The running coupling of the minimal sextet composite Higgs model

1506.06599

Daniel Nogradi
in collaboration with

Zoltan Fodor, Kieran Holland

Julius Kuti, Santanu Mondal, Chik Him Wong

The model

Composite Higgs

$$
S U(3) \quad N_{f}=2 \quad R=2 S
$$

massless, Dirac fermions

$$
\text { almost QCD but fundamental } \rightarrow \text { sextet }
$$

Same as what Julius talked about this morning

Motivations

See Ayana's talk yesterday

On the lattice very important:
control all systematic errors before conclusions!

Plan

- Define gradient flow based running coupling scheme
- Lattice discretizations
- Continuum extrapolation
- Assess systematic effects
- Final result

By the way: first fully controlled non-perturbative continuum result on the model :)

Previous results
DeGrand-Shamir-Svetitsky, 0803.1707, 1006.0707 (no continuum)

Continuum running coupling scheme

Work in finite box, T^{4}, use gradient flow, $\sqrt{8 t} / L=c$ fix

$$
g^{2}(L) \sim\left\langle t^{2} E(t)\right\rangle
$$

Gauge fields periodic, massless fermions anti-periodic in all 4 directions

Step scaling $L \rightarrow s L$, discrete β-function $\frac{g^{2}(s L)-g^{2}(L)}{\log \left(s^{2}\right)}, s=3 / 2$

Lattice discretization

Fermions: $m=0$, rooted staggered with stout

Gauge links: 3 ingredients

- Flow (Wilson and tree level Symanzik)
- Dynamical gauge action (tree level Symanzik)
- Observable E (clover)

Terminology: flow-action-observable: WSC and SSC.

Continuum should agree for both!

Wait, what???

Rooted staggered fermions with $m=0$???

Rooting and $m=0$

Golterman, Shamir, Sharpe, ...:

Rooting is okay for $m>m_{*}$, where m_{*} depends on the lattice spacing, a decreases m_{*} decreases

But remember: above is for infinite volume!

In infinite volume, m is the only IR regulator

We have finite volume L which is itself an IR regulator

Rooting and $m=0$

Modified Golterman, Shamir, Sharpe, ...:

As long as we have a large enough IR regulator rooting is okay!

Key insight: rooting fails due to small Dirac eigenvalues
m fixes this, finite volume and anti-periodic fermions ditto
$\sim 1 / L^{\alpha}$

Lower bound on m (HMC fails for too small m anyway)

Upper bound on L (HMC fails for too large L anyway)

Step scaling

$\frac{g^{2}(s L)-g^{2}(L)}{\log s^{2}}$ discrete β-function
$8 \rightarrow 12, \quad 12 \rightarrow 18, \quad 16 \rightarrow 24, \quad 20 \rightarrow 30, \quad 24 \rightarrow 36$
for many fixed β bare couplings

Plot discrete β-function as a function of $g^{2}(L)$

5 steps: 5 lattice spacings \rightarrow can quantify systematic error from continuum extrapolation

Results - raw data

Flow-Action-Observable $=$ WSC

Results, WSC
$8 \rightarrow 12$,

Results, W SC
$8 \rightarrow 12,12 \rightarrow 18$

Results, $W S C$
$8 \rightarrow 12,12 \rightarrow 18,16 \rightarrow 24$

Results, W SC
$8 \rightarrow 12,12 \rightarrow 18,16 \rightarrow 24,20 \rightarrow 30$

Results, W SC
$8 \rightarrow 12,12 \rightarrow 18,16 \rightarrow 24,20 \rightarrow 30,24 \rightarrow 36$

Results, W SC
$8 \rightarrow 12,12 \rightarrow 18,16 \rightarrow 24,20 \rightarrow 30,24 \rightarrow 36$

Results - raw data

Flow-Action-Observable $=$ SSC

Results, $S S C$
$8 \rightarrow 12$,

Results, $S S C$
$8 \rightarrow 12,12 \rightarrow 18$

Results, $S S C$
$8 \rightarrow 12,12 \rightarrow 18,16 \rightarrow 24$

Results, $S S C$
$8 \rightarrow 12,12 \rightarrow 18,16 \rightarrow 24,20 \rightarrow 30$

Results, $S S C$
$8 \rightarrow 12,12 \rightarrow 18,16 \rightarrow 24,20 \rightarrow 30,24 \rightarrow 36$

Results, $S S C$
$8 \rightarrow 12,12 \rightarrow 18,16 \rightarrow 24,20 \rightarrow 30,24 \rightarrow 36$

Continuum extrapolation

Interpolation $g^{2}(\beta)$ at fixed L / a

$$
\frac{\beta}{\sigma}-\frac{1}{g^{2}(\beta)}=\sum_{m=0}^{n} c_{m}\left(\frac{\sigma}{\beta}\right)^{m}
$$

Can now interpolate all data

Can pick fixed $g^{2}(L)$ and read off 5 discrete β-function values corresponding to 5 steps, i.e. 5 lattice spacings and continuum extrapolate linearly in a^{2} / L^{2}

8 lattice volumes $\rightarrow 8$ independent interpolations

Systematic uncertainty from continuum extrapolation

Twofold:

- Interpolation orders $n=3,4,5$
- Number of points in continuum extrapolation: 4,5

Systematic uncertainty 1: interpolation orders

There is no theory for choosing interpolation order n

These are purely empirical fits

What should n be?

Systematic uncertainty 1: interpolation orders

Sometimes what people do:
Manually select interpolation orders to get good $\chi^{2} /$ dof values
Problem 1: χ^{2} follows χ^{2}-distribution, peak for $\chi^{2} /$ dof around 1 , but it's perfectly okay to have $\chi^{2} /$ dof away from 1 sometimes, if we have many independent fits
I.e. it's very unlikely that many independent χ^{2} fits will all give values close to $\chi^{2} / d o f=1$

Problem 2: manually choosing orders introduces bias

Systematic uncertainty 1: interpolation orders

One solution: consider all interpolation orders and impose a statistical test and demand at least a certain prescribed probability (30\%) for a particular assignments of orders

Kolmogorov-Smirnoff test is simple and works very well

Originally from Budapest-Wuppertal collaboration, finite temperature QCD (interpolations in T, etc.)

Systematic uncertainty 1: interpolation orders

χ^{2} are χ^{2}-distributed, goodness of fit q-values are uniformly distributed on $[0,1]$.

Do a Kolmogorov-Smirnoff test on the q-values

How likely or unlikely it is to have the $8 q$-values drawn from a uniform distribution?

Kolmogorov-Smirnoff test

Let $S_{N}(x)$ be measured cumulative probability distribution from N samples

Did it come from drawing N samples from a given distribution with cumulative probability distribution $P(x)$?

Need to quantify difference between $S_{N}(x)$ and $P(x)$

$$
D=\max \left|S_{N}(x)-P(x)\right|
$$

Kolmogorov-Smirnoff test

Kolmogorov-Smirnoff test

$$
D=\max \left|S_{N}(x)-P(x)\right|
$$

The probability $p_{K S}$ that largest deviation is actually D after drawing N samples from $P(x)$ is:

$$
p_{K S}=Q(D(\sqrt{N}+0.12+0.11 / \sqrt{N}))
$$

where $Q(\lambda)=1-\vartheta_{4}\left(e^{-2 \lambda^{2}}\right)$
Valid for large N, i.e. $N>4$

Systematic uncertainty 1: interpolation orders

Summary

Apply Kolmogorov-Smirnoff test on q-values (compare with uniform distribution)

Demand $p_{K S}>30 \%$

Systematic uncertainty 1: interpolation orders

Consider (almost) all possible interpolation orders
$L / a=8,12,16,18,24$ we let $n=3,4,5$
$L / a=20,30,36$ we let $n=4,5$
Total: $3^{5} \cdot 2^{3}=1944$ interpolations using 5 lattice spacings (i.e. all volumes)

Allow only those that have $p_{K S}>30 \%$
SSC:240 and WSC:306

Systematic uncertainty 2: continuum extrapolation

Using all 5 or only 4 (dropping roughest) steps, i.e. lattice spacings

Previous page was for 5-point extrapolations

With 4-point extrapolations, drop $8 \rightarrow 12$:
Total: $3^{4} \cdot 2^{3}=648$ interpolations
SSC: 240 and $W S C: 249$ with $p_{K S}>30 \%$

Systematic uncertainty 2: continuum extrapolation

Still need to average all the allowed continuum fits
Options:

- weight by AIC: $\sim \exp \left(-\chi^{2} / 2-p\right)$
- weight by q-values
- no weight
\rightarrow weighted histogram, read off central 68%
We have our estimate of the systematic error! (add it in quadrature)

Which option from above doesn't matter, all consistent, in practice choose AIC

Results

Repeat all this for each $g^{2}=1.0,2.0,3.0,4.0,5.0,6.0$

Histograms and representative example of actual extrapolations for both $W S C$ and $S S C$
$\chi^{2} /$ dof of each fit in legend

Notes

Agreement between continuum $W S C$ and $S S C$, consistency check
5 points in scaling region: $g_{W S C}^{2}<2.5$ and $g_{S S C}^{2}<5.5$
SSC scales better, final result for $S S C$

What happened to the WSC "fix points" at finite lattice volumes?

They didn't survive the continuum limit \rightarrow lattice artifacts

Only remnant: some of the points in the continuum extrapolation was from negative values, but the continuum result is positive

Final result from $S S C$

Conclusions and Iessons learned

- In the range $0<g^{2}<6.5$ no sign of β-function turning back
- This range includes 3-loop and 4-loop MSbar fixed points $g_{*}^{2}=6.28$ and $g_{*}^{2}=5.73$
- Probably they are perturbative artifacts, similarly to large 2loop fixed point, $g_{*}^{2}=10.58$
- Agreement with Schwinger-Dyson resummation (chiral symmetry breaking happens before reaching would-be fixed point)
- Consistency with our previous work on chiral dynamics and mass spectrum

Conclusions and Iessons learned

- Continuum limit extremely important and control of related uncertainty
- May lead to qualitative change in behavior (finite lattice volume "fix point" disappears in continuum)
- Extremely important to consider large volumes
- Extremely important to consider several discretizations

Backup slides

