

Delicious Supersymmetry: Removing the flavor problem with an R-Symmetry

G.Kribs, E.Poppitz, NW, arXiv:0712.2038

Neal Weiner
Center for Cosmology and Particle Physics
New York University
KITP Conference: Anticipating the LHC
June 4, 2008

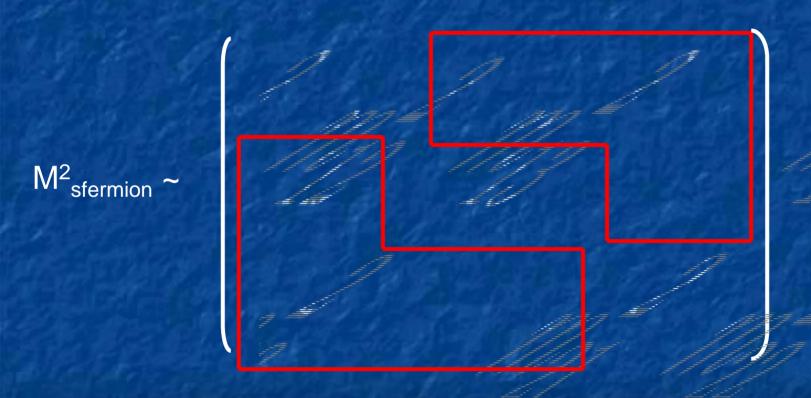
Our perspective on flavor at the weak scale

Could there be new states at the weak scale that couple to flavor and show essentially no flavor alignment?*

Minimal flavor violation (Chivukula & Georgi, 1987; Hall and Randall 1990; D'Ambrosio, Giudice, Isidori & Strumia 2002; Buras, Gambino, Gorbahn, Jäger & Silvestrini 2001; Ali & London 1999)

Next-to-minimal flavor violation (Ligeti, Papucci, Perez 2006; Agashe, Papucci, Perez, Pirjol 2005)

*and be consistent with experiment


Can there be a rich flavor structure accessible at the LHC?

Yes!

If supersymmetry is extended to contain an extended R-symmetry (i.e., larger than R-parity) one can have highly mixed, highly non-degenerate squarks and sleptons at a few hundred GeV

The SUSY flavor problem

How do you make these zero? (and similarly for A-terms?)

Solving the flavor problem

- All attempts to solve the SUSY flavor problem rely on suppressing offdiagonal elements of the squark and slepton mass matrices
 - Flavor Universality at high scale (Dimopoulos & Georgi)
 - Gauge mediation (Dine, Nelson, Nir, Shirman)
 - Anomaly mediation (Randall, Sundrum; Giudice, Luty, Murayama, Rattazzi)
 - Gaugino mediation (Kaplan, Kribs, Schmaltz ; Chacko, Luty, Nelson, Ponton)
 - "Mirage" mediation (Choi, Jeong, Okumura)
 - Gaugino-assisted anomaly mediation (Kaplan & Kribs)
 - Flavor symmetries/alignment (multiple; Nir & Seiberg)
 - Nelson-Strassler models (Nelson & Strassler) and AdS duals
- Alternatives: large flavor violation, but push 1st/2nd gen squarks to 200 TeV, 20 TeV w/ 10% tuning (effective SUSY; Cohen ,Kaplan & Nelson)
- Consequence: either minor FV or large flavor violation must be pushed into the multi-TeV regime
- Problem much weaker in R-symmetric SUSY

R-Symmetry in SUSY

- Can extend R-parity to continuous U(1)_R
 - "Superpartner number"
- Dynamical SUSY breaking requires an Rsymmetry (Nelson & Seiberg)
 - MSSM requires R-breaking
 - Explicit R-breaking while maintaining SUSY breaking a challenge for DSB
- Can we extend phenomenological SUSY to have a full U(1)_R?

What breaks R-symmetry in MSSM?

- Three things
 - A-terms
 - Majorana gaugino masses
 - μ-term

A-terms and μ-terms

$$\int d^2\theta \lambda_{ij} QU H_u \supset \lambda_{ij} \bar{q} u h_u$$

R charge 2

R charge 0

A terms in the presence of superpotential Yukawas Violate R-symmetry

μ and B_{μ}

Similar story to A-terms

$$\int d^2 \mu H_u H_d \supset \mu ar{H}_u H_d$$
R charge 2 R charge 0

Scalar terms with same structure as superpotential terms violate R-symmetry

Gaugino masses

- ⇒X is complete singlet
- ⇒F_x carries R-charge 2

Constructing an R-symmetric theory: A terms

Step one: no A-terms

easy enough...

Constructing an R-symmetric theory: µ term

Add extra Higgs doublets, R_{u,d} with Rcharge 2

$$\int d^2\theta \mu_u H_u R_u + \mu_d H_d R_d$$

Can still have
$$B_{\mu}h_{u}h_{d}$$
 as usual

Constructing an R-symmetric theory: gaugino masses

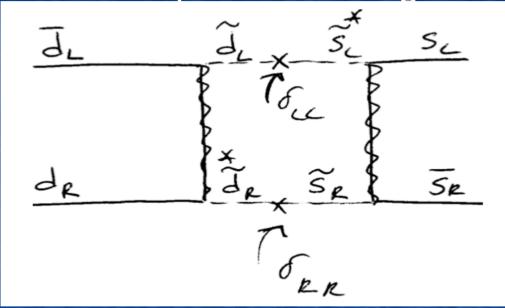
- Problem was Majorana nature of gaugino masses
 - Gauginos carry R-charge 1
- Dirac gauginos can carry conserved continuous quantum numbers

(Polchinski & Susskind 1982, Hall & Randall 1991, Dine & MacIntire 1993, Fox, Nelson, NW 2002..., Scherk-Schwarz theories)

$rac{1}{M}\int d^2 heta W_lpha'W_i^lpha A^i$

Polchinski & Susskind '82; Dine & Macintire '93; Fox, Nelson, NW '02

- Generates Dirac gaugino masses
- Generates new scalar couplings
- Gives scalar (not pseudoscalar) mass twice that of the gaugino


Note: gauginos now fill out N=2 multiplet, "gauge extended model"

R-symmetric summary

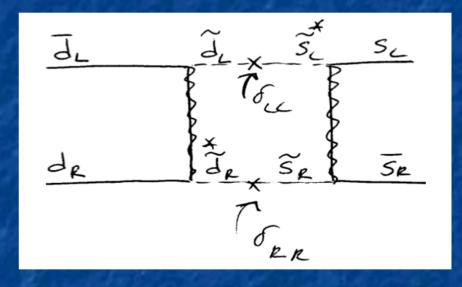
- We can construct an R-symmetric theory using the three independent ingredients (MRSSM)
 - No A-terms
 - Modified Higgs sector (µ term)
 - Dirac gauginos
- Claim: in such a theory, the flavor problem can be nearly absent

Flavor in the MRSSM

Case in point: box diagram contributions to ∆m_K

Generates dim 6 operator

$$\frac{\alpha_s^2 \delta^2}{M^2} (\bar{d}s)^2$$


$$\delta = \frac{\tilde{m}_{ds}^2}{\tilde{m}^2}$$

If $m_{squark} = m_{gluino} = 500 \text{ GeV}$, and $\delta = 1$ => $10^6 \text{ times too large}$

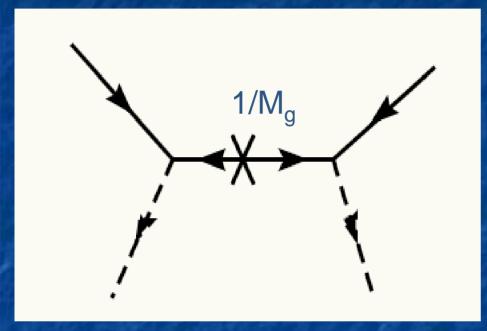
Where do we get a 10⁶?

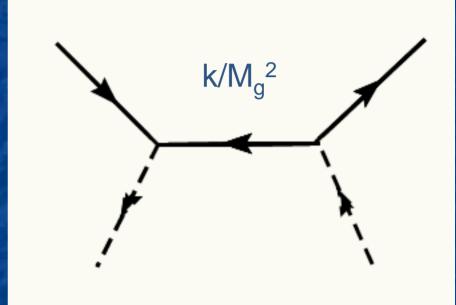
 First, note diagram is two pieces, one with helicity flips, and one without

1/10

For similar masses m_{squark}~m_{qluino}, factor of 10 difference

With Dirac gauginos, helicity flips take you to uncoupled RH state

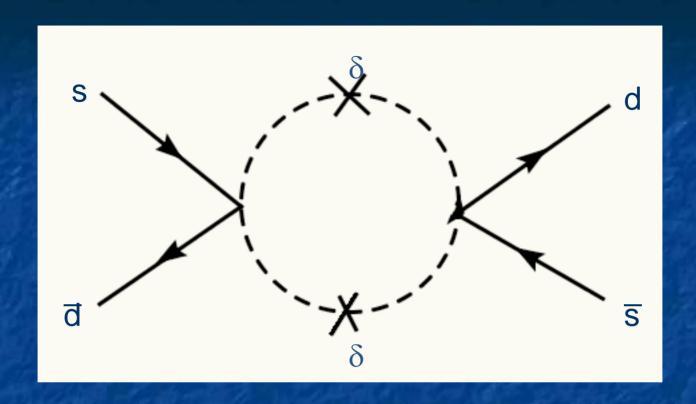

Heavy gauginos


- Unlike Majorana gauginos, Dirac gauginos do not contribute to RGEs of sfermion masses
 - => natural to have gauginos heavier by $(4\pi/\alpha)^{1/2}$ ~10
- Thus few hundred GeV squarks natural with few TeV gauginos

$$rac{lpha_s^2 \delta^2}{m_{\tilde{g}}^2} (ar{d}s)^2$$

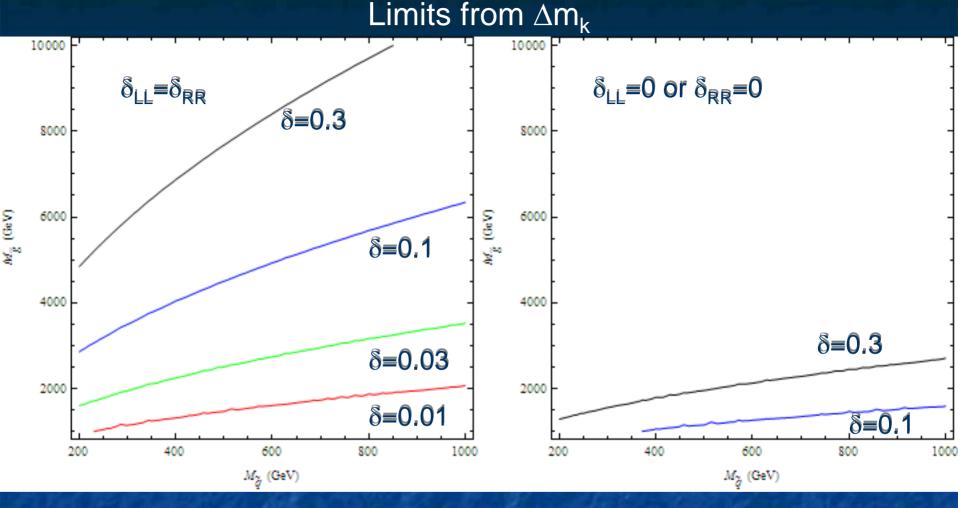
 $1/10 \times 1/(10)^2 = 1/(10)^3$

Effective operators



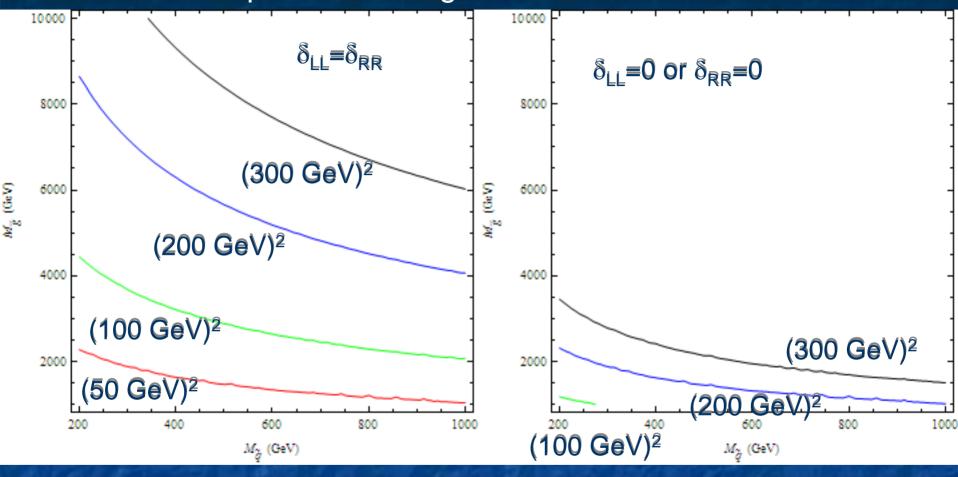
Dim 5 operator

$$rac{1}{M}qq ilde{q}^* ilde{q}^*$$


Dim 6 operator

$$rac{1}{M^2}ar{q}\gamma_\mu q ilde{q}^*\partial^\mu ilde{q}$$

- Dominated by k~ m_{squark}
- Leads to additional m²_{squark} / m²_{gaugino} ~ 10⁻² suppression

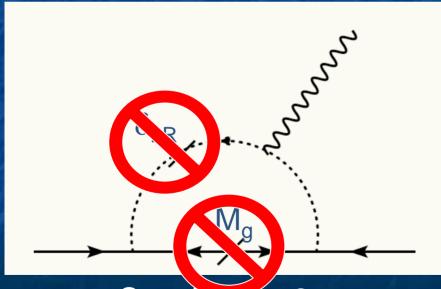

So 1/10⁵ in total

Limits *including* LO QCD corrections (Blechman & Ng arXiv:0803.3811) - cannot simply apply Bagger, Matchev, Zhang (LO) or Ciuchini et al (NLO) in SUSY because of dim 6 vs dim 5 ops

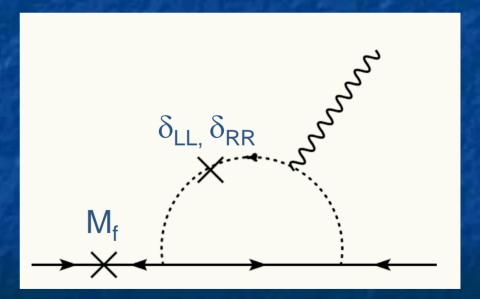
(Plots courtesy Siew-Phang Ng)

Can easily have (100 GeV)² - (300 GeV)² soft masses masses on top of flavor diagonal radiative masses

More natural than equivalent MSSM theory with similar mass squarks because no large logarithm

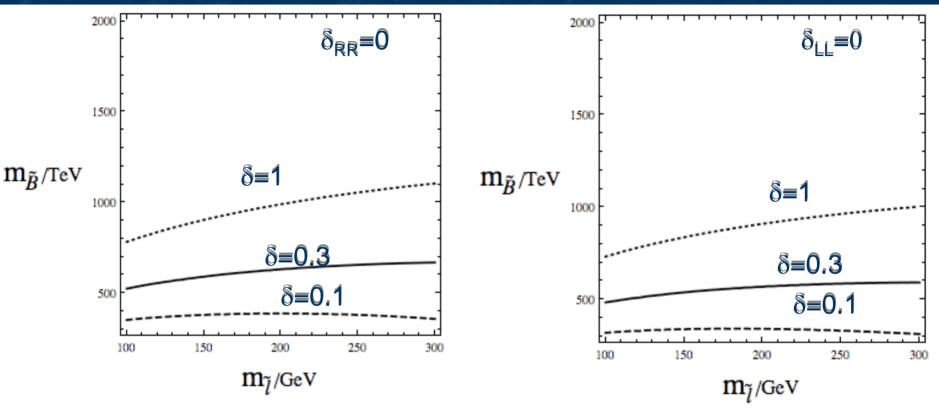

(Plots courtesy Siew-Phang Ng)

No strong constraints from mixing


- B,D,K mixing all yield weak constraints
 - (B,D much weaker than K)
- ϵ_{k} needs additional 10⁻² suppression
 - Small d_{LL} or d_{RR} (~(30 GeV)² with 8TeV/600Gev)
 - Real soft masses
 - Spontaneous CP (a la Nelson-Barr or Hiller-Schmaltz) via up sector (in prog, Kagan, Rastogi, NW)

Radiative $\Delta F=1$

$$ar{f}_L \sigma^{\mu
u} f_R F_{\mu
u}$$



Sensitive to δ_{LL} , δ_{RR}

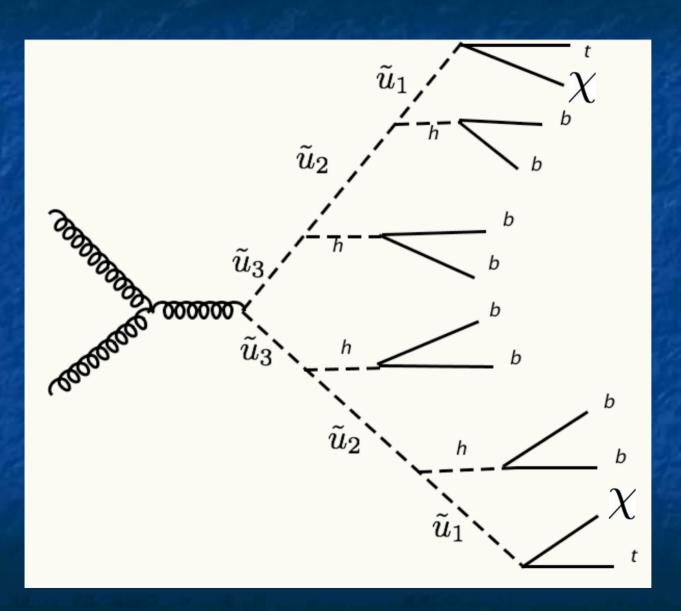
$\mu \rightarrow e \gamma$

(assuming mB=mW/2)

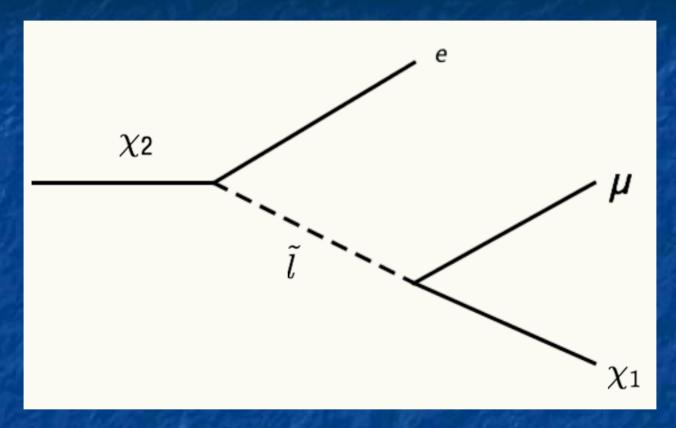
- Heavy gauginos, no triple flip diagrams
- **b->s** γ , τ -> $\mu \gamma$, τ -> $e \gamma$ safe

Flavor Summary

- The new MFV: Massive Flavor Violation
- The presence of an R-symmetry in SUSY, coupled with heavy gauginos allows significant flavor violation


Consequences

Broad spectra


No characteristic decay, because they're all "top" squarks, "bottom" squarks

New cascades

Flavor violating edges

Can't use flavor subtraction

Should be able to see these things - but need to figure out how to tease the FV out of the signal

What goes on in the kitchen...

- D-term quartic is suppressed (Fox, Nelson, NW)
 - Simple solution: NMSSM
- Unification
 - Like gauge mediation: should add complete multiplets

New possibilities for flavor at < TeV

- New proposal for addressing flavor in supersymmetry
 - Similar in field content to GMSB
 - Dramatically different phenomenology
 - ■Important to think about how to see FV
- Many issues to address
 - LHC phenomenology (Kribs & Roy in progress)
 - General structures, Higgs mass, naturalness (Blechman, Kaplan, Luty, NW in progress)
 - CP violation (Kagan, Rastogi, NW, in progress)
 - Dark Matter (Chang, Kribs, Tucker-Smith, NW, in progress)
 - Neutrino masses (Kumar, NW, in progress)
- Hoping for a feast of new data from the LHC!