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Our ability to understand physics at the LHC could well be 
limited by our understanding of the shapes of Standard Model 
backgrounds.

New physics appears at large values of 

    missing energy, HT, number of jets, ...

These are precisely the regions treated poorly by standard 
parton shower algorithms.

So it no wonder that many people are interesting in methods 
for merging partons showers at low pT with exact QCD 
calculations for the hardest jets.





1 b-tag events



There are many approaches to this problem with somewhat 
different ambitions:

    correction of high-order matrix element calculations 
        for consistency with subsequent parton showering

              ALPGEN, MADEVENT, SHERPA, HELAC
                  Catani-Krauss-Kuhn-Webber

    correction of parton showers to incorporate exact 1-loop
        calculations 

          MC@NLO    Frixione, Webber, Nason

    improvement of parton shower algorithms using QCD
        resummation in the soft and collinear regions

                        Becher + Schwartz



Here is the more specific problem that I am interested in:

Can one write a parton shower algorithm that can 
systematically incorporate QCD tree amplitudes,

so that n-jet emission automatically has the shape that 
those amplitudes predict?



Bauer, Tackmann, and Thaler have attacked this same problem,
and are much further along:      (GenEVa)

Giele, Kosower, and 
Skands also have a 
new, more systematic 
approach to parton
showers   (VINCIA).



I will describe the approach that John Conley, 
Tommer Wizansky, and I have been developing.

Our model is built on the answers to three questions:

1.  How can we rapidly produce exact QCD amplitudes ?

2.  These amplitudes refer to points in n-particle phase
          space.  How do we parametrize exact phase space 
              so that it looks like a parton shower ?

3.  The use of these amplitudes requires reweighting and 
        acceptance/rejection in a parton shower.  How is this
                done ?

In this talk, I will discuss the shower in                  .  h0 → ng



To generate tree amplitudes, we use the Britto-Cachazo-Feng 
recursion formula for on-shell amplitudes:

We are content with amplitudes at the leading order in Nc.

We use the BCF formula to recursively break amplitudes down 
(numerically, on the fly) to the MHV result   (Dixon, Glover, Khoze)

and the conjugate, with all g(-).
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Duhr, Hoche, and Maltoni and Dinsdale, Ternick, and 
Weinzierl (DTW) have investigated how to do this.  The 
latter group has written an especially fast code for 
multigluon amplitudes.  Both groups conclude that, if 
you are sophisticated, BCF recursion has no advantage 
over the more venerable Berends-Giele recursion.  
However, BCF recursion can be implemented to give fast 
computations with a very simple code. 

Our code is not as fast as Weinzierl’s, but we can 
compute  h-> 8 g amplitudes in 0.1 msec.  That is quite
fast enough.



Some fun C++ programming is involved.  In our approach, we use 
as the basic object a C++ class called a bispinor.  This holds 8 
complex numbers

and implements methods that derive the vector components 
from the spinor components and vice versa.  

It is important not to lose phase information in converting 
vectors to bispinors.  Having obtained       with some phase, 
we use 

Then the composite object         preserves the original phases.

DTW emphasize the importance of memory management.  So, 
actually, we replace the bispinor class by a cone class that holds 
all of the bispinors needed to compute the desired amplitude.
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Once we have the amplitudes, we need to integrate them over 
phase space.  To do this, we need to efficiently generate 
multiparticle phase space, enhanced in the region where the 
QCD denominators are large.

An effective trick has been introduced by Draggiotis, van 
Hameren, and Kleiss as the basis of their SARGE algorithm

Start with two back-to-back lightlike vectors.   Add a third 
lightlike vector

Then boost and rescale to the original CM frame and energy.  

p3 = ξ1p1 + ξ2p2 + p⊥



To add the fourth vector, pick two neighbors, boost these 
back-to-back, add a vector as before, and then boost the 
entire system back to the CM frame.

Effectively, the entire event recoils when a new vector is 
added.



The logarthmic integral over the parameters reproduces massless 
phase space

Applying this operation repeatedly, we build up phase space with 
all of the QCD denominators of the color-ordered amplitude for 
emission of final-state radiation.   

∫
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=
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This is an exact formula for massless phase space with QCD 
denominators, but only if we integrate over every point in 
phase space exactly once.

Draggiotis, van Hameren, and Kleiss suggested adding the 
vectors 1, 2, 3 in fixed (color) order.  This requires very large 
values for the     to reproduce some phase space 
configurations.

An alternative approach is to choose arbitrarily at each step 
one interval in which to insert a new vector.  We call the set of 
such choices a chamber.   It is then necessary to define the 
limits of each chamber so that the full set of chambers tiles 
phase space.

ξi



Here is a useful definition of a chamber:

Let the nth vector be inserted between 1 and 2.  Then allow 
all values of                 such that

           is the smallest invariant mass of two neighbors,
       and

Reversing the inequality defines a 
second chamber with n between 1 
and 2.

These prescriptions put reasonable
upper limits on the        integrals.

The ordering of virtualities        is 
similar to the ordering in a parton shower.   In fact, we can 
identify       with the evolution variable of a parton shower.

s1n

sn2 < s13

s1n
sn2

s31

sij

ξ1j

ξ1, ξ2, φ

sij



s1n
sn2

s31

We look at the emission in the chamber 

between 1 and 2, on the side of 1

as an emission from the gluon 1
in the antenna (in the sense of VINCIA)
of gluons 1 and 2.

At each stage in the shower, we choose an antenna and 
an emission side at random.

The correspondence to Altarelli-Parisi is 

and  
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(1 + ξ1 + ξ2)
∫
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∫
dξ1

ξ1
≈

∫
dQ2

Q2

∫
dz

z(1− z)



We also choose definite values of the gluon helicities.

We can exactly solve for emissions with the measure

with the leading-log formula for 

The gluon splitting 
functions are:

We implement the numerators by hit-or-miss:  accept weighted 
events if                         . 

∫
dξ2

ξ2

∫
dξ1

ξ1

∫
dφ

2π
· 3αs(ξ2s12)

2π

αs(Q2)

P (g+ → g+g+) =
1

z(1− z)

P (g+ → g−g+) =
(1− z)4

z(1− z)

P (g+ → g+g−) =
z4

z(1− z)

w(x) > ran()



Actually, it is subtle to do hit-or-miss in a parton shower.  We 
need a criterion to reject an emission without stopping the whole 
shower.  (This is needed anyway in our technique, since we 
define the boundaries of chambers by assigning zero weight when 
the inequalities are violated.)

Write the emission probability as

or, better, for the first emission after x=0: 

Write                                  where             gives a problem we 
can solve exactly.  It is not correct to stop the whole chain of 
emissions unless                         .        

S(x) =
∫ xm

0
dxf(x) dP = e−S(x)dxf(x)

dP = dxf(x) x = log(s/Q2)

f(x) = f0(x)w(x) f0(x)

w(x) > ran()



S(x) = S0(x) · C(x)

S′(x) = S0(x) · C ′(x) + f0(x) · C(x)

Here is a solution.  In the Monte Carlo preparation stage, collect 
data to model

where C(x) is a polynomial.  We crudely use
but with a different A and B for each helicity choice and each 
successive emission.

Then zeroth-order events are chosen according to the probabilities

The new weight is                                   .  This can be > 1.  So 
choose N to be greater than this number.  Then accept an event if

Allow N tries, then terminate the parton shower.  If an event is 
accepted, go back and get the next emission.

C(x) = A + Bx

w(x)/(S′(x)/f0(x))

w(x)/N(S′(x)/f0(x)) > ran()



For a simple parton shower, we choose for w(x) the numerators of 
the splitting functions:

times zero if the chosen point violates the chamber inequalities.

To reweight a shower to exact matrix elements, replace the 
above by

or, rather, by the ratios of these factors for successive levels. The 
two prescriptions agree for  h-> 3 g, so the simple shower is exact 
at this level.  It is quite accurate at higher levels.

1 ,
1

(1 + ξ1 + ξ2)4
,

ξ4
2

(1 + ξ1 + ξ2)4

|(M(h0 → ng)/gn−2C) · 〈12〉〈23〉 · · · 〈N1〉|2



Finally, here are some results of the program.

These are very preliminary (generated last night).





LO  h-> 3g



light - simple shower;  heavy - shower w. h->6g matrix elements

energies of 5 hardest clusters w. ycut = 0.0001  (10 GeV)



Conclusions:

This is a proof of principle for a new way to incorporate exact 
matrix elements into a parton shower.  The numerical results 
shown here are very preliminary.

This method generalizes to initial-state radiation with all 
massless emissions.  The generalization to processes in which
massive particles are emitted is nontrivial and not yet worked 
out.

Still, there is promise that this might be an interesting tool for 
modeling multijet QCD processes.


