χ SB effect, triggered by some explicit χ SB term
 - in LQCD the latter is provided by either mass or Wilson term
- A "small" fermion mass term visible in (massless) Wilson LQCD
 - underneath the 1/a linear divergency
 - separation would require an infinite tuning "naturalness"
- 2 A solution to naturalness \rightarrow enlarge QCD to a model where
 - an SU(N_f = 2) doublet of strongly interacting fermions is coupled to a scalar field via Yukawa & Wilson-like terms
 - at a critical Yukawa coupling, where they (almost) "compensate"
 - the model enjoys a larger symmetry (up to (cutoff)⁻² effects)
 - that keeps the fermion 'naturally light 't Hooft
 - the dynamically generated "finite" NP mass is O(α²_sΛ_s)
- ... but, its precise value depends on UV details
 - non-perturbative violation of universality!

イロト イヨト イヨト イヨト

Part II A Non Perturbative effect Lattice QCD

Frezzotti & Rossi (Roma - Tor Vergata)

NP mass generation

August 7, 2015 7 / 34

An inspiration from Wilson lattice OCD - I

$$S_{F}^{L} = a^{4} \sum_{x} \bar{q}(x) \Big[\frac{\gamma_{\mu}}{2} (\nabla_{\mu} + \nabla_{\mu}^{*}) - \frac{ar}{2} \nabla_{\mu} \nabla_{\mu}^{*} + m_{0} \Big] q(x)$$

• Wilson-term breaks χ -sym • recovered at $m_{cr} = \frac{c_0}{a} + \frac{c_1 \Lambda_{QCD}}{c_1 + O(a)}$

Figure : Green points clover-improved data - Rest are twisted Wilson

An inspiration from Wilson lattice OCD - II

Comparing with two-loop perturbation theory [H. Panagopoulos et al.]

Frezzotti & Rossi (Roma - Tor Vergata)

An inspiration from Wilson lattice OCD - III

- If we could, we would get quite an amazing result
- Consider the axial WTI ($f = 1, 2, ..., N_f^2 1$) [Bochicchio, *et al.* 1985]

 $\nabla_{\mu}\langle \hat{J}_{5\mu}^{t}(x)\hat{O}(0)\rangle^{L} = \langle \Delta_{5}^{f}\hat{O}(0)\rangle\delta(x) + 2(m_{0} - \bar{M}(m_{0}))\langle P^{t}(x)\hat{O}(0)\rangle + O(a)$

 m_{cr} is the value of m_0 at which $m_{PCAC} = m_0 - \bar{M}(m_0) = 0$

• The general expression of $\overline{M}(m_0)$ is something like $(d_1 = O(g_s^2))$

$$\bar{M}(m_0) = \frac{c_0(1-d_1)}{a} + c_1(1-d_1)\Lambda_{QCD} + m_0d_1 + O(a)$$
$$\implies m_{cr} = \frac{c_0}{a} + c_1\Lambda_{QCD} + O(a)$$

• Setting $m_0 = c_0/a$ (not $m_0 = m_{cr}$) in the WTI, one finds

 $\nabla_{\mu}\langle \hat{J}_{5\mu}^{f}(x)\hat{O}(0)\rangle^{L} = \langle \Delta_{5}^{f}\hat{O}(0)\rangle\delta(x) - 2\underline{c_{1}(1-d_{1})}\Lambda_{QCD}\langle P^{f}(x)\hat{O}(0)\rangle + O(a)$

 \implies we seem to be getting a finite (up to logs) fermion mass!

э

Origin of $c_1 \Lambda_{OCD}$ - Symanzik language

- in LQCD_{cr} residual O(a) χ-breaking terms induce dynamical χSB
 the latter in turn brings about O(a) corrections ...
- In affecting Lattice quark and gluon propagators and vertices

$$\left\langle O(x, x', ...) \right\rangle \Big|_{cr}^{L} = \left\langle O(x, x', ...) \right\rangle \Big|_{cr}^{C} - a \left\langle O(x, x', ...) \int d^{4}z \, L_{5}(z) \right\rangle \Big|_{cr}^{C} + O(a^{2})$$

$$O(x, x', ...) \Leftrightarrow A^{b}_{\mu}(x) A^{c}_{\nu}(x'), \ q_{L/R}(x) \bar{q}_{L/R}(x'), \ q_{L/R}(x) \bar{q}_{L/R}(x') A^{b}_{\mu}(y)$$

$$\Delta G^{bc}_{\mu\nu} \qquad \Delta S_{LL/RR} \qquad \Delta \Gamma^{b,\mu}_{Aq\bar{q}}$$

- Wilson term \implies $L_5 \rightarrow \chi$ -violating, d = 5 Symanzik operators
- R_5 -even $O \rightarrow a \langle O \int L_5 \rangle |_{cr}^C \neq 0$, only because of dynamical χSB
 - would vanish under $R_5 \equiv [q \rightarrow \gamma_5 q, \bar{q} \rightarrow -\bar{q}\gamma_5] \in SU_R(N_f) \times SU_L(N_f)$
- dimensional arguments $\rightarrow NP a O(\alpha_s \Lambda_{QCD})$ terms are generated
 - that add up to perturbative propagators and vertices
 - are proportional to the non-analytic r/|r| ratio (typical of S_χSB, analog to m_q/|m_q| dependence of (q
 q
))

Origin of $c_1 \Lambda_{CCD}$ - Diagrammatic picture

Gluon propagator

$$\Delta G_{\mu\nu}^{bc}(k)|^{L} \implies \qquad \text{OCOOD} a \Lambda \text{DOCOD}$$

$$a \langle A_{\mu}^{b}(x) A_{\nu}^{c}(x') \int d^{4}z \, L_{5}(z) \rangle =$$

$$= a \langle \Omega_{0} | A_{\mu}^{b}(x) A_{\nu}^{c}(x') \, g_{s} \int d^{4}z \, (\bar{q} \, \sigma_{\mu\nu} F_{\mu\nu} q)(z) \, g_{s} \int d^{4}z' \, (\bar{q} \, A q)(z') | \Omega_{0} \rangle + \mathcal{O}(g_{s}^{4})$$

• LL/RR fermion-gluon vertex

• *LL/RR* fermion propagator

$$\Delta S_{LL/RR}(k)|^L \quad \Longrightarrow \quad$$

 $\Delta \Gamma^{b,\mu}_{Aq\bar{q}}(k,\ell)|^L \implies$

Origin of $c_1 \Lambda_{CCD}$ - O(a) NP terms in lattice correlators

• LL/RR fermion-gluon vertex

$$\Delta\Gamma^{b,\mu}_{Aq\bar{q}}(k,\ell)\Big|^{L} = a\Lambda_{QCD}\alpha_{s}(\Lambda_{QCD})ig_{s}\lambda^{b}\gamma_{\mu}f_{Aq\bar{q}}\Big(\frac{\Lambda^{2}_{QCD}}{k^{2}},\frac{\Lambda^{2}_{QCD}}{\ell^{2}},\frac{\Lambda^{2}_{QCD}}{(k+\ell)^{2}}\Big)$$

Gluon propagator

$$\Delta G_{\mu\nu}^{bc}(k)\Big|^{L} = -\frac{a}{\Lambda_{QCD}} \alpha_{s}(\Lambda_{QCD}) \delta^{bc} \frac{\delta_{\mu\nu} - k_{\mu}k_{\nu}/k^{2}}{k^{2}} f_{AA}\Big(\frac{\Lambda_{QCD}^{2}}{k^{2}}\Big)$$

• LL/RR fermion propagator

$$\Delta S_{LL/RR}(k)\Big|^{L} = -a \Lambda_{QCD} \alpha_{s}(\Lambda_{QCD}) \frac{ik_{\mu}(\gamma_{\mu})_{LL/RR}}{k^{2}} f_{q\bar{q}}\left(\frac{\Lambda_{QCD}^{2}}{k^{2}}\right)$$

$$f_{AA}\left(\frac{\Lambda^{2}_{QCD}}{(mom)^{2}}\right), f_{q\bar{q}}\left(\frac{\Lambda^{2}_{QCD}}{(mom)^{2}}\right), f_{Aq\bar{q}}\left(\frac{\Lambda^{2}_{QCD}}{(mom)^{2}}\right)^{(mom)^{2} \to \infty} h_{AA}, h_{q\bar{q}}, h_{Aq\bar{q}}$$

Frezzotti & Rossi (Roma - Tor Vergata)

Origin of $c_1 \Lambda_{\odot CD}$ - Fermion mass generation

• NP effects bring about new fermion self-energy terms, like

in diagrams where a Wilson vertex, aV_5 , is inserted

• yielding the extra "finite" mass contribution

$$m_q^{eff} \propto \mathbf{a} \Lambda_{QCD} g_s^2 lpha_s (\Lambda_{QCD}) \int^{1/a} d^4 k rac{k_\mu}{k^2} rac{1}{k^2} \mathbf{a} k_\mu \sim \underline{g_s^2 lpha_s (\Lambda_{QCD}) \Lambda_{QCD}}$$

quadratic UV divergency exactly compensates explicit a² power!
 we expect m^{eff}_q proportional to the non-analytic r/|r| ratio (typical of S_{\chi}SB - analog to m_q/|m_q| dependence of \langle q q \rangle)

Part III "Naturally" light NP elementary particle masses • A toy-model

Solving the naturalness problem - A toy-model

- Problem
 - disentangle (small/NP) O(Λ) from (large/PT) O(a⁻¹) effects
- Solution
 - extend QCD to a theory where
 - owing to an enlarged symmetry, "light" fermion masses are "natural"
- Toy-model [QCD_{N_f=2} + scalar + Wilson] $b^{-1} = UV$ cutoff

$$\mathcal{L}_{toy}(Q, A, \Phi) = \mathcal{L}_{kin}(Q, A, \Phi) + \mathcal{V}(\Phi) + \mathcal{L}_{Yuk}(Q, \Phi) + \mathcal{L}_{Wil}(Q, A, \Phi)$$

•
$$\mathcal{L}_{kin}(Q, A, \Phi) = \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + \bar{Q}_{L} \gamma_{\mu} \mathcal{D}_{\mu} Q_{L} + \bar{Q}_{R} \gamma_{\mu} \mathcal{D}_{\mu} Q_{R} + \frac{1}{2} \mathrm{Tr} [\partial_{\mu} \Phi^{\dagger} \partial_{\mu} \Phi]$$

•
$$\mathcal{V}(\Phi) = \frac{\mu_0^2}{2} \operatorname{Tr}[\Phi^{\dagger}\Phi] + \frac{\lambda_0}{4} (\operatorname{Tr}[\Phi^{\dagger}\Phi])^2$$

- $\mathcal{L}_{Y\!\textit{U}\textit{k}}(\textit{Q}, \Phi) = \eta \left(\bar{\textit{Q}}_{\textit{L}} \Phi \textit{Q}_{\textit{R}} + \bar{\textit{Q}}_{\textit{R}} \Phi^{\dagger} \textit{Q}_{\textit{L}} \right)$
- $\mathcal{L}_{Wil}(Q, A, \Phi) = \frac{b^2}{2} \rho \left(\bar{Q}_L \overleftarrow{\mathcal{D}}_\mu \Phi \mathcal{D}_\mu Q_R + \bar{Q}_R \overleftarrow{\mathcal{D}}_\mu \Phi^\dagger \mathcal{D}_\mu Q_L \right)$
 - no power divergent fermion mass term can be generated
 - only O(b²) corrections
 - toy-model lattice simulations are feasible (and under way)

Symmetries

- \mathcal{L}_{toy} is invariant under the (global) $\chi_L \times \chi_R$ transformations
- $\chi_L : \tilde{\chi}_L \otimes (\Phi \to \Omega_L \Phi)$, with $\tilde{\chi}_L : Q_L \to \Omega_L Q_L$, $\bar{Q}_L \to \bar{Q}_L \Omega_L^{\dagger}$, $\Omega_L \in SU(2)_L$
- $\chi_{R}: \tilde{\chi}_{R} \otimes (\Phi \to \Phi \Omega_{R}^{\dagger}), \text{ with } \tilde{\chi}_{R}: Q_{R} \to \Omega_{R}Q_{R}, \bar{Q}_{R} \to \bar{Q}_{R}\Omega_{R}^{\dagger}, \Omega_{R} \in \mathsf{SU}(2)_{R}$
 - not under "chiral" $\tilde{\chi}_L \times \tilde{\chi}_R$ transformations (acting on fermions only)
 - key idea \rightarrow enforce $\tilde{\chi}_L \times \tilde{\chi}_R$ as a(n approximate) symmetry
 - LQCD \rightarrow LQCD_{cr}
 - $SU_L \times SU_R$ "chiral symmetry" is recovered at $m_0 = m_{cr}$ up to O(a)
 - d = 5 Wilson and d = 3 mass term "compensating" to that order
 - left-over O(a) chiral SB terms
 - capable of triggering $S_{\chi}SB$ and generating a NP mass term
 - $\mathcal{L}_{toy} \rightarrow \mathcal{L}_{toy}^{Cr}$
 - $\tilde{\chi}_L \times \tilde{\chi}_R$ "chiral symmetry" is recovered at $\eta = \eta_{cr}$ up to $O(b^2)$
 - $d = 6 \mathcal{L}_{Wil}$ and $d = 4 \mathcal{L}_{Yuk}$ "compensating" to that order
 - left-over O(b²) chiral (x̃) SB terms
 - capable of triggering $\mathsf{D}\tilde{\chi}\mathsf{SB}$ and generating a NP mass term

▲圖 → ▲ 国 → ▲ 国 → 二 国

$\tilde{\chi}_L \times \tilde{\chi}_R$ transformations and WTIs

- $\tilde{\chi}_L \times \tilde{\chi}_R$ WTIs read [Bochicchio *et al.* 1985]
 - $\partial_{\mu} \langle \tilde{J}^{L,i}_{\mu}(x) \, \hat{O}(0) \rangle = \langle \tilde{\Delta}^{i}_{L} \hat{O}(0) \rangle \delta(x) \eta \, \langle O^{L,i}_{Y\!\textit{Uk}}(x) \, \hat{O}(0) \rangle b^{2} \langle O^{L,i}_{W\!\textit{Ul}}(x) \, \hat{O}(0) \rangle$

•
$$\tilde{J}_{\mu}^{L,i} = \bar{Q}_{L}\gamma_{\mu}\frac{\tau^{i}}{2}Q_{L} - \frac{b^{2}}{2}\rho\left(\bar{Q}_{L}\frac{\tau^{i}}{2}\Phi\mathcal{D}_{\mu}Q_{R} - \bar{Q}_{R}\overleftarrow{\mathcal{D}}_{\mu}\Phi^{\dagger}\frac{\tau^{i}}{2}Q_{L}\right)$$

• $O_{Y_{L}Ik}^{L,i} = \left[\bar{Q}_{L}\frac{\tau^{i}}{2}\Phi Q_{R} - hc\right]$ • $O_{WII}^{L,i} = \frac{\rho}{2}\left[\bar{Q}_{L}\overleftarrow{\mathcal{D}}_{\mu}\frac{\tau^{i}}{2}\Phi\mathcal{D}_{\mu}Q_{R} - hc\right]$

Mixing

•
$$b^2 \underline{O}_{Wll}^{L,i} = (Z_{\tilde{J}} - 1)\partial_{\mu}\tilde{J}_{\mu}^{L,i} - \bar{\eta}(\eta; g_s^2, \rho, \lambda_0) O_{Yuk}^{L,i} + \ldots + O(b^2)$$

- $\partial_{\mu}\langle Z_{\tilde{J}}\tilde{J}^{L,i}_{\mu}(x)\,\hat{O}(0)\rangle = \langle \tilde{\Delta}^{i}_{L}\hat{O}(0)\rangle\delta(x) (\eta \bar{\eta}(\eta))\,\langle O^{L,i}_{Yuk}(x)\,\hat{O}(0)\rangle + \ldots + O(b^{2})$
- Critical theory $\rightarrow \eta \bar{\eta}(\eta; g_s^2, \rho, \lambda_0) = 0 \implies \eta_{cr}(g_s^2, \rho, \lambda_0)$

•
$$\partial_{\mu} \langle Z_{\widetilde{J}} \widetilde{J}^{L,i}_{\mu}(x) \, \hat{O}(0) \rangle_{\eta_{cr}} = \langle \tilde{\Delta}^{i}_{L} \hat{O}(0) \rangle_{\eta_{cr}} \delta(x) + \ldots + \mathrm{O}(b^{2})$$

• All the same with $[L \leftrightarrow R \& \Phi \leftrightarrow \Phi^{\dagger}]$

• Possible NP effects (like slide 10) represented by dots (see below)

The critical theory - I

- \mathcal{L}_{toy}^{Cr} physics dramatically depends on the shape of $\mathcal{V}(\Phi)$
 - If $\mathcal{V}(\Phi)$ has a single minimum $\rightarrow \chi_L \times \chi_R$ realized *á* la Wigner
 - no dynamical ^x_XSB
 - mixings are as we see them in PT
 - NP dots absent in $\tilde{\chi}_L \times \tilde{\chi}_R$ WTIs
 - Φ decouples ($\tilde{\chi}_L \times \tilde{\chi}_R = \chi_L \times \chi_R$ on correlators with Q's & gluons)
 - no generation of NP fermion masses
 - We fix η_{cr} by enforcing $\tilde{J}^{L,i}_{\mu}$ (or $\tilde{J}^{R,i}_{\mu}$) conservation

$$m{x}
eq 0 \quad \partial_\mu \langle Z_{\widetilde{\jmath}} \widetilde{J}^{L,i}_\mu(x) \, O(0)
angle = (\eta - ar{\eta}(\eta)) \langle [ar{Q}_L au^i \Phi Q_R - ext{hc}](x) O(0)
angle + ext{O}(b^2)$$

• which implies in the Wigner phase the cancellation

The critical theory - II

- \mathcal{L}_{toy}^{Cr} physics dramatically depends on the shape of $\mathcal{V}(\Phi)$
 - keep the same η_{cr} as determined in the Wigner phase
 - If $\mathcal{V}(\Phi)$ has Mexican hat shape $\rightarrow \chi_L \times \chi_R$ realized *á* la NG
 - $\langle \Phi \rangle = \mathbf{v} \neq \mathbf{0}$ breaks spontaneously $\chi_L \times \chi_R$ (already at tree-level)
 - $\Phi = \mathbf{V} + \sigma + i\vec{\tau}\cdot\vec{\pi}$
 - $\mathcal{L}_{Wil} = \frac{b^2}{2} \rho \left(\bar{Q}_L \overleftarrow{\mathcal{D}}_\mu \Phi \mathcal{D}_\mu Q_R + hc \right) \xrightarrow{b^2 \nu \to ar} \mathcal{L}_{Wil}^{QCD} = -\frac{ar}{2} \left(\bar{Q}_L \mathcal{D}^2 Q_R + hc \right)$
 - owing to $\eta = \eta_{cr}$, the Yukawa mass term $v\bar{Q}Q$ gets canceled
 - We expect (as in LQCD)
 - dynamical χ̃SB triggered by residual O(b²ν) χ̃-breaking terms
 - non-vanishing NP dots to affect
 - operator mixing
 - renormalized $\tilde{\chi}_L \times \tilde{\chi}_R$ WTIs
 - NP fermion mass terms (like c₁ Λ_{QCD} in LQCD) get generated

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

The critical theory - Wigner vs. NG

•
$$\partial_{\mu}\langle \tilde{J}_{\mu}^{L,i}(x) \, \hat{O}(0) \rangle = \langle \tilde{\Delta}_{L}^{i} \hat{O}(0) \rangle \delta(x) - \eta \langle \left[\bar{Q}_{L} \frac{\tau^{i}}{2} \Phi Q_{R} - hc \right](x) \, \hat{O}(0) \rangle + -b^{2} \langle \frac{\rho}{2} \left[\bar{Q}_{L} \overleftarrow{\mathcal{D}}_{\mu} \frac{\tau^{i}}{2} \Phi \mathcal{D}_{\mu} Q_{R} - hc \right](x) \, \hat{O}(0) \rangle$$

• Wigner phase after the tuning $\eta - \bar{\eta}(\eta; g_s^2, \rho, \lambda_0) = 0$

$$\partial_{\mu} \langle Z_{\tilde{J}} \tilde{J}_{\mu}^{L,i}(x) \, \hat{O}(0) \rangle_{\eta_{cr}} = \langle \tilde{\Delta}_{L}^{i} \hat{O}(0) \rangle_{\eta_{cr}} \delta(x) + O(b^{2})$$

• NG phase $\langle \Phi \rangle = v \rightarrow$ "large" Higgs-like mass $v \bar{Q} Q$ drops out

•
$$\partial_{\mu}\langle \tilde{J}^{L,i}_{\mu}(x)\,\hat{O}(0)
angle = \langle \tilde{\Delta}^{i}_{L}\hat{O}(0)
angle \delta(x) - \eta_{cr}\,\mathbf{v}\,\langle \left[\bar{Q}_{L}rac{ au'}{2}Q_{R} - \mathrm{hc}
ight](x)\,\hat{O}(0)
angle +$$

$$-b^{2} \mathbf{v} \langle \frac{\rho}{2} \Big[\bar{Q}_{L} \overleftarrow{\mathcal{D}}_{\mu} \frac{\tau^{\prime}}{2} \mathcal{D}_{\mu} Q_{R} - hc \Big] (x) \, \hat{O}(0) \rangle + \Phi \text{-fluctuations} + \ldots + O(b^{2})$$

Is there any mass term left?

Frezzotti & Rossi (Roma - Tor Vergata)

mass $v\left[\frac{1}{R}\left(\eta_{\sigma}\right) + \frac{\delta}{R}\left(\frac{\delta}{\rho b^2}\right) - \frac{\delta}{r}\right] = 0$

Origin of NP effects - Symanzik language

• Consider small- b^2 expansion of a formally $\tilde{\chi}_L \times \tilde{\chi}_R$ inv. correlator

$$\langle O(x, x', ...) \rangle \Big|_{cr}^{R} = \langle O(x, x', ...) \rangle \Big|_{cr}^{r} - b^{2} \langle O(x, x', ...) \int d^{4}z \left[L_{6}^{\tilde{\chi}br} + L_{6}^{\tilde{\chi}co} \right](z) \rangle \Big|_{cr}^{r} + O(b^{4})$$

$$O(x, x', ...) \Leftrightarrow A_{\mu}^{b} A_{\nu}^{c} \sigma, \ Q_{L/R} \bar{Q}_{L/R} \sigma, \ Q_{L/R} \bar{Q}_{L/R} A_{\mu}^{b} \sigma$$

- $\langle ... \rangle |^{R} = UV$ -Regulated $\langle ... \rangle |^{F} = Formal correlator$
- $\mathcal{L}_{Yuk} + \mathcal{L}_{Wil} \implies L_6^{\tilde{\chi}br} \rightarrow \tilde{\chi}$ -violating, d = 6 Symanzik operators
- \tilde{R}_5 -even $O \rightarrow b^2 \langle O \int L_6^{\tilde{\chi} br} \rangle |_{Cr}^{F} \neq 0$, only due to dynamical $\tilde{\chi}$ SB
 - would vanish under $\tilde{R}_5 \equiv [Q \rightarrow \gamma_5 Q, \bar{Q} \rightarrow -\bar{Q}\gamma_5] \in \tilde{\chi}_L \times \tilde{\chi}_R$
- dimensional arguments $\rightarrow NP \quad b^2 O(\alpha_s \Lambda_s)$ terms get generated
 - that add up to perturbative propagators and vertices
- Key questions
 - how does $\chi_L \times \chi_R$ symmetry constrain dynamical $\tilde{\chi}$ SB effects?
 - what plays here the role of the non-analytic r/|r| ratio?

Origin of NP effects - Diagrammatic picture

• Gluon-gluon-scalar vertex

$$\Delta\Gamma_{AA\Phi}^{bc\,\mu\nu}|^{R} \implies \boxed{0000} \underbrace{b^{2}\Lambda_{s}} \underbrace{b^{2}\Lambda_{$$

Frezzotti & Rossi (Roma - Tor Vergata)

NP mass generation

Origin of NP effects - NP terms in lattice correlators

Examples of NP corrections: gluon-gluon-scalar, $Q_{L/R}$ - $\bar{Q}_{L/R}$ -scalar & $Q_{L/R}$ - $\bar{Q}_{L/R}$ -gluon-scalar vertices ($p = k, \ell, \ell', ...$)

$$\begin{split} \Delta\Gamma_{AA\Phi}^{bc\mu\nu}(k,\ell)\Big|^{R} &= b^{2}\Lambda_{s}\alpha_{s}(\Lambda_{s})\frac{\delta^{bc}}{2}\{[k(k+\ell)\delta_{\mu\nu}-k_{\mu}(k+\ell)_{\nu}]+[\mu\to\nu]\}F_{AA\Phi}\left(\frac{\Lambda_{s}^{2}}{p^{2}}\right)\\ \Delta\Gamma_{Q\bar{Q}\Phi}(k,\ell)\Big|^{R} &= b^{2}\Lambda_{s}\alpha_{s}(\Lambda_{s})\frac{i}{2}\gamma_{\mu}(2k+\ell)_{\mu}F_{Q\bar{Q}\Phi}\left(\frac{\Lambda_{s}^{2}}{p^{2}}\right)\\ \Delta\Gamma_{Q\bar{Q}A\Phi}^{b,\mu}(k,\ell,\ell')\Big|^{R} &= b^{2}\Lambda_{s}\alpha_{s}(\Lambda_{s})ig_{s}\lambda^{b}\gamma_{\mu}F_{Q\bar{Q}A\Phi}\left(\frac{\Lambda_{s}^{2}}{p^{2}}\right) \end{split}$$

Like in LQCD, we assume NP effects displayed here persist up to $p^2 = O(b^{-2})$, and *conjecture* the asymptotic behaviour

$$F_{AA\Phi}\left(\frac{\Lambda_{s}^{2}}{p^{2}}\right) \stackrel{p^{2} \to \infty}{\longrightarrow} H_{AA} , \ F_{Q\bar{Q}\Phi}\left(\frac{\Lambda_{s}^{2}}{p^{2}}\right) \stackrel{p^{2} \to \infty}{\longrightarrow} H_{Q\bar{Q}} , \ F_{Q\bar{Q}A\Phi}\left(\frac{\Lambda_{s}^{2}}{p^{2}}\right) \stackrel{p^{2} \to \infty}{\longrightarrow} H_{Q\bar{Q}}$$

with $H_{AA} \& H_{Q\bar{Q}} \to O(1)$ constants

Origin of NP effects - Fermion mass generation

self-energy diagrams like

• give (e.g. central panel)

$$\underbrace{\frac{m_Q^{\text{eff}}}{\sum} \propto g_s^2 \alpha_s(\Lambda_s) \int^{1/b} \frac{d^4 k}{k^2} \frac{\gamma_\mu k_\mu}{k^2} \int^{1/b} \frac{d^4 \ell}{\ell^2 + m_\sigma^2} \frac{\gamma_\nu (k+\ell)_\nu}{k^2 + \ell^2} \cdot \frac{b^2 \gamma_\rho (k+\ell)_\rho b^2 \Lambda_s \gamma_\lambda (2k+\ell)_\lambda}{k^2 - \frac{g_s^2 \alpha_s(\Lambda_s) \Lambda_s}{k^2 - \frac{g_s^2 \alpha_s(\Lambda_s) \Lambda_s}{k^2 - \frac{g_s^2 \alpha_s(\Lambda_s) \Lambda_s}{k^2 - \frac{g_s^2 \alpha_s(\Lambda_s) \Lambda_s}{k^2 - \frac{g_s^2 \alpha_s(\Lambda_s) \Lambda_s}}}$$

[b⁴ factor compensated by the two-loop quartic divergency]

- a NP mass term arises $\implies C_1 \Lambda_s[\bar{Q}_L Q_R + \bar{Q}_R Q_L]$
- to leading order in $g_s^2 \Longrightarrow C_1 \Big|_{LO} = k_{LO} g_s^4$

Origin of NP effects - Correlators and WTIs

A few observations

- There are NP effects also in other correlation functions
- We can interpret the above NP terms as bona fide masses if
 - (1) "large" $O(v \gg \Lambda_s)$ mass terms are absent
 - **2** NP masses can be embodied in a $\chi_L \times \chi_R$ invariant term
 - (a) the chiral variation of which can be accommodated in the $\tilde{\chi}$ -WTIs

Indeed

- true in the critical theory, owing to $\eta = \eta_{cr}$ (see fig. in slide 26)
- 2 one can construct χ -inv. "mass term" $C_1 \Lambda_s [\bar{Q}_L U Q_R + \bar{Q}_R U^{\dagger} Q_L]$
 - a term like $m[\bar{Q}_L Q_R + \bar{Q}_R Q_L]$ is not $\chi_L \times \chi_R$ invariant
- the renormalized WTIs that embody NP mass terms read

•
$$\partial_{\mu} \langle Z_{\tilde{J}} \tilde{J}^{Li}_{\mu}(x) \hat{O}(0) \rangle \Big|_{\eta_{cr}} = \langle \tilde{\Delta}^{i}_{L} \hat{O}(0) \rangle \Big|_{\eta_{cr}} \delta(x) +$$

$$+ \frac{C_1}{2} \Lambda_s \langle \left[\bar{Q}_L \frac{\tau^i}{2} U Q_R - \text{hc} \right](x) \hat{O}(0) \rangle \Big|_{\eta_{cr}} + O(b^2)$$

U field is a non-analytic function of Φ

$$U = \frac{\Phi}{\sqrt{\Phi \Phi^{\dagger}}}$$

- *U* is the phase of •
- U transforms like Φ under $\chi_L \times \chi_R$
- $[\bar{Q}_L U Q_R + \bar{Q}_R U^{\dagger} Q_L]$ invariant under $\chi_L \times \chi_R$ transformations
- such a "generalised" mass term only possible thanks to U
- U only exists if $\langle \Phi \rangle \neq 0 \Rightarrow$ no NP mass/mixings in Wigner phase
- Wilson r is elevated to a field
- $r/|r| \rightarrow U$ a signature of NP effects

Part IV Mass Hierarchy

Frezzotti & Rossi (Roma - Tor Vergata)

NP mass generation

August 7, 2015 28 / 34

э

Super-strong & strong interactions: mass hierarchy

- Q_T feel super-strong & strong interactions, q only strong ones
- $q \rightarrow N_g = 3$ generations gauge group SU($N_c = 3$)
- $Q_T \rightarrow 1$ generation gauge groups $SU(N_c = 3) \times SU(N_T = 3)$
- $\beta_T^0/\beta_{QCD}^0 = \frac{11N_T 4N_c}{11N_c 4N_g 4N_T} = \frac{7}{3} \quad \Rightarrow \quad \Lambda_T \gg \Lambda_{QCD}$

• leading order vs. RG-improved estimates $(g_{s,T}^2 \rightarrow g_{s,T}^2(\Lambda_T))$

 $m_{Q_T}(\Lambda_T) \sim Z_{Q_T} g_T^2(\Lambda_T) \, \alpha_T(\Lambda_T) \, \Lambda_T \qquad m_q(\Lambda_T) \sim Z_q g_s^2(\Lambda_T) \, \alpha_s(\Lambda_T) \, \Lambda_T$

 $\frac{m_q}{m_{Q_T}}\Big|_{\Lambda_T} \sim \frac{\alpha_s^2(\Lambda_T)}{\alpha_T^2(\Lambda_T)} \sim \frac{1}{10} \div \frac{1}{100} \& q = \text{top} \Rightarrow m_{Q_T} \sim \text{few TeV's} \sim \underline{\Lambda_T \gg \Lambda_{QCD}}$

Part V Comments, conclusions & outlook

Frezzotti & Rossi (Roma - Tor Vergata)

NP mass generation

August 7, 2015 30 / 34

Comments

- NG bosons (π^1, π^2, π^3) associated to classical $S\chi_L \times \chi_R SB$
 - can electro-weak interactions be accommodated?
 - gauging of χ_L , with π^1, π^2, π^3 eaten up by weak-bosons
 - $M_{W/Z} \propto g_W \Lambda_T$
- 2 "NG bosons" with $m^2 \propto \rho^2 \leftrightarrow dynamical \tilde{\chi}SB$ (similarly to QCD)
 - Super-strong bound states with $M \sim \Lambda_T$
- **(3)** NP masses do not depend on the value of $v = \langle \Phi \rangle$
 - a natural choice is to take $v \gg \Lambda_T$ (otherwise, why not a Higgs?)
 - possibly then $v \sim O(\Lambda_{GUT})$ (recall $v \sim m_{\sigma} \gg \Lambda_T$)

OVER IT : NP masses depend on details of $\tilde{\chi}$ -breaking terms at UV scale

- universality violation at NP level ⇒ check by simulations!
- is $b^{-1} \gg v$ a finite, physical UV cutoff (maybe $b^{-1} \sim \Lambda_{Planck}$)?
- The presence of super-strong dof's significantly improves unification of couplings

・ロト ・ 同ト ・ ヨト ・ ヨ

• We have identified a NP mechanism for mass generation that

- allows an understanding of fermion mass hierarchy
- points at a super-strong interaction at a few TeV's scale
- The conjectured scheme is falsifiable by lattice simulations
 - Toy-model with Λ_s ≪ v ≪ b⁻¹
 - Strongly + Super-strongly interacting fermions
- The mechanism gives the "naturalness" problem a NP solution
 - exportable to realistic extensions of the SM?
 - need a good&convincing interpretation of 125 GeV resonance
 - maybe is a WW/ZZ-bound state with $E_b = O(\text{tenths}) \text{ GeV}$
 - need to study how the "low energy theory" deviates from SM

< ロ > < 同 > < 回 > < 回 >

Outlook

- A road to a full Beyond-the-Standard-Model model?
 - add to QCD super-strongly interacting Quarks and Leptons
 - no need for Extended Techni-Color
 - introduce electro-weak interactions by gauging χ_L
 - introduce families and split quark & lepton weak isospin doublets
 - all masses \propto ($\Lambda_T \times$ powers of coupling constants)
 - at this stage neutrinos are massless
- Phenomenology
 - problems?
 - FCNCs to a comfortably low level
 - no fast proton decay
 - comparing with SM (issues in order of decreasing energy)
 - strong and electro-weak coupling unification
 - techni-hadrons with $M_{H_T} \sim$ a few TeV's
 - "low energy theory" looks similar to the SM with $y_y \propto m_f$, but in a non-linear realisation of $SU(2)_L \times U_Y(1)$

Thank you for your attention

Frezzotti & Rossi (Roma - Tor Vergata)

NP mass generation

August 7, 2015 34 / 34