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1. Introduction - Mission Statement

An important goal for the majority of our community is to find signatures of new
physics and to try to unravel the underlying theoretical structure.

Precision Flavour physics is a key tool, complementary to the large p⊥ searches
at the LHC, in this endeavour.

If the LHC experiments discover new elementary particles BSM, then
precision flavour physics will be necessary to understand the underlying
framework.
The discovery potential of precision flavour physics should also not be
underestimated.
Precision flavour physics requires control of hadronic effects for which lattice
QCD simulations are essential.
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Personal Digression

My interest in lattice QCD was inspired at an ITP meeting on Nuclear
Chromodynamics organised by S.Brodsy and E.Moniz in 1985 at which Steve
Gottlieb gave a talk:

	  

My talk was entitled Status of Perturbative Calculations in QCD.
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1. Introduction (Cont.)

N.Carrasco, V.Lubicz, G.Martinelli, CTS, N.Tantalo, C.Tarantino, M.Testa, (arXiv:1502.00257)

Current numerical studies also with F.Sanfilippo and S.Simula

Electromagnetic corrections to hadronic masses are now being calculated.
For a review see A.Portelli at Lattice 2014. arXiv:1505.07057

The results of (some) weak matrix elements obtained from lattice QCD are now
being quoted with . O(1%) precision e.g. FLAG Collaboration, arXiv:1310.8555

fπ fK fD fDs fB fBs

130.2(1.4) 156.3(0.8) 209.2(3.3) 248.6(2.7) 190.5(4.2) 227.7(4.5)
(results given in MeV)

We therefore need to start considering electromagnetic (and other isospin
breaking) effects if we are to use these results to extract CKM matrix elements at
a similar precision.

For illustration, we consider fπ but the discussion is general. We do not use ChPT.
For a ChPT based discussion of fπ, see J.Gasser & G.R.S.Zarnauskas, arXiv:1008.3479
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Infrared Divergences

At O(α0)

Γ(π+ → µ+νµ) =
G2

F |Vud|2f 2
π

8π
mπ m2

µ

(
1−

m2
µ

m2
π

)2
.

At O(α) infrared divergences are present and we have to consider

Γ(π+ → µ+νµ(γ)) = Γ(π+ → µ+νµ) + Γ(π+ → µ+νµγ)

≡ Γ0 + Γ1 ,

where the suffix denotes the number of photons in the final state.

Each of the two terms on the rhs is infrared divergent, the divergences cancel in
the sum.

The cancelation of infrared divergences between contributions with virtual and
real photons is an old and well understood issue.

F.Bloch and A.Nordsieck, PR 52 (1937) 54

The question for our community is how best to combine this understanding with
lattice calculations of non-perturbative hadronic effects.

This is a generic problem if em corrections are to be included in the evaluation of
a decay process.
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Infrared Divergence - Example

pπ

pµ

pπ - k

pµ-k

k

I ∼
∫

small k
d4k

1
(k2 + iε)((pµ − k)2 − m2

µ + iε)((pπ − k)2 − m2
π + iε)

∼
∫

small k
d4k

1
k2(−2pµ · k)(−2pπ · k)

∼
∫

small k
d4k

1
k4 ⇒ infrared divergence .

This leads to a contribution to Γ0 of

Γπµ0 = Γtree
0

α

4π

(
2(1 + r2

µ)

1− r2
µ

log r2
µ log

(
m2
π

m2
γ

)
+ · · ·

)
,

where the photon mass, mγ , is introduced to regulate the infrared divergences
and rµ = mµ/mπ.
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Infrared Divergence - Example (Cont)

Γπµ0 = Γtree
0

α

4π

(
2(1 + r2

µ)

1− r2
µ

log r2
µ log

(
m2
π

m2
γ

)
+ · · ·

)
,

(c) (d) (e)

Γπµ1 = Γtree
0

α

4π

(
−

2(1 + r2
µ)

1− r2
µ

log r2
µ log

(
4∆E2

m2
γ

)
+ · · ·

)
.
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Lattice computations of Γ(π+ → µ+νµ(γ)) at O(α)

In principle, particularly as techniques and resources improve in the future, it may
be better to compute Γ1 nonperturbatively over a larger range of photon energies.

Initially at least, we do not propose to compute Γ1 nonperturbatively. Rather we
consider only photons which are sufficiently soft for the point-like (pt)
approximation to be valid.

A cut-off ∆E of O(10 - 20 MeV) appears to be appropriate both
experimentally and theoretically.

F.Ambrosino et al., KLOE collaboration, hep-ex/0509045; arXiv:0907.3594
A.Ceccucci, private communication

We now write

Γ0 + Γ1(∆E) = lim
V→∞

(Γ0 − Γpt
0 ) + lim

V→∞
(Γpt

0 + Γ1(∆E)) .

The second term on the rhs can be calculated in perturbation theory. It is
infrared convergent, but does contain a term proportional to log ∆E.
The first term is also free of infrared divergences.
Γ0 is calculated nonperturbatively and Γpt

0 in perturbation theory.
There is no zero-mode contribution in Γ0 − Γpt

0 .
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Outline of Talk

Γ0 + Γ1(∆E) = lim
V→∞

(Γ0 − Γpt
0 ) + lim

V→∞
(Γpt

0 + Γ1(∆E)) .

1 Introduction

2 What is GF at O(α)?

3 Proposed calculation of Γ0 − Γpt
0

4 Calculation of Γpt
0 + Γ1(∆E)

5 Estimates of structure dependent contributions to Γ1(∆E)

6 Summary and Conclusions
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2. What is GF at O(α)?

1 The results for the widths are expressed in terms of GF, the Fermi constant
(GF = 1.16632(2)× 10−5 GeV−2). This is obtained from the muon lifetime:

1
τµ

=
G2

Fm5
µ

192π3

[
1− 8m2

e

m2
µ

] [
1 +

α

2π

(
25
4
− π2

)]
.

S.M.Berman, PR 112 (1958) 267; T.Kinoshita and A.Sirlin, PR 113 (1959) 1652

This expression can be viewed as the definition of GF. Many EW corrections
are absorbed into the definition of GF; the explicit O(α) corrections come
from the following diagrams in the effective theory:

µ e

ν̄e

νµ

µ e

ν̄e

νµ

µ e

ν̄e

νµ

together with the diagrams with a real photon.
These diagrams are evaluated in the W-regularisation in which the photon
propagator is modified by: A.Sirlin, PRD 22 (1980) 971

1
k2 →

M2
W

M2
W − k2

1
k2 .

(
1
k2 =

1
k2 −M2

W
+

M2
W

M2
W − k2

1
k2

)
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W-regularization (cont)

The γ −W box diagram:

W
µ e

ν̄e

νµ

µ e

ν̄e

νµ

As an example providing some evidence & intuition that the W-regularization is
useful consider the γ −W box diagram.

In the standard model (left-hand diagram) it contains both the γ and W
propagators.

In the effective theory this is preserved with the W-regularization where the
photon propagator is proportional to

1
k2

1
k2 −M2

W

and the two diagrams are equal up to terms of O(q2/M2
W), where q is the

momentum of the e and νe.
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3. Proposed calculation of Γ0 − Γpt
0

Most (but not all) of the EW corrections which are absorbed in GF are common to
other processes (including pion decay)⇒ factor in the amplitude of
(1 + 3α/4π(1 + 2Q̄) log MZ/MW), where Q̄ = 1

2 (Qu + Qd) = 1/6.
A.Sirlin, NP B196 (1982) 83; E.Braaten & C.S.Li, PRD 42 (1990) 3888

We therefore need to calculate the pion-decay diagrams in the effective theory
with

Heff =
GF√

2
V∗ud

(
1 +

α

π
log

MZ

MW

)
(d̄Lγ

µuL)(ν̄`, L γµ `L)

in the W-regularization.
Thus for example, with the Wilson action for both the gluons and fermions:

OW−reg
1 =

(
1 +

α

4π

(
2 log a2M2

W − 15.539
))

Obare
1 +

α

4π

(
0.536 Obare

2

+1.607 Obare
3 − 3.214 Obare

4 − 0.804 Obare
5

)
,

where

O1 = (d̄γµ(1− γ5)u) (ν̄`γµ(1− γ5)`) O2 = (d̄γµ(1 + γ5)u) (ν̄`γµ(1− γ5)`)

O3 = (d̄(1− γ5)u) (ν̄`(1 + γ5)`) O4 = (d̄(1 + γ5)u) (ν̄`(1 + γ5)`)

O5 = (d̄σµν(1 + γ5)u) (ν̄`σµν(1 + γ5)`) .
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Proposed calculation of Γ0 − Γpt
0 (Cont)

Consider now the evaluation of Γ0.

νℓ

ℓ+u

d

π+

(a)

νℓ

ℓ+u

d

π+

(b)

νℓ

ℓ+u

d

π+

(c)

The correlation function for this set of diagrams is of the form:

C1(t) = −1
2

∫
d 3~x d 4x1 d 4x2 〈0|T

{
JνW(0) jµ(x1)jµ(x2)φ

†(~x,−t)
}
| 0〉 ∆(x1, x2) ,

where jµ(x) =
∑

f Qf f̄ (x)γµf (x), JW is the weak current, φ is an interpolating
operator for the pion and ∆ is the photon propagator.
Combining C1 with the lowest order correlator:

C0(t) + C1(t) ' e−mπ t

2mπ
Zφ 〈 0 |JνW(0) |π+〉 ,

where now O(α) terms are included.

e−mπ t ' e−m0
π t (1− δmπ t) and Zφ is obtained from the two-point function.
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Proposed calculation of Γ0 − Γpt
0 (Cont)

νℓ

ℓ+u

d

π+

(e)

νℓ

ℓ+u

d

π+

(f)

C̄1(t)αβ = −
∫

d 3~x d 4x1 d 4x2 〈0|T
{

JνW(0) jµ(x1)φ
†(~x,−t)

}
| 0〉 ∆(x1, x2)

×
(
γν(1− γ5)S(0, x2)γµ

)
αβ

eEµ t2 e−i~pµ·~x2

' Zφ0
e−m0

π t

2m0
π

(M̄1)αβ

Corresponding contribution to the amplitude is ūα(pνµ)(M̄1)αβvβ(pµ).

Diagrams (e) and (f) are not simply generalisations of the evaluation of fπ.

We have to be able to isolate the finite-volume ground state (pion).

The Minkowski↔ Euclidean continuation can be performed (the time integrations
are convergent).
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Convergence of the t2 integration

x2

kl

kγ

pℓ

For every term in the ~kγ integration, ωγ + ωl > El so the t2 behaviour,
exp[−(ωk + ωl − El)t2] is convergent.
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Lepton’s Wave Function Renormalization

The lepton’s wave function renormalisation cancels in the difference Γ0 − Γpt
0 .

νℓ

ℓ+u

d

π+

(d)
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There are also disconnected diagrams to be evaluated.

νℓ

ℓ+u

d

π+

q

(a)

νℓ

ℓ+u

d

π+

q

(b)

νℓ

ℓ+u

d

π+

q

(c)

νℓ

ℓ+u

d

π+

q

(d)

νℓ

ℓ+u

d

π+

q1 q2

(e)
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Preliminary Results for “Crossed" Diagrams

Twisted-mass study, 243 × 48 lattice with a = 0.086 fm, mπ ' 475 MeV, 240 configs with
3 stochastic sources per configuration. together with F.Sanfilippo and S.Simula
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Chris Sachrajda 20th August 2015 18



Time dependence in unintegrated correlation functions

0 2 4 6 8 10 12
t1

0

5e-09

1e-08

1.5e-08

C exp[(Eπ+Eγ-Mπ) t]

t1<=tw<=t2
fixing t2=tw+2
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f pt The nasty diagram 
0 sum vs integral under study 

slide from G.Martinelli, Benasque 2015
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4. Calculation of Γpt = Γpt
0 + Γpt

1

The total width, Γpt was calculated in 1958/9 using a Pauli-Villars regulator for the
UV divergences and mγ for the infrared divergences.

S.Berman, PR 112 (1958) 267, T.Kinoshita, PRL 2 (1959) 477

This is a useful check on our perturbative calculation.

In the perturbative calculation we use the following Lagrangian for the interaction
of a point-like pion with the leptons:

Lπ-µ-νµ = i GFfπV∗ud {(∂µ − ieAµ)π}
{
ψ̄νµ

1 + γ5

2
γµψµ

}
+ H.C. .

The corresponding Feynman rules are:

π+

ℓ+

νℓ

= −iGFfπV
∗
ud p

µ
π

1+γ5

2
γµ

π+

ℓ+

νℓ

γ∗

= ieGFfπV
∗
ud g

µν 1+γ5

2
γµ
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Diagrams to be evaluated

and

(a) (b) (c)

(d) (e) (f)
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4. Calculation of Γpt = Γpt
0 + Γpt

1 (cont)

We find, for Eγ < ∆E

Γpt(∆E) = Γtree
0 ×

(
1 +

α

4π

{
3 log

(
m2
π

M2
W

)
+ log

(
r2
`

)
− 4 log(r2

E) +
2− 10r2

`

1− r2
`

log(r2
`)

−2
1 + r2

`

1− r2
`

log(r2
E) log(r2

`)− 4
1 + r2

`

1− r2
`

Li2(1− r2
`)− 3

+
[3 + r2

E − 6r2
` + 4rE(−1 + r2

`)

(1− r2
`)

2
log(1− rE) +

rE(4− rE − 4r2
`)

(1− r2
`)

2
log(r2

`)

− rE(−22 + 3rE + 28r2
`)

2(1− r2
`)

2
− 4

1 + r2
`

1− r2
`

Li2(rE)
] })

,

where rE = 2∆E/mπ and r` = m`/mπ.

We believe that this is a new result.
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4. Calculation of Γpt = Γpt
0 + Γpt

1 (cont)

The total rate is readily computed by setting rE to its maximum value, namely
rE = 1− r2

`, giving

Γpt = Γtree
0 ×

{
1 +

α

4π

(
3 log

(
m2
π

M2
W

)
− 8 log(1− r2

`)−
3r4
`

(1− r2
`)

2
log(r2

`)

−8
1 + r2

`

1− r2
`

Li2(1− r2
`) +

13− 19r2
`

2(1− r2
`)

+
6− 14r2

` − 4(1 + r2
`) log(1− r2

`)

1− r2
`

log(r2
`)

)}
.

This result agrees with the well known results in literature providing an important
check of our calculation.
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4. Calculation of Γpt = Γpt
0 + Γpt

1 (cont)

It is of course possible instead to impose a cut-off on the energy of the final-state
lepton, requiring it to be close to its maximum value Emax

` = mπ
2 (1 + r2

`).

We also give, up to O(∆E`), the distribution for Γpt(∆E`) defined as

Γpt(∆E`) =

∫ Emax
`

Emax
`
−∆E`

dE′`
dΓpt

dE′`
,

where 0 ≤ ∆E` ≤ (mπ − m`)2/(2mπ);

Γpt(∆E`) = Γtree
0 ×

{
1 +

α

4π

[
3 log

(
m2
π

M2
W

)
+ 8 log

(
1− r2

`

)
− 7

+ log
(

r2
`

) 3− 7r2
` + 8∆E` + 4

(
1 + r2

`

)
log
(
1− r2

`

)
1− r2

`

+ log (2∆E`)
(
−8− 4

1 + r2
`

1− r2
`

log
(

r2
`

))]}
.

Summary: The perturbative calculation of Γpt
0 + Γ1(∆E) is done.
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5. Estimates of structure dependent contributions to Γ1(∆E)

For sufficiently small ∆E the structure dependent contributions to Γ1 can be
neglected.

How big might they be for experimentally accessible values of ∆E?
To estimate this for fπ and fK we use Chiral Perturbation Theory.

J.Bijnens, G.Ecker and J.Gasser, hep-ph/9209261,
J.Bijnens, G.Colangelo, G.Ecker and J.Gasser, hep-ph/9411311.

V. Cirigliano and I. Rosell, arXiv:0707.3439 [hep-ph]],
L. Ametller, J. Bijnens, A. Bramon and F. Cornet, hep-ph/9302219.

We define

RA
1 (∆E) =

ΓA
1 (∆E)

Γα,pt
0 + Γpt

1 (∆E)
, A = {SD,INT} ,

where SD and INT refer to the structure dependent and interference (between SD
and pt) contributions respectively.

Note that the notation I am using here differs from that in the paper.
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5. Estimates of structure dependent contributions to Γ1(∆E) (cont)

Start with a decomposition in terms of Lorenz invariant form factors of the
hadronic matrix element

Hµν(k, pπ) =

∫
d4x eikx T〈0|jµ(x)JνW(0)|π(pπ)〉

and separate the contribution corresponding to the approximation of a point-like
pion Hµν

pt , from the structure dependent part Hµν
SD ,

Hµν = Hµν
SD + Hµν

pt .

Hµν
pt is simply given by

Hµν
pt = fπ

[
gµν − (2pπ − k)µ(pπ − k)ν

(pπ − k)2 − m2
π

]
.

The structure dependent component can be parametrised by four independent
invariant form factors which we define as

Hµν
SD = H1

[
k2gµν − kµkν

]
+ H2

{[
(k · pπ − k2)kµ − k2(pπ − k)µ

]
(pπ − k)ν

}
−i

FV

mπ
εµναβkαpπβ +

FA

mπ

[
(k · pπ − k2)gµν − (pπ − k)µkν

]
.
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5. Estimates of structure dependent contributions to Γ1(∆E) (cont)

For the decay into a real photon, only FV and FA contribute.

At O(p4) in chiral perturbation theory,

FV =
mP

4π2fπ
and FA =

8mP

fπ
(Lr

9 + Lr
10) ,

where P = π or K and Lr
9, Lr

10 are Gasser-Leutwyler coefficients.

The numerical values of these constants have been taken from the review by
M.Bychkov and G.D’Ambrosio in the PDG. FV and FA are 0.0254 and 0.0119 for
the pion and 0.096 and 0.042 for the Kaon (for the pion these values of the form
factors, obtained from direct measurements, can be found in the supplement to
the PDG.)
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5. Estimates of structure dependent contributions to Γ1(∆E) (cont)

Pion
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5. Estimates of structure dependent contributions to Γ1(∆E) (cont)

For heavy-light mesons we don’t have such ChPT calculations.

For the B-meson in particular we have another small scale < ΛQCD,
mB∗ − mB ' 45 MeV so that we may expect that we will have to go to smaller ∆E
in order to be able to neglect SD effects.

Calculations based on the extreme approximation of single pole dominance
suggest that this is likely to be the case.

D. Becirevic, B. Haas and E. Kou, arXiv:0907.1845 [hep-ph]

To be investigated further!
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6. Summary and Conclusions

Lattice calculations of some physical quantities are approaching O(1%) precision
⇒ we need to include isospin-breaking effects, including electromagnetic effects,
to make the tests of the SM even more stringent.
For decay widths and scattering cross sections including em effects introduces
infrared divergences.
We propose a method for dealing with these divergences, illustrating the
procedure by a detailed study of the leptonic (and semileptonic) decays of
pseudoscalar mesons.
Although challenging, the method is within reach of present simulations and we
will now implement the procedure in an actual numerical computation.

Power-like FV corrections, O(1/(LΛQCD)n), to be evaluated.
O(ααs) matching factors to be studied.

In the future one can envisage relaxing the condition ∆E � ΛQCD, including the
emission of real photons with energies which do resolve the structure of the initial
hadron. Such calculations can be performed in Euclidean space under the same
conditions as above, i.e. providing that there is a mass gap.

The natural extension of the present proposal is to subtract and add Γpt
1 (∆E)

to determine Γ1(∆E)− Γpt
1 (∆E), so that our calculation of Γpt

0 + Γpt
1 (∆E) will

still be useful.
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