

collaborators

Alexey Vikhlinin Daisuke Nagai (SAO Harvard, (Caltech) IKI Moscow)

Douglas Rudd (U.Chicago)

Oleg Gnedin (Michigan)

Andrew Zentner (U.Chicago)

Anatoly Klypin (New Mexico State)

+ Stelios Kazantzidis (KIPAC, Stanford), Brandon Allgood, + ...

Cluster mass distribution is dominated by dark matter and is expected to approximately follow the NFW profile

Vikhlinin et al. 2006 ApJ 640, 691 (astro-ph/0507092)

enclosing overdensity of 500 x ρ_{crit}

Cluster concentrations: theory vs data

 M_{500} - mass within radius enclosing overdensity of 500 x $\rho_{\rm crit}$

are observed cluster concentrations too high?

 $M_{\rm vir}$ - mass within radius enclosing overdensity of 340 x < ρ >

dark matter only simulations predict that clusters are highly triaxial and prolate with triaxiality increasing with z and for inner regions of clusters

 $M_{\rm vir}$ - mass within radius enclosing overdensity of 340 x < ρ >

Allgood et al. 2006, MNRAS 267, 1781

simulations with baryons

16 individual galaxy clusters simulated with and without cooling (boxes of 80-120/h Mpc) virial masses from 8x10¹³ to 10¹⁵h⁻¹ Msun

3 simulations of 60/h Mpc volume with uniform resolution, started from the same initial conditions but including different physical processes

Cosmological N-body+gasdynamics ART code (Kravtsov 1999, 2003; Kravtsov et al. 2002) $m_{dm}=3x10^8h^{-1}$ Msun, $m_*\sim10^6h^{-1}$ Msun peak resolution $\sim2h^{-1}$ kpc 2-4 x 10^7 mesh cells per cluster

Gasdynamics: Eulerian AMR (2nd order Godunov) **N-body dynamics** of DM and stellar particles

Radiative cooling and heating of gas: metallicity dependent taking into account atomic and molecular processes

Star formation using the Kennicutt (1998) recipe

Thermal stellar feedback + Metal enrichment

High resolution allows us to actually simulate clusters of galaxies

- how galaxy formation affects the mass distribution in clusters?
- what are the implications for lensing studies?

a Virgo-sized cluster from our sample

gas density profiles: simulations vs observations

Nagai, Kravtsov & Vikhlinin 2006, in preparation

yellow line: mean gas density profile for clusters in adiabatic simulations

blue band:
mean gas density
profile for clusters
in simulations with
cooling and star
formation
width = rms scatter

cluster-centric radius in units of r_{500} (500 wrt rho_crit)

Effect of dissipation on DM halo shape

Kazantzidis, Kravtsov, Zentner, Allgood, Nagai, Moore, 2004 ApJL 611, L73 also, Katz 1991; Evrard et al. 1993; Dubinski 1994; Tissera et al. 1998; Springel 2004

the same objects simulated with and without cooling

Effect of dissipation on DM halo shape

Kazantzidis, Kravtsov, Zentner, Allgood, Nagai, Moore, 2004 ApJL 611, L73

cluster-centric radius in units of virial radius

effect of baryon cooling on inner mass distribution

Eggen, Lynden-Bell & Sandage 1967; Zeldovich et al. 1980; Barnes & White 1984

Standard Model

homologous contraction, circular orbits Blumenthal et al. 1986 Ryden 1987

$$M(r)r = const$$

$$[M_{\rm dm}(r) + M_{\rm b}(r)] r =$$

 $[M_{\rm dm}(r) + M_{\rm b}(r_f)] r_f$

Improved Model

$$M(ar{r})r={
m const}$$
 $ar{x}=Ax^w,\quad x\equiv r/r_{
m vir}$ [Gnedin et al. 2004]

Contra code implementing the improved AC model

http://www.astro.lsa.umich.edu/~ognedin/contra/

Contra is a publicly available code that calculates the contraction of a dark matter halo in response to condensation of baryons in its center. The code is based on the modified contraction model of Gnedin et al. (2004).

The code also calculates a line-of-sight velocity dispersion for a tracer population with a given density profile and velocity anisotropy (isotropic, constant, Osipkov-Merritt, or Mamon-Lokas model).

Tailored to lensing modeling during this workshop (ask Oleg)

effect of cooling on the abundance of arcs

Rozo, Nagai, Keeton & Kravtsov 2006 (astro-ph/0609621)

maps of areas around the cluster center capable of producing arcs with length to width ratio larger than I (grayscale indicates value of I)

of the cluster

effect of cooling on the abundance of arcs

Rozo, Nagai, Keeton & Kravtsov 2006 (astro-ph/0609621)

cross-section $\sigma(I)$ is defined as area of the source plane which is lensed by a cluster into an arc with length-to-width ratio larger than I:

$$dn_{arcs} = \sigma(I) dn_{source}$$

length-to-width ratio

effect of dissipation on the overall mass profile

cluster - centric radius in units of the virial radius

effect of baryons on dm halo concentrations

Rudd, Zentner & Kravtsov 2006 also Lin et al. 2006

three runs started from identical initial conditions but run with different physics:

virial mass (overdensity of 337)

effect of cooling on halo concentrations

higher resolution cluster simulations

Nagai, Kravtsov Vikhlinin 2006, in prep.

 M_{500} - mass within radius enclosing overdensity of 500 x $\rho_{\rm crit}$

effect of baryons on matter power spectrum

Rudd, Zentner & Kravtsov 2006; Jing et al. 2006

three runs started from identical initial conditions but run with different physics:

effect of baryons on matter power spectrum

halo model - non-radiative case

Rudd, Zentner & Kravtsov 2006

k [h Mpc⁻¹]
wavenumber

effect of baryons on matter power spectrum

halo model - radiative case

Rudd, Zentner & Kravtsov 2006

wavenumber

robust and accurate X-ray mass indicator

X-ray masses can be used for cross-comparison with lensing masses even for unrelaxed systems

Normalizations of the model and observed Yx-M relations agree to ~10%

Kravtsov, Vikhlinin, Nagai 2006, ApJ 650, 128 astro-ph/0603205

X-ray "pressure" = Yx = gas mass x temperature

Summary

- □ Gas cooling and star formation affect the global distribution of dark matter within halos: in particular the slope of the inner cusp and overall concentration of matter distribution
- □ Changes in the mass distribution significantly affect strong lensing cross sections for tangential arcs and have a non-negligible effect on the matter power spectrum on the scales where future weak lensing surveys have most statistical power.
- □ The magnitude of the effects depends on the correct treatment of baryonic physics in simulations, but non-trivial effects are present even in non-radiative simulations with minimum physics.
- ☐ This complicates usage of lensing statistics for precision cosmology but opens the possibility of constraining physics of galaxy formation

Summary (pictorial version)

"Clusters of galaxies as cosmological probes"

Aspen, Colorado, Feb 12-16 2007

SOC: A. Kravtsov, J. Carlstrom, C. Jones, T. McKay, J. Mohr, A. Vikhlinin http://astro.uchicago.edu/~andrey/clcp07

application deadline - November 1

