A Flavorful Top-Coloron Model

R. SEKHAR CHIVUKULA MICHIGAN STATE UNIVERSITY

ΚΙΤΡ

- Extended Color Dynamics
- A Top-Coloron Model
- Flavor Symmetries and Constraints
- Scalars: Same Sign Top Signature
- Flavor Independent Constraints
- Conclusions

JULY 10, 2013

Wednesday, July 10, 2013

New colored gauge bosons

Classic Axigluon: P.H. Frampton and S.L. Glashow, Phys. Lett. B 190, 157 (1987).

Topgluon: C.T. Hill, Phys. Lett. B 266, 419 (1991).

Flavor-universal Coloron: R.S. Chivukula, A.G. Cohen, & E.H. Simmons, Phys. Lett. B 380, 92 (1996).

Chiral Color with $g_L \neq g_R$: M.V. Martynov and A.D. Smirnov, Mod. Phys. Lett. A 24, 1897 (2009).

New Axigluon: P.H. Frampton, J. Shu, and K. Wang, Phys. Lett. B 683, 294 (2010).

Other color-octet states: (cf. "partial compositeness")

KK gluon: H. Davoudiasl, J.L. Hewett, and T.G. Rizzo, Phys. Rev. D63, 075004 (2001) B. Lillie, L. Randall, and L.-T. Wang, JHEP 0709, 074 (2007).

Techni-rho: E. Farhi and L. Susskind, Physics Reports 74, 277 (1981).

Recent catalog of colored states:

Color sextets, colored scalars, low-scale scale string resonances... T. Han, I. Lewis, Z. Liu, JHEP 1012, 085 (2010).

GAUGE SECTOR

COLORON MODELS: GAUGE SECTOR

SU(3)₁ x SU(3)₂ color sector with $M^2 = \frac{u^2}{4} \begin{pmatrix} h_1^2 & -h_1h_2 \\ -h_1h_2 & h_2^2 \end{pmatrix}$

unbroken subgroup: $SU(3)_{1+2} = SU(3)_{QCD}$

$$h_1 = \frac{g_s}{\cos\theta} \qquad h_2 = \frac{g_s}{\sin\theta}$$

gluon state: $G^A_\mu = \cos\theta A^A_{1\mu} + \sin\theta A^A_{2\mu}$ couples to: $g_S J^\mu_G \equiv g_S (J^\mu_1 + J^\mu_2)$

coloron state: $C^A_\mu = -\sin\theta A^A_{1\mu} + \cos\theta A^A_{2\mu}$ $M_C = \frac{u}{\sqrt{2}}\sqrt{h_1^2 + h_2^2}$ couples to: $g_S J^\mu_C \equiv g_S (-J^\mu_1 \tan\theta + J^\mu_2 \cot\theta)$

low-energy current-current interaction: $\mathcal{L}_{FF}^2 = -\frac{g_S^2}{2M_C^2} J_C^{\mu} J_C^{\mu}$

FERMIONS

COLORON MODELS: QUARK CHARGES

$$g_S J_G^{\mu} \equiv g_S (J_1^{\mu} + J_2^{\mu})$$
$$g_S J_C^{\mu} \equiv g_S (-J_1^{\mu} \tan \theta + J_2^{\mu} \cot \theta)$$

low-energy current-current interaction: $\mathcal{L}_{FF}^2 = -\frac{g_S^2}{2M_C^2} J_C^{\mu} J_C^{\mu}$

Depending on how quarks transform under $SU(3)_1 \times SU(3)_2$ the presence of colorons may impact

- LHC dijet mass distribution (or angular distribution)
- kinematic distributions of tt or bb final states
- asymmetry in top-quark production: A^t_{FB}
- FCNC processes: $K\bar{K}, D\bar{D}, B\bar{B}$ mixing, $b \to s\gamma$
- precision EW observables: delta-rho, Rb

COLORON MODELS: QUARK CHARGES

$$g_S J_G^{\mu} \equiv g_S (J_1^{\mu} + J_2^{\mu})$$
$$g_S J_C^{\mu} \equiv g_S (-J_1^{\mu} \tan \theta + J_2^{\mu} \cot \theta)$$

low-energy current-current interaction: $\mathcal{L}_{FF}^2 = -\frac{g_S^2}{2M_C^2} J_C^{\mu} J_C^{\mu}$

Depending on how quarks transform under $SU(3)_1 \times SU(3)_2$ the presence of colorons may impact

- LHC dijet mass distribution (or angular distribution)
- kinematic distributions of tt or bb final states
- asymmetry in top-quark production: A^t_{FB}
- FCNC processes: $K\bar{K}, D\bar{D}, B\bar{B}$ mixing, $b
 ightarrow s\gamma$
 - precision EW observables: delta-rho, R_b

PATTERNS OF QUARK CHARGES

SU(3)1	SU(3) ₂	model	pheno.
	(t,b) _L q _L t _R ,b _R q _R	coloron	dijet
ЯR	(t,b) _L q _L t _R ,b _R		
t _R ,b _R	(t,b) _L q _L q _R		
q∟	(t,b) _L t _R ,b _R q _R		
q∟ t _R ,b _R	(t,b) _L q _R	new axigluon	dijet, At _{FB} , FCNC
Q L Q R	(t,b) _L t _R ,b _R	topgluon	dijet, tt, bb, FCNC, R _b
t _R ,b _R q _R	(t,b)∟ q∟	classic axigluon	dijet, At _{FB}
q _L t _R ,b _R q _R	(t,b)L		

(No spectators required)

q = u,d,c,s

PATTERNS OF QUARK CHARGES

SU(3)1	SU(3) ₂	model	pheno.	
	(t,b) _L q _L t _R ,b _R q _R	coloron	dijet	
QR	(t,b) _L q _L t _R ,b _R			
t _R ,b _R	(t,b) _L q _L q _R			
q∟	(t,b) _L t _R ,b _R q _R			
q∟ t _R ,b _R	(t,b) _E q _R	new axigluon	diiet, At _{FB,} FCNC	
Q∟ QR	(t,b) _L t _R ,b _R	topgluon	dijet, tt, bb, FCNC, R _b	
t _R ,b _R q _R	(t,b)r qr	olassic axigiuon	dijet, At _{FB}	
q _L t _R ,b _R q _R	(t,b)∟			

(No spectators required)

q = u,d,c,s

A FLAVORFUL TOP-COLORON MODEL

R.S.C., Elizabeth Simmons, N. Vignaroli arXiv:1302.1069

FLAVORFUL TOP-COLORON MODEL

particles		SU(3) ₁	SU(3) ₂	SU(2) _W
3rd generation quarks	(t,b)L	3	1	2
	t _R ,b _R	3	1	1
light quarks	(u,d) _L (c,s) _L	1	3	2
	u _R ,d _R C _R ,S _R	1	3	1
vector quarks	QL,QR	3	1	2
light scalar		1	1	2
heavy scalar	Φ	3	3*	1

Next to minimal flavor symmetry:

 $U(2)_{\vec{\psi}_L} \times U(2)_{\vec{u}_R} \times U(2)_{\vec{d}_R} \times U(2)_{\vec{d}_L} \times U(2)_{\vec{Q}_L} \times U(1)_{t_R} \times U(1)_{b_R} \times U(1)_{Q_R}$

GENERATIONAL MIXING

Mixing to third generation occurs <u>indirectly</u>, through mixing with vector quarks.

GENERATIONAL MIXING

CONSTRAINTS FROM FLAVOR PHYSICS

R.S.C., Elizabeth Simmons, N. Vignaroli arXiv:1302.1069

- Mixing among ordinary and heavy vector quarks also leads to flavor-changing b-quark decays: $b\to s\gamma$
- Coloron exchange yields KK, DD, and BB mixing
 - quark charges under strong gauge groups are non-universal
 - the top and bottom mass eigenstate quarks are admixtures of ordinary and heavy vector gauge eigenstate quarks

Constraints: $B \rightarrow s\gamma$

Wednesday, July 10, 2013

CONSTRAINTS: B-BBAR MIXING

Flavor-changing Effects from Coloron Exchange: interplay between mixing and coupling strengths

FLAVOR LIMITS ON TOP-COLORON MODEL

SCALAR BOSONS

R.S.C., Elizabeth Simmons, N. Vignaroli arXiv:1306.2248 Bogdan Dobrescu and Yang Bai arXiv:1012.5814

COLORED SCALARS AND THEIR POTENTIAL

Most general renormalizable (3,3) potential:

$$V(\Phi) = -m_{\Phi}^{2} \operatorname{Tr}(\Phi \Phi^{\dagger}) - \mu(\det \Phi + \mathrm{H.c.}) + \frac{\xi}{2} \left[\operatorname{Tr}(\Phi \Phi^{\dagger}) \right]^{2} + \frac{k}{2} \operatorname{Tr}(\Phi \Phi^{\dagger} \Phi \Phi^{\dagger})$$

For an appropriate range of parameters:

Quark couplings fixed from above!

OCTET SCALAR PRODUCTION

OCTET SCALAR DECAY

Dijets:

 $\overline{c}_{L}t_{R} + \overline{t}_{R}c_{L}:$ G_{H} Q_{R} $\lambda'_{t/b}$ ψ_{L} G_{H} Q_{R} $\chi'_{t/b}$

TOP + CHARM OFTEN VERY LARGE!

EXPERIMENTAL CONSTRAINTS

Wednesday, July 10, 2013

FLAVOR-UNIVERSAL CONSTRAINTS ON SCALARS

R.S.C., Arsham Farzinnia, Jing Ren, and Elizabeth Simmons arXiv:1307.xxxx Scalar potential includes Higgs boson as well:

$$V(\phi, \Phi) \subset \frac{\lambda_h}{6} \left(\phi^{\dagger} \phi - \frac{v_h^2}{2} \right)^2 + \lambda_m \left(\phi^{\dagger} \phi - \frac{v_h^2}{2} \right) \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] - \frac{v_s^2}{2} \right)$$

"Higgs portal" coupling: mixing between electroweak and color sectors

$$h = \cos \chi \, h_0 - \sin \chi \, \phi_{0R}$$

S-T contours from Gfitter, arXiv:1209.2716

CONSTRAINTS FROM HIGGS OBSERVATION

Coloron and colored scalar contributions to production...

 $h \rightarrow \phi_I \phi_I$ allowed

CMS-PAS-HIG-13-005 ATLAS-CONF-2013-034 Yao, Moriond EW 2013

ILLUSTRATION OF COMBINED RESULTS

Illustrates interplay of different constraints ... and of direct and indirect bounds

CONCLUSIONS

CONCLUSIONS

Many models predict extended strong interactions

Is this extended dynamics flavor-universal or not?

- Introduced a flavorful top-coloron model
- Constraints from FCNCs favor NMFV.
- Same-sign tops, and therefore dileptons, an interesting signature for new colored scalars.

Additional effects of extended strong interactions?

- Color symmetry breaking sector can mix with EWSB
- Constraints on Higgs mixing and from observed properties of Higgs boson