Hot, massive, and awfully complicated

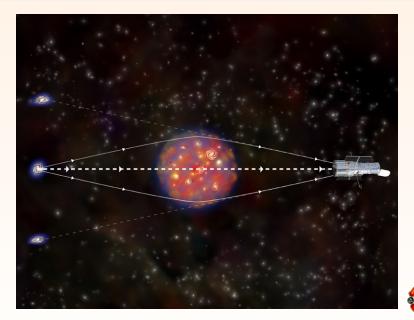
Measuring the mass of the merging cluster 1E0657-56 using strong and weak gravitational lensing

Maruša Bradač

Douglas Clowe, Anthony Gonzales, Maxim Markevitch Phil Marshall, Bill Forman, Christine Jones, Tim Schrabback, Dennis Zaritsky

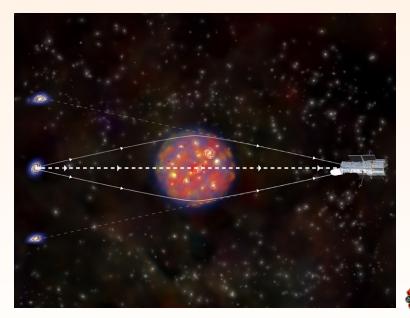
KIPAC Institute

26th September 2006



Clusters are

- ...great tools for cosmology!!
- How to measure cluster mass distribution?
 - X-ray
 - Dynamical methods
 - Gravitational lensing
- One cluster, three methods, same result??!!! In principle yes, in practice....



Strong or weak lensing?

- Strong or weak?
 - Strong lensing sets tight constraints on the mass distribution near $\theta_{\rm E}$ and often relies on parametrised models.
 - Weak lensing measures the mass distribution over the entire observed field.
- Problems like mass-sheet degeneracy Bradač et al. (2004) (weak), extending mass measurements to small radii (weak), extending mass measurements to large radii (strong) can all be eliminated by doing:
- ⇒ Strong AND Weak!!

Strong and weak lensing united

- The idea of combining weak and strong lensing not new (e.g. Natarajan and Kneib 1996; Abdelsalam et al. 1998; Kneib et al. 2003; Diego et al. 2005; Cacciato et al. 2005).
- We combine strong and weak lensing constraints in a "non-parametric" fashion (parametrisation as general as possible).
- Need to properly include weak lensing constraints in the vicinity where multiple images form (and the lens is not weak any longer).
- Include redshift information for strong (and weak) lensing sources (helps breaking the mass-sheet degeneracy).
- Bradač et al. (2006) and Bradač et al. (2005).

Strong and weak lensing united

- Following the idea of Bartelmann et al. (1996) we parametrise the lens by considering the values of the potential ψ_k on a regular grid.
- The penalty function includes weak lensing (extended to the cluster centre), strong lensing and regularisation.

$$\chi^2(\psi_k) = \chi_{\epsilon}^2(\psi_k) + \chi_{\mathcal{M}}^2(\psi_k) + \eta R(\psi_k) . \tag{1}$$

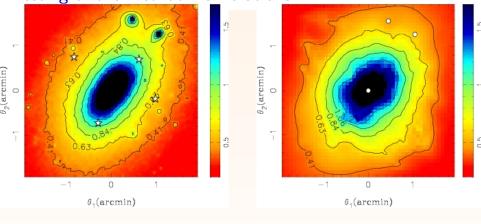
 Start from some trial solution, linearise and iteratively solve the equation

$$\frac{\partial}{\partial \psi_k} \chi^2(\psi_k) = 0 \ . \tag{2}$$

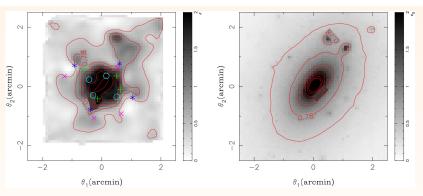
Outline of the method

 Start from some trial solution, linearise and iteratively solve the equation

$$\frac{\partial}{\partial \psi_k} \chi^2(\psi_k) = 0 \ . \tag{3}$$


- \Rightarrow Trial solution from strong lensing, weak lensing, or set $\kappa_{ij}^{(0)}=0$, etc.
- $\Rightarrow \kappa(\vec{\theta_i}), \gamma(\vec{\theta_i}), \text{ and } \vec{\alpha}(\vec{\theta_m}) \text{ are written in terms of } \psi_k \text{ by using finite differencing methods and bilinear interpolation. Keep all non-linear terms fixed in each iteration step.$

Testing of the method - simulations

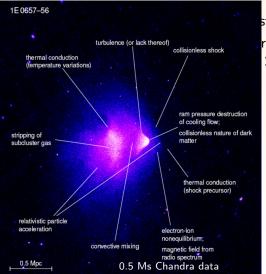

 κ from sim. (V. Springel) $M_{\rm t}(<340~{\rm h}^{-1}{\rm kpc})=0.99~10^{15}\,{\rm M}_{\odot}$ $z_d=0.4,~z_{\rm s}=1.76$ $3.8\times3.8~{\rm arcmin}^2$

Reconstructed κ (ground based quality) $M_{\rm I}(<340~{\rm h^{-1}kpc})=(1.0\pm0.1)~10^{15}M_{\odot}$ $N_{\rm g}=210$, z from WL data $\sigma_{\epsilon}=0.2$, $\sigma_{\rm err}=0.1$

Testing of the method - simulations

Improvement when using space based data

The bullet cluster 1E0657-56

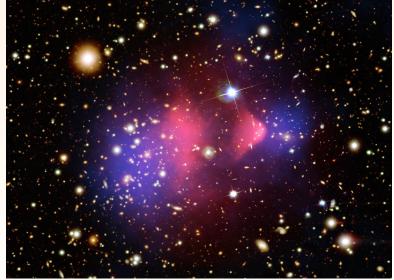

- One of the hottest and most luminous X-ray clusters known.
- Unique case of a major supersonic cluster merger occurring nearly in the plane of the sky ($i < 15^\circ$, Markevitch et al. 2002).

The bullet cluster 1E0657-56

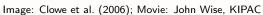
- One
- Unique
 the p

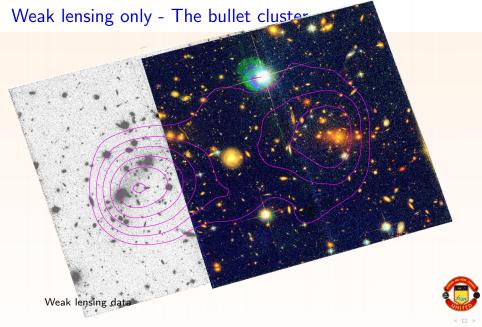
sters known.

r occurring nearly in 2002).

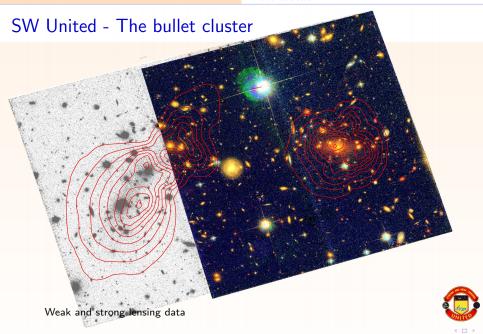


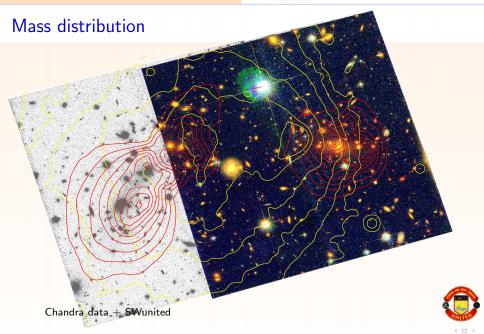
The bullet cluster 1E0657-56


- One of the hottest and most luminous X-ray clusters known.
- Unique case of a major supersonic cluster merger occurring nearly in the plane of the sky ($i < 15^{\circ}$, Markevitch et al. 2002).
- Using the gas density jump at the shock they derived a shock Mach number of 3.2 ± 0.8 , which corresponds to a subcluster velocity 4500^{+1100}_{-800} km s⁻¹.
- "How Rare is the Bullet Cluster?" (Hayashi and White 2006). Rare, but not exceptionally.
- The peak of the density of the cluster galaxies is offset from the X-ray halo at 3.4σ significance.
- \bullet What does our your grandmother's $^{\rm TM}$ gravity has to say about the system?



The bullet cluster



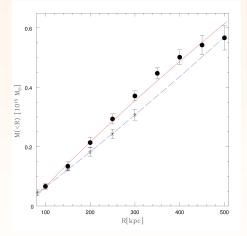


Mass distribution - in numbers

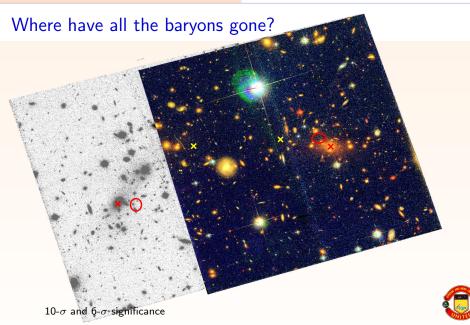
- Only the combination of weak+strong lensing allow us to derive a high-resolution, absolutely calibrated mass map, with no assumptions on the physical properties of the underlying cluster potential.
- Projected, enclosed mass $M_{\rm main}(<250~{\rm kpc})=(2.8\pm0.2)\times10^{14}M_{\odot} \ M_{\rm sub}(<250~{\rm kpc})=(2.3\pm0.2)\times10^{14}M_{\odot}$
- Assuming an isothermal profile (do you actually believe this assumption?)

$$\sigma_{\text{main}} = (1400 \pm 100) \text{ km s}^{-1}$$

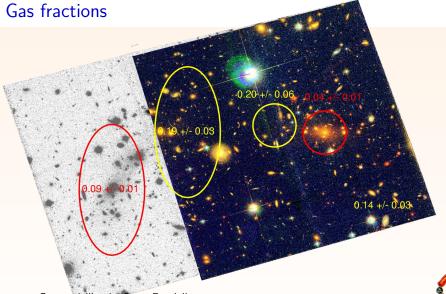
 $\sigma_{\text{sub}} = (1200 \pm 100) \text{ km s}^{-1}$



Mass distribution - profile


• The integrated mass profile (fit $\kappa(r) \propto r^{-n}$, $n_{
m main} = 1.2$, and

 $n_{\rm sub} = 0.9$):


Dark matter properties

- Combining the Chandra data with lensing mass maps \Rightarrow place an upper bound on the dark matter self-interaction cross section $\sigma/m < 1 {\rm cm}^2 {\rm g}^{-1}$ (Markevitch et al. 2004).
- \Rightarrow Significant offset between subcluster X-ray gas core and dark matter peak gives $\frac{\sigma}{m} < 10 \text{ cm}^2 g^{-1}$.
- \Rightarrow Survival of the subcluster dark matter peak during interaction gives $\frac{\sigma}{m} < 3 \text{ cm}^2 g^{-1}.$
- \Rightarrow No loss of mass from subcluster during interaction gives $\frac{\sigma}{m} < 0.8 \text{ cm}^2 g^{-1}$.

Really direct evidence for dark matter?

- Adopting not-your-grandmothers gravity:
- ⇒ Angus et al. (2006) Can fit weak lensing kappa contours with gas+2eV Neutrino model
- ⇒ Moffat (2006) MOG to displace kappa peaks away from gas peaks very unphysical profile.

Conclusions

- Only the combination of strong and weak lensing lets us break the mass-sheet degeneracy.
- Very powerful to constrain mass distribution in the cores of the clusters and to reconstruct the critical curves (especially where "standard" parametric modelling fails.
- We have obtained tight constraints on mass-distribution in 1E0657-56 - most of the matter not where most of the baryons are!
- A unique cluster merger system combining all possible data sets there is a lot to be learned - constraints on DM self interaction cross section, gas physics, cluster dynamics, merger history, ...
- Gravitational lensing is truly golden for this "golden lens".

Bibliography

- H. M. Abdelsalam, P. Saha, and L. L. R. Williams. Nonparametric Reconstruction of Abell 2218 from Combined Weak and Strong Lensing. AJ, 116:1541, Oct. 1998.
 G. W. Angus, H. Shan, H. Zhao, and B. Famaey. On the Law of Gravity, the Mass of Neutrinos and the Proof of Dark Matter.
- astro-ph/0609125, Sept. 2006.
- M. Bartelmann, R. Narayan, S. Seitz, and P. Schneider. Maximum-likelihood Cluster Reconstruction. ApJ, 464:L115, June 1996.
- M. Bradač, M. Lombardi, and P. Schneider. Mass-sheet degeneracy: Fundamental limit on the cluster mass reconstruction from statistical (weak) lensing. A&A, 424:13, Sept. 2004.
 M. Bradač, M. Schneider, M. Lombardi, and T. Esha, Strang and weak lensing united in the combined strong and weak lensing.
- M. Bradač, P. Schneider, M. Lombardi, and T. Erben. Strong and weak lensing united I: the combined strong and weak lensing cluster mass reconstruction method. A&A, 437:39, July 2005.
- M. Bradač, D. Clowe, A. Gonzalez, P. Marshall, W. Forman, C. Jones, M. Markevitch, S. Randall, T. Schrabback, and D. Zaritsky. Strong and weak lensing united III: the cluster mass distribution of the merging cluster 1E0657-56. Accepted for publication in ApJ, astro-ph/0608408, 2006.
- M. Cacciato, M. Bartelmann, M. Meneghetti, and L. Moscardini. Combining weak and strong lensing in cluster potential reconstruction. astro-ph/0511694, Nov. 2005.
- D. Clowe, P. Schneider, A. Aragón-Salamanca, M. Bremer, G. de Lucia, C. Halliday, P. Jablonka, B. Milvang-Jensen, R. Pelló, B. Poggianti, G. Rudnick, R. Saglia, L. Simard, S. White, and D. Zaritsky. Weak lensing mass reconstructions of the ESO Distant Cluster Survey. A&A, 451:395–408, May 2006.
- J. M. Diego, M. Tegmark, P. Protopapas, and H. B. Sandvik. Combined reconstruction of weak and strong lensing data with WSLAP. astro-ph/0509103, Sept. 2005.
- E. Hayashi and S. D. M. White. How Rare is the Bullet Cluster? ArXiv Astrophysics e-prints, Apr. 2006.
- J. Kneib, P. Hudelot, R. S. Ellis, T. Treu, G. P. Smith, P. Marshall, O. Czoske, I. Smail, and P. Natarajan. A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+1654 at z=0.4. II. The Cluster Mass Distribution. ApJ, 598:804, Dec. 2003.
- Space Telescope Study of the Cluster Cl 0024+16b4 at z=0.4. II. 1 he Cluster Mass Distribution. ApJ, 598:804, Dec. 2003. M. Markevitch, A. H. Gonzalez, L. David, A. Vikhlinin, S. Murray, W. Forman, C. Jones, and W. Tucker. A Textbook Example of a Bow Shock in the Merging Galaxy Cluster 1E 0657-56. ApJ, 567:L27-L31, Mar. 2002.
- M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, W. Forman, C. Jones, S. Murray, and W. Tucker. Direct Constraint the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657-56. ApJ, 606:819, May 200
- J. W. Moffat. Gravitational Lensing in Modified Gravity and the Lensing of Merging Clusters without Dark Matter. astro-ph/0608675. Aug. 2006.
- P. Natarajan and J.-P. Kneib. Probing the dynamics of cluster-lenses. MNRAS, 283:1031. Dec. 1996.

