

Detecting First Light: Ultradeep Surveys with Gravitational Telescopes and the JWST

M. Stiavelli STScI, Baltimore

Plan:

- Brief theoretical overview
- Observing first light with JWST
- Applications of gravitational lensing

ULTRA DEEP FIELD

- first light sources
- Population III
- reionization of H
- reheating of IGM

End of the dark ages

The "First Light Machine"

Probing the luminosity function of galaxies at z>12 (and probably already for z>8-9) or studying the properties of galaxies at z=6 requires an instrument more sensitive than HST:

the James Webb Space Telescope

End of the dark ages:

- First light
- Nature of reionization sources

Individual first light sources

- Individual first light sources are most likely Population III stars and will be extremely faint, AB~35 for a 500 M_☉ star.
- Individual stars will be detectable by JWST only thanks to large gravitational magnification or as (pair-instability) supernovae. Both detections should be attempted but they have low probability.
- In practice, JWST will focus on the detection of the beginning of the era of galaxy formation: few (dwarf?) galaxies with low metallicity and no pre-existing stellar populations.

I. Detection of first luminous objects

- Evolution of N(z). *Identify candidates with Lyman break technique* \rightarrow **NIRCam**
- Evolution of SFR(z). *Use H\alpha, H\beta and supernovae* \rightarrow **NIRSpec and NIRCam**
- Evolution of $\langle Z \rangle(z)$. Use [OIII]/H β .
- Confirm nature of first light objects. *Place upper limit to metallicity, search for older stellar component.*

NIRSpec and MIRI (this will typically require lensed or

intrinsically very bright sources)

First light sources: detection

WMAP indicates that reionization is an extended process

Extended reionization with $\tau = 0.09$ gives first light at z=16 or higher.

• Probing the LF to the same relative depth as that of z=6 from the UDF gives us a required depth:

from Trenti & Stiavelli 2006

These limits allow us to measure m_{*} even with 2+ magnitudes of evolution.

Estimate luminosity of firsts light and reionizing sources from first principles

A primordial HII region (*f*=0)

Spectra for zero-metallicity sources

At higher metallicity the SED at 1400 Å is always dominated by stars.

Ly-α Equivalent Width dependence on metallicity

The Ly-α EW increases strongly at low Z because:

- (a) the line intensity increases and
- (b) the continuum flux decreases

Observed Ly-α Luminosity: a considerable fraction of the emitted one!

Model calculations assuming a Ly-α line width of 250 km s⁻¹

For smaller line widths a smaller fraction of the photons escape. If fainter sources have smaller widths this effect will 10/22/2006 further flatten the observable Ly- α LF.

First Light Sources : Ly α & properties

Assumptions: Pop III, ionizing photons escape fraction = 0.5.

Adopt: Lyα escape fraction of 0.2.

Z	AB_1350	Ly α (cgs)	λ (μ m)
10	30.284	1.7e-18	1.34
12	30.551	8.89e-19	1.58
15	30.869	4.02e-19	1.95
20	31.267	1.47e-19	2.55

Measuring the <u>metallicity</u> of first light sources

Let's consider a 5 nJy source with metallicity 1/1000 solar. The O line at 1665A will have a strength of:

4.5 10⁻¹⁹ erg cm⁻² s⁻¹

The metallicity measurement or the detection by MIRI will be possible for bright sources or sources amplified by lensing.

First light sources and lensing

- First light sources will be very faint (AB=30 or fainter).
- Before reionization we expect the LF to be steep, ie. rich in dwarf galaxies that haven't yet been suppressed.
- It is unclear whether the small volume probed by high amplification with let us obtain significant statistics on the LF for AB >> 30. Probably Lyman-break searches more promising than Lyman α searches.
- Gravitational lensing amplification is probably the only way to obtain spectra of typical "first galaxies" down to AB=30.

James Webb Space Telescope

- 6.6m Telescope
- Launch in 2013 to L2.
- Successor to Hubble & Spitzer.
- Demonstrator of deployed optics.
- Passively cooled to 50K.
- Named for 2nd NASA Administrator
- NASA + ESA + CSA
- Lead: Goddard Space
 Flight Center
- Prime: Northrop Grumman Space Technology

Mirror Segment

Arizona: Marcia Rieke Pl Lockheed-Martin & Rockwel

THEY Mil-intered Instrument Structure Model Mill European Constitut A-PL

George Rieke & Gillian Wright

JPL and European Consortium

Instrumentation

- NIRCam, 0.6 to 5.0 micron:
 - 2.3 x 4.5 arcmin FOV
 - Broad & narrow-band imaging
- NIRSpec, 0.6 to 5.0 micron
 - 3.4 x 3.4 arcmin FOV
 - Micro-shutter, IFU, slits
 - R~100, 1000, 3000

TFI, 1.6 to 4.8 micron

- 2.2 x 2.2 arcmin FOV
- R~100 narrow-band imaging

MIRI, 5.0 to 27.0 micron

- 1.4 x 1.9 arcmin FOV imaging
- 3 arcsec IFU at R~3000

Coronagraphy

NIRCam, TFI & MIRI

ESA: Peter Jakobser

EADS Astrium & GSFC

CSA: Rene Dovon

Operations

Astronomer

T/

10/22/2006 DSI

JWST is on track

JWST-Spitzer image comparison

1'x1' region in the UDF – 3.5 to 5.8 μm

Spitzer, 25 hour per band (GOODS collaboration)

JWST, 1000s per band (simulated)

JWST Plan of attack

- Ultra deep survey to 1-2 nJy
 - Combine UDF with a north ecliptic pole survey (JWST CVZ) for z>6 SN searches
- Cluster survey:
 - 5 clusters to 5-8 nJy (amplified sources for followup)
- FGS-TF search
 - $-10^{-18}-10^{-19}$ erg cm⁻² s⁻¹
- Spectroscopy
 - Lensed candidates
- MIRI Imaging
 - Lensed candidates

CDFS/GOODS-S/UDF is the best field:

- low cirrus
- well placed for ALMA followup
- reasonably well placed for JWST

Conclusions: First light objects

- JWST can observe first light <u>stars</u> only as supernovae (and it will be difficult!)
- JWST will study the "first galaxies", i.e. second generation objects pre-enriched by Pop III stars.
 - We need an operational definition of these "first galaxies"
 - Two ways of being first:
 - Chronologically (highest z) → absolute first
 - Chemically (primordial metallicity) → locally first
- Detailed physical study of this sources will be best done for lensed objects.