Substructure ++ (evolution and destruction of CDM substructure)

Andrey Kravtsov

Kavli Institute or Cosmological Physics

University of Chicago

Abundance of subhalos in a given halo

is determined by competition between accretion of new subhalos and disruption of old subhalos

disruption = loss of identity via merging with other halos or significant mass loss due to tidal stripping

Formation of a galaxy-sized halo in LCDM, Mvir=3x10¹²h⁻¹ Msun; Rvir=293h⁻¹ kpc;

Halo Substructure

has anisotropic distribution

Zentner et al. 2005; Liebeskind et al. 2005

The same MW-sized halo viewed

Halo Substructure

Approx. (but not exactly) self-similar

e.g., Ghigna et al. 2000; Gao et al. 2005

A cluster or a galaxy?

host halos of a given mass

that assemble earlier have on average fewer subhalos compared to host halos assembling later

Halo formation epoch (expansion factor) normalized to the average formation epoch of halos of a given mass

Tidal stripping of subhalos: three examples

present day subhalo mass and Vmax are affected by tidal stripping and average effect depends on radius

this introduces a bias in spatial and velocity distributions of subhalos selected using current mass or Vmax

[Nagai & Kravtsov 2005]

subhalos = galaxíes?

biases are found in spatial and velocity distributions of subhalos. can we expect similar biases for galaxies?

how important are baryons in survival of subhalos?

Ghigna et al. 98, 00; Colin et al. 99, 00; Diemand et al. 04; Gao et al. 04

a test – compare radial distribution and abundance of subhalos and galaxies

radíal distribution of subhalos depends on

how they are selected

radial distribution of subhalos for the same cluster (dissipationless simulation) with different selection of subhalo samples (Nagai & Kravtsov 2005)

cluster-centric distance in units of the virial radius

Selection based on a weakly evolving property, such as stellar mass or subhalo mass or Vmax before it is accreted, results in

much reduced spatial and velocity bias

Nagai & Kravtsov 05; Faltenbacher et al. 05

using
hydrodynamic
+ N-body simulations
of clusters
with cooling and
star formation

see also
Faltenbacher &
Diemand 2006
and
Mortonson, Kravtsov &
Nagai 2006

projected cluster-centric radius in units of R_{200}

Radíal distribution of satellites In galaxy-sized systems

comparison of dissipationless simulations and SDSS measurement

Chen, J. et al. 2006, ApJ 647, 86 (astro-ph/0512376)

requires careful treatment of interlopers!

Results suggest that galactic satellites have somewhat more extended distribution than the expected distribution of DM

$$n(>V_{\text{max.acc}})=n(>L)$$

Are we missing galaxies in dissipationless simulations?

comparison of observed and predicted halo 2-point correlation functions

halo clustering vs SDSS

red circles - data

lines – LCDM sim

these are not fits!

halo Vmax are matched to galaxy luminosities as

$$n(>V_{\text{max,acc}})=n(>L)$$

Conroy, Wechsler & Kravtsov 2006, ApJ 647, 201 (astro-ph/0512234)

projected separation (chiMpc)

Summary in pictures

