The $t\bar{t}$ forward-backward asymmetry and new strong interactions

Alex Kagan

KITP, July 2013

Plan

- Flavor and $A_{\rm FB}^{t\bar{t}}$
 - **flavor symmetric vectors** B. Grinstein, A.K., M. Trott, J. Zupan
- The $(\bar{u}t)$ flavor-changing Z'
 - A_C vs. A_{FB} and other constraints
 J. Drobnak, A.K., J. Kamenik, G. Perez, J. Zupan
- A strong interaction realization
 - J. Brod, J. Drobnak, A.K., E. Stamou, J. Zupan, in preparation

Flavor symmetry and $A_{\rm FB}^{t\bar{t}}$

The situation

For $M_{t\bar{t}} > 450$ GeV CDF measures (lepton+jets):

$$A_{FB}^{t\bar{t}} = \frac{\sigma_F^{SM} + \sigma_F^{NP} - \sigma_B^{SM} - \sigma_B^{NP}}{\sigma_F^{SM} + \sigma_F^{NP} + \sigma_B^{SM} + \sigma_B^{NP}} = 0.295 \pm 0.066$$

SM NLO prediction for $M_{t\bar{t}} > 450$ GeV:

$$A_{FB}^{tt}$$
 (NLO) = $0.129_{-0.006}^{+0.008}$ 2.4 σ discrepancy Bernreuther, Si

SM prediction decreases by $\sim 30\%$ for $\sigma_{\rm NLO}^{t\bar{t}}$ in the denominator

For $M_{t\bar{t}} < 450$ GeV CDF measures:

 $A_{FB}^{t\bar{t}} = 0.084 \pm 0.053$ consistent with SM

D0 does not see a significant $M_{t\bar{t}}$ dependence (not unfolded)

Inclusive $A_{FB}^{\bar{t}t}$ measurements (lepton + jets):

CDF:

$$A_{FB}^{tt} = 0.196 \pm 0.065 \text{ (D0)}, \quad 0.164 \pm 0.045 \text{ (CDF)}$$

 $A_{FB}^{\bar{t}t}$ (exp avg) = 0.174±0.037 vs. $A_{FB}^{\bar{t}t}$ (NLO SM) = 0.088±0.006

inclusive leptonic asymmetry (ℓ +jets):

$$A_{FB}^{\ell} = 0.094 \pm 0.032 \text{ (CDF)}, \quad 0.152 \pm 0.04? \text{ (D0)}$$

vs. $A_{FB}^{\ell}(\text{NLO SM}) = 0.038 \pm 0.003$

above SM predictions decrease by $\sim 30\%$ for $\sigma_{\rm NLO}^{t\bar{t}}$ in the denominator

The charge asymmetry A_C at the LHC

- the LHC is a symmetric collider (*P*-invariant) therefore $A_{FB}^{\bar{t}t} = 0$.
- can define a charge asymmetry using rapidity differences, which can access the physics responsible for $A_{FB}^{\bar{t}t}$ at the Tevatron:

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) - N(\Delta|y| < 0)}$$

where $\Delta |y| = |y_t| - |y_{\overline{t}}|$

- If the dilution due to large $gg \to t\bar{t}$ means A_C is much smaller than $A_{FB}^{\bar{t}t}$.
- Experiment and SM theory are consistent

$$A_C = 1.4 \pm 0.7\%$$
 (CMS), $2.9 \pm 2.3\%$ (ATLAS)

 $A_C = 1.3 \pm 1.2\%$ (exp avg) vs. $A_C = 1.23 \pm 0.05$ (NLO SM)

(~ 30% reduction in SM prediction with $\sigma_{\rm NLO}^{t\bar{t}}$ in denominator)

Low mass t-channel explanations

appealing features:

- vectors, e.g., Z' or W' with masses of a few hundred GeV yield large $A_{FB}^{t\bar{t}}$, increases with $M_{t\bar{t}}$, as observed Jung, Murayama, Pierce, Wells '10
- simultaneously, good agreement with measured spectrum at large $M_{t\bar{t}}$ Gresham, Kim, Zurek '11; Jung, Pierce, Wells '11
 - **s** for large $M_{t\bar{t}}$, NP t-channel top production more forward
 - but CDF's acceptance decreases rapidly at large rapidity

Issues

- \square Z': same sign top production $uu \rightarrow tt$
- \blacksquare W': single top production
- Iarge Z' u t or W' d t couplings \Rightarrow FCNC's are an issue
 - why are other couplings, e.g., Z' u c (danger for $D \overline{D}$ mixing), much smaller?
- contribution to $\sigma_{t\bar{t}}$ at LHC via single light mediator decay, e.g. Gresham, Kim, Zurek

$$gq \to t + (Z' \to \bar{t}q)$$

- and bounds from top+jet resonance searches
- both evaded if $Br(Z' \to \bar{t}q)$ is suppressed

Flavor Symmetric Models

Consider

NP in MFV class, i.e., invariant under

$$G_F = U(3)_Q \times U(3)_u \times U(3)_d$$

- Yukawas and new flavor diagonal phases only source of FCNCs
- or NP invariant under the flavor subgroup

$$H_F = U(2)_Q \times U(2)_u \times U(2)_d \times U(1)_3$$

- also appealing for relaxation of FCNC constraints
- new fields in non-trivial representations of G_F or H_F with O(1) couplings to the top and light quarks
 - Flavor symmetry \Rightarrow no like sign top or single top production; negligible FCNC's, e.g., $D^0 - \overline{D}^0$ mixing

Vectors in MFV

- Motivated by nice features of vector t-channel models
- There are 22 vector representations satisfying the MFV hypothesis (not all relevant to $A_{FB}^{t\bar{t}}$)

Case	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$SU(3)_{U_R} \times SU(3)_{D_R} \times SU(3)_{Q_L}$	Couples to
I _{s,o}	1,8	1	0	(1,1,1)	$ar{d}_R\gamma^\mud_R$
$II_{s,o}$	1,8	1	0	(1,1,1)	$ar{u}_R \gamma^\mu u_R$
$III_{s,o}$	1,8	1	0	(1,1,1)	$ar{Q}_L \gamma^\mu Q_L$
$\mathrm{IV}_{\mathrm{s,o}}$	1,8	3	0	(1,1,1)	$ar{Q}_L \gamma^\mu Q_L$
V _{s,o}	1,8	1	0	(1,8,1)	$ar{d}_R \gamma^\mu d_R$
$VI_{s,o}$	1,8	1	0	(8,1,1)	$ar{u}_R \gamma^\mu u_R$
$\mathrm{VII}_{\mathrm{s,o}}$	1,8	1	-1	(3,3,1)	$ar{d}_R\gamma^\muu_R$
$\operatorname{VIII}_{\mathrm{s,o}}$	1,8	1	0	(1,1,8)	$ar{Q}_L \gamma^\mu Q_L$
$IX_{s,o}$	1,8	3	0	(1,1,8)	$ar{Q}_L \gamma^\mu Q_L$
$X_{\bar{3},6}$	<u>3</u> ,6	2	-1/6	(1,3,3)	$ar{d}_R \gamma^\mu Q^c_L$
$XI_{\bar{3},6}$	<u>3</u> ,6	2	5/6	(3,1,3)	$ar{u}_R \gamma^\mu Q^c_L$

Flavor symmetric vector models

Simplest viable possibilities are the $U(3)_{U_R}$ flavor octet color octet or color singlet vectors coupling only to RH up quarks

 $\mathcal{L} = \lambda \bar{u}_R \gamma^{\mu} V^{o,s}_{\mu} u_R + \text{MFV corrections}$

• color octet:
$$V^o_\mu = V^{A,B}_\mu \mathcal{T}^A T^B$$

• color singlet:
$$V^s_\mu = V^A_\mu T^A$$

$$t- channel \quad (V^4_{\mu} - iV^5_{\mu})(\bar{t}_R\gamma^{\mu}u_R) + \dots \Rightarrow K^*$$
$$s- channel \quad V^8_{\mu}(\bar{u}_R\gamma^{\mu}u_R + \bar{c}_R\gamma^{\mu}c_R - 2\bar{t}_R\gamma^{\mu}t_R) \Rightarrow \Phi/\Omega$$

$$finite{tabular}$$
 $t\overline{t}$ production t-channel dominated

or could have
$$[SU(2) \times U(1)]_{U_R}$$
 symmetry

Ex: A_{FB}^{tt} and $d\sigma/dM_{t\bar{t}}$ for broad octet of color and flavor

A^{tt̄}_{FB} and $d\sigma(tt\bar{t})/dM_{t\bar{t}}$, for two different values of $(m_V, \sqrt{\lambda_{qq}\lambda_{tt}}, \lambda_{qt}, \Gamma_V/m_V)$: solid red (300 GeV, 1, 1.33, 0.08); dashed blue (1200 GeV, 2.2, 4.88, 0.5). Inclusive A^{tt̄}_{FB} = 0.17 in both cases

light vectors with O(10%) widths, due to additional decay channel, can evade constraints on s-channel dijet contributions, with approximately flavor symmetric couplings

$$\lambda_{qq} \approx \lambda_{33} \approx \lambda_{i3}$$

Focus on the flavor changing Z^\prime

Contribution to A_C from single mediator production

J. Drobniak, A.K., J. Kamenik, G. Perez, J. Zupan; Alvarez, Leskow

 $ug \to Z't \to \bar{t}u + t, \quad \bar{u}g \to Z'\bar{t} \to t\bar{u} + \bar{t} \quad (Z' \text{ is the } \mathbf{K}^*)$

for ug process Z' gets a boost due to larger momentum of u than g, \Rightarrow boosted \overline{t} relative to t, opposite to what happens in $u\overline{u} \rightarrow t\overline{t}$ \Rightarrow negative contribution to A_C

breaks the correlation between A_C and A_{FB}

Z' continued

$$\mathcal{L} = g_{ut} \, Z'_{\mu} \, \bar{u}_R \, \gamma^{\mu} \, t_R \, + \, \text{h.c.} \, + \, M_{Z'}^2 \, Z'_{\mu}{}^{\dagger} \, Z'^{\,\mu}$$

- Employ χ^2 to search for optimal ranges of g_{ut} , $M_{Z'}$, $Br(Z' \to t\bar{u})$ for three renormalization/factorization scales $\mu = m_t/2, m_t, 2m_t$.
- Six $t\bar{t}$ observables in fit: σ_{total} at Tevatron and LHC, A_{FB} (inclusive), $A_{FB}(m_{t\bar{t}} > 450), A_{FB}(m_{t\bar{t}} < 450), A_C$
- Set fit points lie near $M_Z' \approx 200$ GeV, ${
 m Br}(Z' o t \bar{u}) \approx 1/4$
- - Suppressed $Br(Z' \rightarrow t\bar{u}) \Rightarrow$ satisfy LHC top+jet resonance production bounds
- **P** require an additional dominant Z' decay mode

 1σ and 2σ preferred regions (red). Blackdot is best fit point.

$$\chi^2_{\rm min} = 3.9$$
; for comparison, the best SM $\chi^2 = 12.1$ at $\mu = m_t/2$

- Grey area is region not excluded by ATLAS search for top+jet resonances
- ▶ best fit point features dramatic reduction of A_C due to associated $Z'\bar{t}$ production: from $A_C \approx 0.032 \rightarrow A_C \approx 0.07$

- Comparison of measured CDF and (normalized) ATLAS $m_{t\bar{t}}$ spectra (1 σ grey bands) to SM prediction, and a few BM's. Best fit point in previous plot corresponds to the red dotted curves
- small tail at large $m_{t\bar{t}}$ in the LHC spectrum is characteristic of low scale *t*-channel models

Jet multiplicities

- one might worry that $t + Z' \rightarrow t\bar{t}j$ production could observably modify the jet multiplicity distribution in $t\bar{t}$ events, relative to SM prediction. For our benchmarks we have checked that the distributions are consistent with a CMS study of the jet multiplicity in semileptonic $t\bar{t}$ events, in the cleanest double b-tagged sample.
 - using MadGraph5, Pythia6.425, and FastJet, we compared the jet multiplicities with and without new physics to the data. The differences in the percentage of events with n=1,...,5 jets is always smaller than a few percent

Strong interaction realization

J. Brod, J. Drobnak, A.K., E. Stamou, J. Zupan

Motivation

- phenomenological models with massive flavor symmetric vectors not renormalizable
- two options for UV completions
 - Iocal horizontal symmetry flavor gauge bosons (FGB's)
 - composite vector meson flavor multiplets
- FGB's are a problematic framework for low scale models
 - a sub-TeV flavor gauge symmetry breaking scale is dangerous for FCNC's
- Composite vector mesons naturally have new dominant channels for decay: $V \to PP$, e.g. $\rho \to \pi\pi$, $K^* \to K\pi$
 - **s** required in low scale *t*-channel models: LHC $t\bar{t}$ xsec,...
 - favored by dijet constraints

The set-up

- can we build models with composite flavor octet vector mesons?
- can they naturally only couple to right-handed up quarks?
- QCD provides the prototype for flavor octet (nonet) composite vector mesons
- add asymtpotically free $SU(3)_{HC}$ "hypercolor" gauge interaction, with strong interaction scale $\Lambda_{HC} \sim 1/2$ TeV
- Minimal model: add $SU(2)_L$ singlets:
 - a vectorlike $[SU(2) \times U(1)]_{U_R}$ "flavor triplet" of hypercolor quarks $(\omega_{L_i}, \omega_{R_i}), i = 1, 2, 3$
 - **a** "flavor singlet" hypercolor scalar S

Hypercolor matter transforms under $SU(3)_{HC} \times SU(3)_C \times SU(2)_L \times U(1)_Y$ as

$$\omega_{L_i,R_i}(3,1,1,0), \quad S(\bar{3},3,1,2/3b)$$

$$\mathcal{L}_{NP} = \mathbf{h}_{ij} \, \bar{u}_{Ri} \, \omega_{Lj} \, \mathcal{S} + h.c. + \mathbf{m}_{\omega \, ij} \, \bar{\omega}_i \, \omega_j + m_s^2 |\mathcal{S}|^2$$

 u_R is the usual flavor triplet of RH up quarks (u_R, c_R, t_R) , the ω_i are in a flavor triplet of up quark flavors $(\omega_u, \omega_c, \omega_t)$

$${}$$
 will take $m_\omega << \Lambda, \quad$ like u,d,s in QCD

could "supersymmetrize" in order to protect scalar mass; or could imagine that the scalar is composite

• variation on \mathcal{L}_{NP} : add gauge singlet scalar, \mathcal{N} ,

$$\mathcal{L}_{NP} = \mathbf{h} \, \bar{u}_R \, \omega_L \, \mathcal{S} + h.c. + \eta \, \mathcal{N} \, \bar{\omega} \omega + \mu_s \, \mathcal{N} \mathcal{S}^* \mathcal{S} + m_s^2 \, |\mathcal{S}|^2 + m_N^2 |\mathcal{N}|^2 + \dots$$

• dynamically generate ω current masses via $SU(N)_{HC}$ condensates,

$$\langle \bar{\omega}\omega \rangle, \ \langle \mathcal{S}^*\mathcal{S} \rangle \neq 0 \Rightarrow \ \langle \mathcal{N} \rangle \neq 0 \Rightarrow \ m_\omega \neq 0$$

 $SU(3)_c$ breaking alignment of condensates can be avoided via the new terms

$$\eta \mathcal{N} \, \bar{\omega} \omega + + \mu_s \, \mathcal{N} \mathcal{S}^* \mathcal{S}$$

- the hypercolor sector only couples to the right-handed up quarks
 - **•** due to choice of hypercharge assignments for ω , S
- Therefore, do not have to single out the right-handed quarks for special treatment in the UV
 - the NP $[SU(2) \times U(1)]_{U_R}$ symmetry could be an accidental consequence of an $SU(3)_H$ or $[SU(2) \times U(1)]_H$ horizontal gauge symmetry, under which all quarks transform
 - Spontaneous breaking in the UV could generate the quark mass and mixing hierarchies via a Frogatt-Nielsen type mechanism
 - At the weak scale could have the SM + a new flavor symmetric hypercolor sector

Hypercolor resonances

the lowest lying $[\bar{\omega}\omega]$ vector meson flavor 8+1 "nonets" (a=1,...,9):

 ρ^a_{HC} vectors; $a^a_{1\,HC}\,$ axial-vectors

- for simplicity, did not include ${}^{1}P_{1}$ vector multiplet (ignored " $K_{1}^{A} K_{1}^{B}$ " mixing)
- $\langle \bar{\omega}\omega
 angle
 eq 0$ breaks global chiral symmetry

```
SU(3)_L \times SU(3)_R \to SU(3)_V
```

- \Rightarrow flavor octet of pions π^a_{HC} , heavier η'_{HC}
- **•** for now considered η_8 (ignored η' , and $\eta \eta'$ mixing)

$$\frac{f_{\pi}^{HC}}{f_{\pi}} \sim \frac{f_{\rho}^{HC}}{f_{\rho}} \sim \frac{m_{\rho_{HC}}}{m_{\rho}}, \qquad \frac{f_{\rho}^{HC}}{m_{\rho}^{HC}} \approx 0.2$$

Motivated by Z' analysis of $A_{FB}^{t\bar{t}}$

•
$$\Lambda_{HC}^{\chi SB} \sim 4\pi f_{\pi}^{HC} \sim 200 - 300 \, \text{GeV}$$

$$m_{\omega} \sim 10 \text{ GeV} \Rightarrow m_{\pi}^{HC} = O(100) \text{ GeV}$$

$$\text{VMD} \Rightarrow \frac{\Gamma(\rho_{HC} \to \pi_{HC} \, \pi_{HC})}{m_{\rho}^{HC}} = O(10\%)$$

new composite quarks and partial compositeness

resonances include $SU(3)_{U_R}$ flavor triplet of weak singlet vectorlike up quarks, with masses of O(1/2 TeV)

 $\boldsymbol{u}'[\mathcal{S}\,\omega_u], \quad \boldsymbol{c}'[\mathcal{S}\,\omega_c], \quad \boldsymbol{t}'[\mathcal{S}\,\omega_t]$

 $fill t\bar{t}$ production via exchange of K^* , K_1 ,.... and large $u'_{R_i} - u_{R_i}$ mixing - partial compositeness

$$\rho^a - u_i - u_j$$
, $a_1^a - u_i - u_j$ couplings via partial compositeness

up quark mass matrix of form:

$$M_{RL} = \left(\begin{array}{cc} m_u & \sqrt{2}hf_{u'} \\ 0 & M_{u'} \end{array}\right)$$

 m_{u_i} are ordinary up quark masses, $M_{u_i^\prime}$ are composite up quark masses

use Vector Meson Dominance (VMD) to estimate the $\rho^a - u'_i - u'_j$ and $a^a_1 - u'_i - u'_j$ couplings

$$g_V \rho^a_\mu \ \bar{u}' T^a \gamma^\mu u' + g_A a^a_{1\,\mu} \ \bar{u}' T^a \gamma^\mu \gamma_5 u' \Rightarrow g_V \approx \frac{m_\rho}{f_\rho}, \ g_A \approx \frac{m_{a_1}}{f_{a_1}}$$

• $\rho^a - u_i - u_j$ and $a_1^a - u_i - u_j$ couplings follow from u' - u mixing:

 $\lambda^V \approx g_V \sin^2 \theta_R, \quad \lambda^A \approx g_A \sin^2 \theta_R$

 $\lambda^V \sim 1 \ \Rightarrow \ h \sim 2$

obtain partially composite RH up quarks with sin $\theta_{R_i} \sim 1/3$, and LH top with sin $\theta_L^t \sim 1/3 \times m_t/M_{t'}$

$$\frac{\tilde{g}_A}{f_\pi} \left(\bar{u}'_R T^a \not \partial \pi^a u'_R - \bar{u}'_L T^a \not \partial \pi^a u'_L \right)$$

coupling to ordinary quarks via partial compositeness

P-wave $[S^*S]$ vectors

include *s*-channel exchanges of *P*-wave vector meson bound states of the scalars, $V^{\mu}[S^*S]$,

 \blacksquare a flavor singlet color octet V_o , and flavor singlet color singlet V_s ,

$$\langle V_o^a | \mathcal{S}^* T^a \partial_\mu \mathcal{S} - (\partial_\mu \mathcal{S}^*) T^a \mathcal{S} | 0 \rangle \sim f_V m_V \epsilon_\mu$$

- gain insight on masses, decay constants from QCD tensor mesons $f_2(1270)$, $f'_2(1525)$, which also have derivative couplings
 - QCD sum-rule study of the tensors suggests $f_V/M_V \sim 0.1$ (K.C. Yang)
 - \blacksquare "VMD" suggests coupling to composite quarks $g_V \sim m_V/f_V$
 - NDA yields similar estimates

want $m_{V_o} \gtrsim 1$ TeV to avoid $t\bar{t}$ peak in Tevatron data due to V_o s-channel exchange
 ⇒ $m_S \gtrsim 1/2$ TeV or $m_S \sim (2-3) \times \Lambda$

• therefore composite quarks probably "lie between" D^* and B^* in terms of mass

- ${f
 ho}$ the u',c',t' are "heavy-light mesons", with heavy scalar quark ${\cal S}$, light quarks ω_i
- to leading order, identify u'_i decay width with partonic $\mathcal{S} o \omega u_i$ width
- bound pion-composite quark coupling \tilde{g}_A by requiring

$$\Gamma(u_i' \to \pi^a u_j) < \Gamma(\mathcal{S} \to \omega u_i)$$

 $V_{o,s}$ are very broad , e.g. $\Gamma/M = O(30-50\%)$, due to $V_{o,s} o ar{u}_i' \, u_i$

new $t\bar{t}$ **production modes**

- **9** t-channel $t\bar{t}$ production via K^* , K_1 , K exchange
- **9** s-channel $t\bar{t}$ production via
 - **9** ϕ , ω : highly suppressed by ϕ/ω mixing
 - similarly for f_1^0/f_1^8 exchange
 - IV_o, V_s exchange
- s-channel dijet production via ho, a_1 , ϕ/ω , f_1^0/f_1^8 , $V_{o,s}$ exchange

Decay Widths K K v TI K Olisz) 0(53) (far 8) Kt; S; t; R T; K,K,K ſ 0(303) 0(138) 9(208) +K ť ul 0(103) 0(30-403)

Numerics

dependence of ρ , K*, ..., a_1 , K_1 , ... masses, ω/ϕ and f_1^0/f_1^8 mixing on "quark masses" m_{ω_1} , m_{ω_3} obtained by scaling massive parameters from naive QCD quark model treatment Cheng, Shrock

scale factor
$$\frac{M^{HC}}{M_{\rho}^{QCD}}$$
,

 ${\cal M}^{HC}$ is the would-be HC vector mass in chiral limit

pseudoscalar masses

$$\left(M_{\pi^{1,2,3}}^{HC}\right)^2 = \frac{M^{HC}}{M_{\rho}^{QCD}} \ 2B \ m_{\omega_1}, \quad \text{etc.}$$

use $B \approx 2.7 \text{ GeV}$ (UKQCD)

heavier masses (heavy quark - like relations)

$$M^{HC}_{V_{o,s}s} = M^{HC} + 2m_S$$

$$M_{u_i'}^{HC} = M^{HC} + m_{\omega_i} + m_S$$

decay constants of π^a , ρ^a , a_1^a scaled from QCD

$$f_{\pi}^{HC} = f_{\pi}^{QCD} \frac{M^{HC}}{M_{\rho}^{QCD}}, \qquad f_{\rho(a_1)}^{HC} = f_{\rho(a_1)}^{QCD} \frac{M^{HC}}{M_{\rho}^{QCD}}$$

decay constants of composite quarks $f_{t'}, \dots$

■ use information on light and heavy-light vector mesons in QCD, f_{ρ} , f_{K^*} , f_{D^*} , f_{B^*} (HQET + f_B) vs. meson masses, to interpolate between light and heavy-light vector meson limits in QCD.

 ${}$ scale up via $M^{HC}/M^{QCD}_{
ho}$

A light K^* benchmark

 $\chi^2 \text{ scans in the 6 observables: } \sigma_{\text{total}} \text{ at Tevatron and LHC, } A_{FB} \text{ (inclusive),} \\ A_{FB}(m_{t\bar{t}} > 450), A_{FB}(m_{t\bar{t}} < 450), A_C. \\ \text{renormalization scale } \mu = 2m_t \text{ for cross sections, asymmetries} \end{cases}$

UV inputs :

$$M^{HC} = 176 \text{ GeV}, \ m_{\omega_1} = 2.5 \text{ GeV}, \ m_{\omega_3} = 2.5 \text{ GeV}, \ m_{\mathcal{S}} = 520 \text{ GeV}, \ h_1, h_3 = 2.9$$

 $M_{\pi} = 56 \text{ GeV}, \ M_K = 147 \text{ GeV}, \dots; M_{\rho} = 180 \text{ GeV}, \ M_{K*} = 217 \text{ GeV}, \dots$

 $M_{a_1} = 371 \text{ GeV}, \ M_{K_1} = 404 \text{ GeV}, \dots$

 $M_{V_{o,s}} = 1300 \text{ GeV}; \quad M_{u'} = M_{c'} = 695 \text{ GeV}, \quad M_{t'} = 724 \text{ GeV}, \dots$

differential spectra

- obtained partonically in MG
- **9** xsecs: $d\sigma/dm_{t\bar{t}}$ at Tevatron, LHC
- ${}$ comparison of A_{FB} vs. $m_{tar{t}}$, and A_{FB} vs. $|\Delta y|$
- dijet spectra
 - comparison of $d\sigma/dm_{jj}$ with CDF; LHC spectra in progress
 - \square comparison of dijet angular distributions with D0; LHC spectra in progress

$${
m I} = 1/\sigma_{
m dijet} d\sigma/d\chi$$
 in intervals of m_{jj}

$$\chi = \frac{1 + |\cos \theta|}{1 - |\cos \theta|}$$

 θ is scattering angle for $2 \rightarrow 2$ parton scattering process in parton CM frame

Atomic parity violation bounds Gresham, Kim, Tulin, Zurek

contributions of lowest lying resonances, K, K^* , ϕ/Ω , f_1^0/f_1^8 to $a_R(u)$

$$-\frac{g_2}{c_W}Z^{\mu}a^u_R\bar{u}_R\gamma_{\mu}u_R$$

are at $O(10^{-3})$, a factor of a few below current bounds

On the composite u''s

- \bullet widths $\approx 10\%$
- detection at LHC is challenging $u'_i
 ightarrow t + \pi^a \, 's$
- igstarrow π^a are color singlets, decay via $\pi
 ightarrow ar{u} u, \ ar{c} c, \ ar{u} c$, or $K
 ightarrow ar{t}^{(*)} u, \ ar{t}^{(*)} c$
- final states with two tops, e.g., $\overline{t}'t' \rightarrow \overline{t}t + n$ jets,
- Production mechanism:
 - \bullet $\bar{u}'_i \, u'_i$: via QCD and $\rho^a, \, a^a_1, \, V_{o,s}$ exchange
 - $\bar{u}'_i u_i$ (single u' production): via ρ^a , a^a_1 , $V_{o,s}$ exchange

associated K^* production at LHC

For this BM, $\sigma(pp \to K^*t) \approx 15$ [pb]; $Br(K^* \to u\bar{t}) = Br(K^* \to c\bar{t}) \approx 16\%$

- **s** modest reduction in A_C from 0.028 to 0.023 via $K^* \rightarrow \bar{u}t, \bar{c}t$
- ATLAS top + jet resonance search:

 $\sigma(pp \to K^*t) \times \text{Br}(K^* \to u\bar{t} + c\bar{t}) \approx 20\% \times \text{ATLAS}$ bound

- signal in single top production? $pp \to K^*t \to (K\pi)t \to (\bar{t}^*\pi\pi)t$ with xsec ≈ 15 [pb]
 - \checkmark cross section $\approx 25\%$ of SM t-channel single top xsec
 - problem: single top searches not optimized for t + n jets final state
- for t' and K^* production signals need to refine inclusive multi jet searches

conclusion

- There exists a viable strong interaction realization of the low scale flavor symmetric t-channel idea
- in the UV it is a copy of QCD with 3 light HC quarks and an additional HC scalar
- in the IR leads to an even bigger zoo of resonances than low scale QCD, e.g., additional composite quarks,...
- nevertheless it is appears challenging at the LHC
 - the lowest lying resonances are color singlets
 - the colored resonances are broad, decay to exotic multi jet final states
- **f** the lightest HC baryon, e.g., $[\omega_u \omega_u \omega_c]$, may provide an example of flavorful DM