Z' bosons and light hidden sectors at the LHC

Frank Petriello University of Wisconsin, Madison

> FP, Seth Quackenbush arXiv:0801.4389 FP, SQ, Kathryn Zurek arXiv:0803.4005 Yuri Gershtein, FP, SQ, KZ, in progress

Outline

* What can we learn from a Z' discovery? Some Z' basics and motivations Langacker, Leike, Rizzo * How well can we determine its couplings? * NLO QCD, PDF+scale+statistical errors, model-independent parametrization, simple and complete analysis procedure * Is the Z' a messenger to a hidden sector? * Invisible Z' decays using $ZZ', \gamma Z'$

What is a Z'

* Experimental definition: resonance observed in Drell-Yan, $pp(p\bar{p}) \rightarrow l^+l^- + X$

Can distinguish spin-1 from spins-0,2 with a few hundred events Allanach; Orland; Rizzo; et al.

What can we measure?

- * $M_{Z'}, \Gamma_{Z'}$: Measure from resonance fit
 - * Mass resolution at few % level CMS, ATLAS
 - * Width accessible if $\Gamma/M \stackrel{>}{\sim} 0.5 1\%$ Allanach et al.
 - * g_v, g_a : From fermionic decays, window to underlying model
- ✤ Mixing induced: Z' → WW, ZH
 ♦ Other rare decays, associated production

What tools do we have?

M. Dittmar et al.

$$\frac{d\sigma}{d\cos\theta} \sim \frac{3}{8}(1 + \cos^2\theta) + A_{FB}\cos\theta$$

Define direction with Z' rapidity

Keep events with |Y|>0.8

Shape of the different quark fractions

Rapidity spectrum probes up/down couplings

Large component of discriminatory power comes with just 2 bins (used later)

Model discrimination studies

CMS

On-peak $\mathbf{A}_{_{\rm FB}}^{_{\rm count}}$ and $\sigma^{_{\rm rec}},$ 1 TeV

On-peak $A_{_{\rm FB}}^{\rm count}$ and $\sigma^{\rm rec}$, 3 TeV

Studies compare single observables between models

Combine for better discrimination?

Better language than specific models?

Effect of PDF, QCD errors?

Results

	Generation level Fitted values (%)		Reconstruction level Fitted values (%)	
Model	Prop(Z'←dd)	Prop(Z' ←uu)	Prop(Z'←dd)	Prop(Z'←uu)
SSM	41.±10.	52.±12.	22.±16.	60.±16.
χ	62.±12.	29.±14.	79.±17.	17.±19.
η	23.±13.	75.±14.	33.±6.	67.±8.
Ψ	36.±12.	61.±13.	32.±15.	62. <u>+</u> 17.
LR	57.±4.	43.±14.	53.±13.	46. <u>+</u> 15.

CCL: statistical power not very good... (not quite a surprise) generation level fit result compatible with "truth" ^{20th July Proconstruction level compatible with generation level³}

ATLAS

What we want to improve

- * NLO QCD with all acceptances, correlations
- Assess effects of statistical, PDF, and higherorder QCD uncertainties (result: statistics, PDF comparable, QCD negligible; detector systematics small cms)
- Simple analysis technique using all kinematics
- Parametrization both complete and convenient for theory comparison

Theoretical framework

Assume Z' couplings generation independent * Members of doublets have same couplings * Five couplings to: q_L, l_L, u_R, d_R, l_R * No Z-Z' mixing, heavy ν_R * Example models to illustrate certain points: $U(1)_{\eta}, U(1)_{\chi}, U(1)_{\psi}, LR$

Coupling parametrization

Want model-independent extraction of couplings On peak, NLO Z' cross section takes the form: $\frac{d^2\sigma}{dYd\cos\theta} = \sum_{q=u,d} \left[a_1^{q'} (q_R^2 + q_L^2) (e_R^2 + e_L^2) + a_2^{q'} (q_R^2 - q_L^2) (e_R^2 - e_L^2) \right]$ (note quark/lepton degeneracy) $a_{1,2}^{q'}$ include MEs, PDFs, cuts Also includes the width from the Z' propagator; narrow width motivates the definitions...

Coupling parametrization

 $c_q = \frac{M_{Z'}}{24\pi\Gamma} (q_R^2 + q_L^2) (e_R^2 + e_L^2) = (q_R^2 + q_L^2) Br(Z' \to e^+ e^-)$

$$e_q = \frac{M_{Z'}}{24\pi\Gamma} (q_R^2 - q_L^2) (e_R^2 - e_L^2)$$

Now, $\frac{d^2\sigma}{dYd\cos\theta} = \sum_{q=u,d} \left[a_1^q c_q + a_2^q e_q\right]$

 $a_{1,2}^q$ depend *only* on Z' mass; separate model details from QCD, cuts

Extension of Carena et al. to handle A_{FB} , etc.

Analysis strategy

* Four quantities to measure: $c_{u,d}, e_{u,d}$ Use all differential information to extract Define usual forward, backward regions: $F(Y) = \int_0^1 d\cos\theta \frac{d^2\sigma}{dYd\cos\theta} \quad B(Y) = \int_{-1}^0 d\cos\theta \frac{d^2\sigma}{dYd\cos\theta}$ Take the following four combinations: $F_{<} = \int_{-Y}^{Y_{1}} dY F(Y) \qquad F_{>} = \left\{ \int_{-Y_{1}}^{y_{max}} + \int_{-Y_{1}}^{y_{1}} \right\} dY F(Y)$ $B_{<} = \int_{-Y_{*}}^{Y_{1}} dYB(Y) \qquad B_{>} = \left\{ \int_{-y_{*}}^{y_{max}} + \int_{-y_{*}}^{y_{1}} \right\} dYB(Y)$

Analysis strategy

Matrix equation relating measurements to $c_{u,d}, e_{u,d}$ $\vec{m} = M\vec{c}$ $\vec{m} = (F_{<}, B_{<}, F_{>}, B_{<})$ $\vec{c} = (c_u, c_d, e_u, e_d)$ $\mathbf{M} = \begin{pmatrix} \int_{F_{<}} a_{1}^{u} & \int_{F_{<}} a_{1}^{d} & \int_{F_{<}} a_{2}^{u} & \int_{F_{<}} a_{2}^{d} \\ \int_{B_{<}} a_{1}^{u} & \int_{B_{<}} a_{1}^{d} & \int_{B_{<}} a_{2}^{u} & \int_{B_{<}} a_{2}^{d} \\ \int_{F_{>}} a_{1}^{u} & \int_{F_{>}} a_{1}^{d} & \int_{F_{>}} a_{2}^{u} & \int_{F_{>}} a_{2}^{d} \\ \int_{B_{>}} a_{1}^{u} & \int_{B_{>}} a_{1}^{d} & \int_{B_{>}} a_{2}^{u} & \int_{B_{>}} a_{2}^{d} \end{pmatrix}$ Only dependence on model through mass Measure \vec{m} , extract \vec{c} without model assumption All details of QCD, acceptances, absorbed into $a_{1,2}^q$

Bulk of discriminatory power from two Y bins

LHC results

See how this works for example models at LHC Propagate through PDF, statistical, scale errors to determine effect on c_q, e_q

Summary of on-peak results

- Convenient parametrization for model independent interpretation of Z' signal
- Simple analysis procedure to go from data in four kinematic regions to four observables
- Precision reaches 10% on couplings with current error estimates; PDF limited
- PDF error reduction with LHC data?

Limitations

Only 4 of 5 couplings due to quark/lepton coupling degeneracy

ATLAS

CMS $t\bar{t}$ possible, but likely for $pp \rightarrow Z' \rightarrow jj$ tough... limited mass range

Other experiments (ILC, low-energy Moller)

Z' invisible width

Measurement of the width breaks degeneracy $\Gamma = \Gamma_{inv} + \Gamma_l + \Gamma_q + \Gamma_{oth}$ while $c_q \sim \Gamma_l \Gamma_q$ If we knew invisible width was just from neutrinos and assumed SU(2), could break degeneracy up to discrete ambiguity

$$\Gamma_l \sim \frac{1}{2} \left[X \pm \sqrt{X^2 - 4Y} \right] \qquad \qquad X \sim \Gamma, Y \sim \sum_{q=u,d} c_q \Gamma^2$$

Finding the invisible Z'

In what channels can we find invisible decays? $pp \rightarrow Z'j \rightarrow E_T j$: hard, jet energy mismeasurement $pp \to Z'Z \to E_T l^+ l^-$: much cleaner mode Backgrounds : ZZ, WW, Zj $pp \to Z' \gamma \to E_T \gamma$: also possible Backgrounds : $Z\gamma, W\gamma, W \rightarrow e, Zj$ (jet, electron fakes photon)

Observing the invisible Z'

Discovery channel for leptophobic Z' Possible observation with $30 \, \text{fb}^{-1}$ No shape fit yet; results will improve

Background normalization

- * Can we control background, especially for $Z'\gamma$?
- * Normalize $ZZ, WW, Z\gamma$ to Z, W for %-level prediction; removes many systematics Dittmar et al.
- * Use di-photons, γj to control $Z\gamma, Zj$
- * With 2% background uncertainty, roughly need 60 fb for 5σ , 35 fb without in $Z'\gamma$
- Still studying...

Interpreting the invisible Z'

How do we know we're not seeing neutrino decays?

FSR

Two distinct contributions

For hidden states, $Z'\gamma$, only ISR

For example, $Z'\gamma$ matrix element given by charge $Q_{ISR}^q = (q_V^{\prime 2} + q_A^{\prime 2})(Q_{\gamma}^q)^2 \frac{\Gamma_{Z'}^{inv}}{\Gamma_{Z'}} \Rightarrow \frac{c_q}{2} \frac{C}{C+1}(Q_{\gamma}^q)^2 \quad \text{if neutrinos by } SU(2)_L$ Neutrino part predicted by on-peak c_q, e_q !

Finding the hidden sector

Can we distinguish decays to hidden sector given on-peak predictions for charges?

Depends strongly on precision of on-peak extraction Some significant restrictions for $M_{Z'} \sim 1 \text{ TeV}$

ZZ' : exclusion of 25% hidden branching fractions possible

Still working on quantifying this, $Z'\gamma$

Conclusions

- Many reasons to expect Z' bosons to be at TeV
 Many things can be learned from LHC data
 Can parametrize and extract couplings with minimal model assumptions
- Potentially reach 10% or better precision on couplings
- Can probe invisible Z' decays and test for connection to hidden sectors