Compactified M/string theory prediction (August 2011) of the Higgs boson mass and properties

 \rightarrow M_h = 126 ± 2 GeV, SM-like

GK, Ran Lu, Bob Zheng, Piyush Kumar + Bobby Acharya, Konstantin Bobkov, Jing Shao, ...

AND "NEW" COMPACTIFIED M-THEORY STUDY OF GENERIC PREDICTION OF THE GLUINO MASS (AND SIGNATURES) – THEORETICALLY HARDER THAN H -- PROBABLY

800 GeV $\lesssim M_{\tilde{g}} \lesssim$ 1500 GeV

Gordy Kane, University of Michigan

■ Introduction – making string theory predictions for data -- assumptions - not directly related to Higgs sector -- stabilizing moduli – crucial for derivation -- μ, tanβ not parameters in string theory ☐ Higgs mass derivation **□** Results **□** Implications Gluino mass prediction > Associated LHC predictions for gluino BR, charginos, LSP **□** Naturalness? – what you talk about if no theory ☐ Little hierarchy problem reduced – gone? ☐ Final remarks

Goal: Understand the ground state of our M/string theory – we live there – M/string theory provides powerful framework Beyond SM

Higgs discovery great – closes one era whose goal was to describe our world (400 years) – opens new era with Higgs physics pointing toward deeper underlying theory, why the SM is what it is – Expect Supersymmetric Standard Model (SSM)

Data seems consistent with that – observed higgs behaves just like the decoupling limit of Supersymmetric Standard Model, long well known

Is M_h too large for that to make sense? Need a theory to define "large"!

→M/string theory → M_h just right, explains "why 126"
Often people use "naturalness" as criterion – but that is only what you would use in the absence of a theory!

M\string theories have matured to the stage where can use them to get, test predictions -- obviously must compactify to 4D - So have candidate theory framework to ask if M_h "natural" – moduli describe small extra D, must be given vacuum values (stabilized)

We did that for the Higgs mass and properties – work in compactified fluxless M-theory since stabilizing moduli works well there – results may hold in other corners of string theory too (depends on μ too)

We found (summer 2011) the theory *generically* and *naturally* has solutions with EWSB, with the decoupling limit of Supersymmetric Standard Model, with $M_h = 126 \pm about 1\%$, for gravitino mass of $50 \text{ TeV} - M_h$ increases (decreases) 1.5 GeV for doubling (halving)

Gravitino mass gives splitting with graviton, measures amount of susy breaking – calculate gravitino mass from Planck mass -- Gravitino mass ($M_{3/2}$) approximately calculable in the theory, and also phenomenologically constrained, to region about 30-100 TeV --

There has not been enough thought about what it means to make predictions, explanations from string theory for data – predictions, explanations should be based on <u>generic</u> projection of extra dimensional theories into 4D large spacetime, plus small dimensions

Require boundary conditions (e.g. solutions with EWSB) but calculate masses as output

"GENERIC" ≈ perhaps not theorem, but holds very generally – just calculate naturally without special assumptions – have to work hard to find or construct (non-generic) exceptions (if possible), and to show possible exceptions don't have problems that exclude them

String theory only fully predictive if results generic – not generic *means* tuning <u>something</u> – risky

 could have nature's theory being constrained by M/string theory framework but needing limited tuning – but hopefully not

Take compactifications seriously

☐ Philosophy to compute Higgs mass, gluino mass, properties:

Divide all compactified string/M theories into two classes

- Some generically have softly-broken supersymmetry, TeV scale physics, EWSB, μ and tanβ not parameters, no contradictions with nucleosynthesis, cosmology, etc study all these theories -- if our world is described by a compactified string/M theory it will look like these turns out it's easy to find them
- > The rest

Find many – "compactified constrained string/M theories"

Calculate M_h/M_{Z_c} gluino mass, etc for those solutions \rightarrow 126 and more

PAPERS ABOUT M-THEORY COMPACTIFICATIONS ON G_2 MANIFOLDS (11 D - 7 small D = our 4D)

Earlier work (stringy, mathematical):

- Review of supergravity work, Duff hep-th/0201062
- Witten, 1995 → M-theory
- Papadopoulos, Townsend th/9506150, 7D manifold with G₂ holonomy preserves
 N=1 supersymmetry → vacuum stability after EWSB
- Acharya, hep-th/9812205, non-abelian gauge fields localized on singular 3 cycles
- Acharya, hep-th/0011289
- Atiyah and Witten, hep-th/0107177
- Atiyah, Maldacena, Vafa, hep-th/0011256
- Acharya and Witten, hep-th/0109152, chiral fermions supported at points with conical singularities
- Witten, hep-ph/0201018 shows embedding MSSM probably ok
- Beasley and Witten, hep-th/0203061, Kahler form
- Friedmann and Witten, th/0211269
- Lukas, Morris hep-th/0305078, gauge kinetic function
- Acharya and Gukov, hep-th/0409101 review good summary of known results about singularities, holonomy and supersymmetry, etc all G₂ moduli geometric gravity mediated because two 3-cycles won't interact directly in 7D manifold

We started M/string compactification fall of 2005, interested in moduli stabilization, susy breaking, Higgs, superpartners, since LHC coming

Do the derivations here in M-theory case since those calculations more complete — results may hold in some or all other corners of string theory since they depend on only a few generic features of resulting softbreaking Lagrangian (μ, tanβ?)

So far, only compactified M-theory has stabilized moduli, de Sitter vacuum, no cosmological moduli problem – no other string theory limit

Our M-theory papers -- Review arXiv:1204.2795, Acharya, Kane, Kumar [Acharya, Kane, Piyush Kumar, Bobkov, Kuflik, Shao, Ran Lu, Watson, Bob Zheng]

- M-Theory Solution to Hierarchy Problem th/0606262
- Stabilized Moduli, TeV scale, squark masses = gravitino mass, few tens of TeV; gaugino masses suppressed 0701034
- \circ Spectrum, scalars \gtrsim 30 TeV, wino-like LSP, large trilinears (no R-symmetry) 0801.0478
- \circ Study moduli, Nonthermal cosmological history– generically moduli \gtrsim 30 TeV so gravitino \gtrsim 30 TeV, squarks \approx gravitino so squarks \ge 30 TeV 0804.0863
- o CP Phases in M-theory (weak CPV OK) and EDMs 0905.2986
- \circ Lightest moduli masses \lesssim gravitino mass 1006.3272 (Douglas Denef 2004; Gomez-Reino, Scrucca 2006)
- Axions stabilized, strong CP OK, string axions OK 1004.5138
- o Gluino, Multi-top searches at LHC (also Suruliz, Wang) 0901.336
- No flavor problems, (also Velasco-Sevilla Kersten, Kadota)
- \Box Theory, phenomenology of μ in M-theory 1102.0566 via Witten (new paper coming)
- o Baryogenesis, ratio of DM to baryons (also Watson, Yu) 1108.5178
- String-motivated approach to little hierarchy problem, (also Feldman) 1105.3765
- Higgs Mass Prediction 1112.1059 (GK, Kumar, Lu, Zheng)
- Gluino mass prediction, paper in preparation

To take Higgs and gluino results fully seriously good to know other major physics questions addressed OK in same theory

Next briefly compare M-**theory** derivation with **models** assuming heavy scalars – early paper speculating scalars heavy James Wells hep-th/0302127

- See many features are different alert you to watch for them during derivations
- History very distorted, even recently

COMPACTIFIED(STRING)**M THEORY**

- Derive solution to large hierarchy problem
- Generic solutions with EWSB derived
- main F term drops out of gaugino masses so dynamically suppressed
- Trilinears > M_{3/2} necessarily
- μ incorporated in theory (M-theory)
- Little hierarchy significantly reduced
- Scalars = M_{3/2} ~ 50 TeV necessarily,
 scalars only ~ 50 TeV, not superheavy
- Gluino lifetime $\lesssim 10^{-19}$ sec, always decays in beam pipe
- M_h ≈126 GeV unavoidable, predicted

SPLIT SUSY (ETC) MODELS

- Assumes no solution possible for large hierarchy problem
- EWSB assumed, not derived
- Gauginos suppressed by assumed Rsymmetry, suppression arbitrary
- Trilinears small, suppressed compared to scalars
- μ not in theory at all; guessed to be $\mu \sim M_{3/2}$
- No solution to little hierarchy
- Scalars assumed very heavy, whatever you want, e.g. 10¹⁰ GeV
- Long lived gluino, perhaps meters or more
- Any MSSM M_h allowed

Now Main Derivation – first make assumptions, not closely related to Higgs sector

- CC problem orthogonal won't know for sure until solved
- Our world described by compactified M-theory G₂ manifold, fluxless (can try to repeat for other corners of string theory)
- \circ Assume Hubble parameter H at end of inflation larger than $M_{3/2}$
- \circ Assume top quark with yukawa coupling \sim 1 (work underway)
- Assume compact singular G2 manifold exists with assumed properties
- □ Include µ via discrete symmetry (Witten 2002) paper 2 coming
- Use generic Kahler potential (Beasley, Witten, 2002) and generic gauge kinetic function (Lucas, Morris, 2003)
- □Assume gauge group and matter content at compactification is MSSM – can repeat for any other gauge group and matter content (others under study)

- GENERICALLY THESE EXPLAIN "WHY 126" -- overview
- lacktriangle Compactification \rightarrow moduli \rightarrow M_{lightest modulus} \geq 30 TeV for BBN
- \square Susy by gaugino condensation \rightarrow $M_{3/2} > M_{lightest modulus}$
- \square CC \approx 0, Supergravity \rightarrow M_{soft scalars} = M_{3/2}
- \Box μ doubly suppressed symmetry to remove μ from superpotential broken by moduli stabilization, so additional moduli vev/ M_{pl}
- ☐ REWSB conditions easy to satisfy
- \Box Supergravity, solutions with EWSB \rightarrow 1.5 μ tan $\beta \approx M_{3/2} \rightarrow$ tan $\beta \gtrsim 10$
- \Box Trilinears A \approx e^{K/2} F $^{\phi}$ K $_{\phi}$ > M $_{0.}$ large important for little hierarchy₄

The prediction of 126 is not an accident or a planned result

It is here to stay in generic theory

Upper limit on gluino mass also – basically, gluino mass proportional to gravitino mass – proportionality constant calculable – gravitino mass bounded by phenomenology and theory

☐ Moduli, gravitino constraint from BBN

In early universe, when Hubble scale H decreases, moduli begin to oscillate in their potential, and quickly dominate energy density of universe – Early universe matter dominated, a "non-thermal" history

When H \sim moduli decay width, $\Gamma_{\rm mod} \sim {\rm M^3}_{\rm mod}/{\rm m^2}_{\rm pl}$ then the moduli decay \rightarrow need ${\rm M}_{\rm mod} \gtrsim$ 30 TeV so decay occurs before nucleosynthesis – moduli decay dilutes any DM that arose before

Moduli decay regenerates DM → wino-like LSP to not overclose univ

Then theorem relating lightest moduli and gravitino $\rightarrow M_{3/2} \gtrsim 30 \text{ TeV}$ – Then supergravity \rightarrow scalar masses (squarks, higgs scalars) $\gtrsim 30 \text{ TeV}$

Stronger than generic

☐ Generic relation of lightest moduli and gravitino masses

basically that the gravitino is not lighter than lightest modulus –
 (assumes supersymmetry breaking is involved in stabilizing at least one moduli)

[Denef and Douglas hep-th/0411183, Gomez-Reino and Scrucca hep-th/0602246, Acharya Kane Kuflik 1006.3272]

Moduli mix with scalar goldstino, which generically has gravitino mass

Consider moduli mass matrix (but don't need to calculate it) -- Sgoldstino 2x2 piece of moduli mass matrix has mass scale $M_{3/2}$

For pos def mass matrix smallest eigenvalue of full matrix is smaller than any eigenvalue of (diagonal) submatrices ->

$$M_{\min}^2 < m_{3/2}^2 \left(2 + \frac{|r|}{m_{pl}^2} \right)$$

$$ightharpoonup$$
 M_{3/2} \gtrsim M_{lightest modulus} \gtrsim 30 TeV (BBN)

☐ From Planck scale to 50 TeV "dimensional transmutation"

Scale of gaugino condensation $\Lambda \approx M_{pl} \exp(-8\pi^2/3Qg^2) \approx \exp(2\pi Imf/3Q)$ where $Imf = \sum N_i s_i$

Q,P ranks of typical condensing gauge groups – physical solutions need Q-P=3, Imf=14Q/ π \rightarrow $\Lambda \approx$ M_{pl} $e^{-28/3} \approx 2x10^{14}$ GeV, so

 $\Lambda pprox$ 10⁻⁴ $M_{pl} pprox$ scale at which supersymmetry broken

Then W \sim $\Lambda^3 \sim 10^{\text{-}12}$ M_{pl} $\sim 2x10^6$ GeV = $2x10^3$ TeV. Also expect inverse volume factor $1/V_7$ from $e^{K/2}$ so

 $M_{3/2} \approx e^{K/2} W \sim 50 \text{ TeV}$

Note Imf/Q not explicitly dependent on Q – still dependent because of V_7 and P_{eff} , but weakly – so Λ rather well determined

☐ More details on gravitino mass – semi-analytic example

$$m_{3/2} \equiv m_p^{-2} e^{\frac{K}{2m_p^2}} |W|$$

Q,P ranks of typical gauge groups from 3-cycle singularities, Q=6,7,8,9 – moduli vevs \sim 3Q \sim 1/ $\alpha_{GUT}~$ -- put CC=0 to solve for Pln()=P $_{eff}$

$$m_{3/2} = m_{pl} \frac{\alpha_{GUT}^{7/2}}{\sqrt{\pi}} \frac{|Q-P|}{Q} e^{-\frac{P_{eff}}{Q-P}}$$

 \rightarrow m_{3/2} \approx 50 TeV

(e⁻²⁰
$$\approx$$
 10⁻⁹ , $P_{eff} = \frac{14(3(Q-P)-2)}{3(3(Q-P)-2\sqrt{6(Q-P)})} \sim 60$ when $Q-P=3$

$$M_{GUT} = M_{11} \alpha_{Gut}^{1/3}$$
)

- □ Including μ parameter in string theory(W= μ H_u H_d + ... so μ ~10¹⁶ GeV)
- Normally μ and $tan\beta$ treated as parameters, constrained to get EWSB
- Ultimately want to derive them from first principles
- If μ in W then it should be of order string scale__
- Need symmetry to set $\mu=0$
- Witten, hep-ph/0201018 found discrete symmetry for G₂ compactification, closely connected to doublet-triplet splitting
- Unbroken discrete symmetry so $\mu \equiv 0$ when moduli are stabilized the effects generally not invariant so in M-theory with moduli stabilized the symmetry is broken
- μ proportional to $M_{3/2}$ since $\mu \rightarrow 0$ if susy unbroken
- Also μ proportional to moduli vev since $\mu \rightarrow 0$ if moduli not stabilized
- Stabilization led to moduli vev/ $M_{pl} \lesssim 0.1$

problem, proton lifetime, R-parity

- So predict $\mu < 0.1 M_{3/2}$, not parameter, not yet precisely calculated
- Paper II in preparation (Acharya, Kane, Kumar, Lu, Zheng)

arXiv:1102.0556, Acharya, Kane,

Kuflik, Lu

☐ WHY 126? -- QUICK SUMMARY

-- Recall no EWSB at high scale, generated by RGE running

- High scale, compactified M theory, orbifold and conical singularities → gauge and chiral matter → gaugino and meson condensates, F-terms, supersymmetry-breaking, moduli stabilization, deS vacuum
- Typical gauge groups \rightarrow gaugino condensation \sim 10⁻⁴⁻⁵ M_{planck}, cubed in superpotential, so M_{3/2} \sim 50 TeV (top down)
- $M_{3/2}$ > smallest eigenvalue of moduli mass matrix \gtrsim 30 TeV, from BBN
- Calculate soft-breaking Lagrangian: scalars, trilinears, b -- ALL \sim ${
 m M_{3/2}}$
- μ superpotential term zero from discrete symmetry broken by moduli stabilization, so $\mu_{eff}\sim$ (moduli vev/M $_{pl}$)M $_{3/2}$ < few TeV
- At high scale Higgs sector soft terms $\sim M_{3/2}$, no EWSB
- Then M_{Hu}^2 runs down, satisfies EWSB conditions (REWSB) calculate M_h for all solutions, get 126 ±1GeV for $M_{3/2}$ = 50 GeV

☐ Higgs sector

In supersymmetric theory two higgs doublets present for anomaly cancellation – by "Higgs mass" mean mass of lightest CP-even neutral scalar in Higgs sector

Precise value depends on all the soft-breaking parameters including B, μ

Why 126 GeV? – conceptually simple, but not numerically – no simple formula, must do RGE running, relate terms, smallest eigenvalue of matrix

Higgs potential at any scale – calculated at compactification scale, no parameters, then do RGE running to other scales

$$V = (|\mu|^2 + m_{H_u}^2)|H_u^0|^2 + (|\mu|^2 + m_{H_d}^2)|H_d^0|^2 - (b\,H_u^0H_d^0 + \text{c.c.}) \\ + \text{D terms}$$

$$\rightarrow \text{Higgs mass matrix} \begin{pmatrix} m_{H_u}^2 + \mu^2 & -b \\ -b & m_{H_d}^2 + \mu^2 \end{pmatrix}$$

Need negative eigenvalue for EWSB

 $\tan \beta = v_u/v_d$ only meaningful after EWSB, doesn't exist at high scales – parameter before, now calculate it approximately

 \square EWSB, μ , calculate tan β , naturalness

Usual EWSB conditions [so higgs potential minimum away from origin]:

$$M_{Z}^{2} = -2\mu^{2} + 2(M_{Hd}^{2} - M_{Hu}^{2} \tan^{2}\!\beta)/\tan^{2}\!\beta = -2\mu^{2} + 2M_{Hd}^{2}/\tan^{2}\!\beta - 2M_{Hu}^{2}$$

$$2B\mu = \sin 2\beta (M_{Hu}^2 + M_{Hd}^2 + 2\mu^2)$$

 M_{Hu}^2 runs to be small, M_{Hd}^2 and B don't run much, μ suppressed, $\sin 2\beta \approx 2/\tan \beta$

If no μ from superpotential, and visible sector Kahler metric and Higgs bilinear coefficient independent of meson field, and if $F_{mod} << F_{\phi}$ then B (high scale) $\approx 2 M_{3/2}$ – recall $\mu < 0.1 M_{3/2}$

$$ightarrow$$
 tan $\beta \approx M^2_{Hd}/B\mu \approx M^2_{3/2}/B\mu \rightarrow tan\beta \approx M_{3/2}/2\mu (\sim 15)_{24}$

☐ THEORY AT HIGH SCALE, TECHNICAL DETAILS OF COMPUTING M_H

- Write theory at scale $\sim \! 10^{16}$ GeV, fix soft-breaking Lagrangian parameters by theory no free parameters
- Run down, maintain REWSB
- Use "match-and-run" and also SOFTSUSY and Spheno, compare match at $(M_{stop1}M_{stop2})^{1/2}$ two-loop RGEs expect public software to work since scalars not too large
- Main sources of imprecision for given $M_{3/2}$ are M_{top} (1 GeV uncertainly in M_{top} gives 0.8 GeV in M_h), α_{strong} , theoretical gluino mass (allow 600 GeV to 1.2 TeV), trilinear couplings (allow 0.8-1.5 M_0)

Is h SM-like?

Theory -- all scalar terms in the soft-breaking Lagrangian predicted to be of order gravitino mass, \gtrsim 30 TeV so "decoupling" limit

Still supersymmetric Higgs sector of course, but H, A, H $^{\pm}$ also about equal to the gravitino mass \gtrsim 30 TeV, h light and SM-like

h is the lightest eigenvalue of the supersymmetric higgs mass matrix, in the decoupling limit -> BR are SM-like

Typically chargino and neutralino loops give few per cent deviations

 $(\sigma \times BR \text{ summed})_{data} / (\sigma \times BR \text{ summed})_{SM} = 1.02 \pm 0.11 \text{ (Ellis and Sun)}$ [but watch $\gamma \gamma$, etc, channels]

TURN TO GAUGINO MASSES

☐ DE SITTER VACUUM, GAUGINO MASSES SUPRESSED

- -- With only compactifiation moduli one gets AdS extrema minima, maxima, saddle points (no go theorems, Maldacena and Nunez...) some break susy, some preserve it
- -- For M theory, positive F terms from chiral fermion condensates automatically present, cancel for CC and give deS minima "uplift"
- -- also, in M theory case the deS minima come from susy preserving extremum if ignore meson F terms, so the minimum is near a susy preserving point in field space where gaugino masses would vanish
- -- so SM gaugino masses are doubly suppressed vanish at susy preserving point, and get no contribution from large F terms of mesons

$$M_{1/2} \sim K_{mn} F_m \partial_n f_{SM}$$

- -- Size of suppression calculated by setting CC=0 at potential minimum
- -- probably gauginos suppressed in heterotic, IIB but differently?
- -- nightmare scenario not present in M-theory

The theory implies that the tree level suppression was by a factor

 P_{eff} =P In(Q $A_1 \phi_0^2/P A_2$), where Q, P, A_1 , A_2 are from the superpotential, and ϕ_0^2 is the meson condensate vacuum value – then the value of P_{eff} is fixed by setting the potential at its minimum to be zero

Numerically $P_{eff} \approx 62$ gives vanishing CC, and that suppresses the tree level gaugino masses – end up similar in size to the anomaly mediation one-loop contribution

Then the **high scale** gaugino masses are

$$\begin{split} & \mathsf{M}_1{\approx}(\text{-.03(1+$\epsilon)} + 0.30\alpha_{\mathsf{GUT}}\,)\mathsf{M}_{3/2}, & \alpha_{\mathsf{GUT}} \approx 1/25 \; \mathsf{from} \; \mathsf{V}_3 \\ & \mathsf{M}_2 \approx (\text{-.03(1+$\epsilon)} + 0.52\alpha_{\mathsf{GUT}}\,)\mathsf{M}_{3/2}, & \\ & \mathsf{M}_3 \approx (\text{-.03(1+$\epsilon)} + 0.58\alpha_{\mathsf{GUT}})\mathsf{M}_{3/2}, & \end{split}$$

ε due to KK threshold corrections, Kahler corrections, etc – hard to calculate – combine into an effective parameter

32

- Recall non-thermal cosmological history, LSP's washed out by large entropy, but regenerated by moduli decay
- Need wino-like LSP to have large enough annihilation rate to not overclose the universe (apparently no RPV LSP decay in M-theory)
- For ε in wino-LSP region (M₂ < M₁) have **upper limit on gluino mass!**
- Higgs mass ok for $M_{3/2} \lesssim 90 \text{ TeV} \rightarrow 800 \text{GeV} \lesssim M_{\tilde{g}} \lesssim 1.5 \text{ TeV}$
- $_{\odot}$ Best value of M $_{
 m h}$ gives $M_{_{ ilde{g}}}\lesssim 1$ TeV

Have usual
$$W_{RPV} = \lambda LLE^c + \lambda' U^c D^c D^c + \lambda'' QLD^c + \kappa LH_u$$

- μ, doublet-triplet splitting in M-theory solved via Witten discrete matter and moduli symmetry plus Wilson line SU(5) breaking
- Moduli stabilization breaks discrete symmetry, generates $\mu \neq 0$, $\mu \lesssim M_{3/2}$ <moduli> $/M_{pl}$, does not destabilize D-T splitting

No leftover Z_M -- then generates bilinear term with coefficient $\sim \mu \xrightarrow{} \nu$ masses too large by $\gtrsim 10^4$, or worse, effects – cannot rotate away

Leftover $Z_M \rightarrow "R-$ Parity", stable LSP

- Consistency with Wilson line action gives conditions on \boldsymbol{Z}_{N} , \boldsymbol{Z}_{M} charges
- Solutions with REWSB, Z_N, Z_M etc exist

[Acharya, Kane, Kumar, Lu, Zheng, in preparation]

M theory gluino lifetime $\sim 10^{-19}\,$ sec, decays in beam pipe Gluino decays flavor-violating

Current limit for gluinos with enhanced 3rd family decays, very heavy scalars of order one TeV

Papers LHC14,0901.3367; LHC7, 1106.1963

Realistic Branching Fraction

$$m_{3/2}$$
=50 TeV
 $M_{\rm gluino}$ =900 GeV
 $M_{\rm LSP}$ =145 GeV

$$m_{3/2} = 50 \,\mathrm{TeV}$$

$$M_{\mathrm{gluino}} = 900 \,\mathrm{GeV}$$

$$M_{\mathrm{LSP}} = 145 \,\mathrm{GeV}$$

$$BR(\tilde{g} \to t \,\bar{b} \,\tilde{\chi}^{0}) \approx 0.15$$

$$BR(\tilde{g} \to t \,\bar{b} \,\tilde{\chi}^{-} + h.c.) \approx 0.28$$

$$BR(\tilde{g} \to b \,\bar{b} \,\tilde{\chi}^{0}) \approx 0.08$$

So BR for each gluino to third family $\approx \frac{1}{2}$,

BR (1st + 2nd families $\approx \frac{1}{2}$) per gluino

 $\tilde{\chi} \rightarrow \tilde{\chi} + \tilde{\chi}, \tilde{\tau}$

If wino-like LSP, chargino and LSP are nearly degenerate, so chargino \rightarrow LSP plus very soft $\pi^+ \rightarrow$ disappearing charginos in gluino

FIG. 1: Charged Winos resulting from gluino pair production, binned as a function of transverse distance traveled from the beam line. These results correspond to 10 fb⁻¹ of LHC-8 data ($\sigma_{\tilde{g}\tilde{g}} \sim 235$ fb), with $m_{\tilde{g}} = 750$ GeV, $m_{\tilde{W}} = 150$ GeV. For graphical purposes, charginos traveling a transverse distance < 30 cm are not shown.

LITTLE HIERARCHY PROBLEM – solved in compactified theory?

Running of M²_{HII} in string/M theory [arXiv:1105.3765 Feldman, GK, Kuflik, Lu]

So stringy prediction is a decrease \sim 50 in M $^2_{\rm Hu}$ – if trilinears not large get order of magnitude less decrease in M $^2_{\rm Hu}$

Greatly reduces "little hierarchy problem" – covers gap from $M_{3/2}$ to TeV

Naturalness? Fine-tuning? Little hierarchy?

Work in progress – FT, little hierarchy may be solved dynamically in the theory – theories need not be naively natural

>String/M theory crucial for deriving Higgs results!

- -- Must have theory with **stabilized** *moduli* and **spontaneous supersymmetry breaking** compactified string theories
- -- Must have gravitino-moduli connection to get lower limit on gravitino mass
- -- Must derive soft terms, otherwise could choose anything e.g. large trilinears important, but people in past guessed they were small string theory gave prediction of large trilinears
- -- Must have μ embedded in string theory
- -- Must exhibit string solutions with REWSB
- -- Must have effectively no parameters
- -- No R symmetry, since trilinears heavy and gauginos light

Final remarks: Phenomenological

- ☐ Higgs data looks like data from compactified constrained string theory with stabilized moduli should look! 126 GeV not unnatural or FT! SM-like Higgs not surprising!
- Higgs looks like a fundamental particle normal susy h in decoupling region – not weird or fine-tuned

- Higgs BRs near SM ones seems unavoidable prediction
- Compactified M/string theory, squarks, sleptons ~50 (30-90) TeV
- Gluinos ~ 1 TeV (< 1.5 TeV) 3rd family about half of gluino decays, sum of 1st + 2nd about half

Final remarks: Theoretical

- ☐ Compactified M/string theory maturing into a useful predictive framework that relates many explanations, tests
- M theory compactified on G₂ manifold looks like a good candidate to continue to explore for describing our string vacuum – explains many phenomena, predicts some -- some features generic for other corners of string theory too
- μ , tan β in theory, not free parameters no free parameters!

"if people don't want to come to the ballpark nobody's going to stop them"

Yogi Berra

We assumed MSSM is gauge group and matter content at compactification – must calculate one gauge group and matter content at a time because of RGE running etc

- Can find models extending MSSM that give M_h same value as MSSM
 - Some U(1) extensions with no extra matter do not change mass value or BR
 - -- SO(10) with RH ν , no other extra matter gives 126, E6 under study
 - -- MSSM plus U(1) plus singlet charged under U(1) does not generically give 126
- -- We have no examples with $\rm M_h$ =126 and increased $\gamma\gamma$ width larger than \sim few %
 - \rightarrow probably strong prediction that BR($\gamma\gamma$), ZZ,WW,bb, $\tau\tau$ have SM value,

For one-loop RGE running get the **EW scale gaugino masses**:

$$m_1 \approx (-0.009 + 0.014 \epsilon) M_{3/2},$$

 $m_2 \approx (-0.010 + 0.027 \epsilon) M_{3/2},$
 $m_3 \approx (-0.028 + 0.097 \epsilon) M_{3/2},$

(numbers to illustrate – for the graphs we use full 2-3 loop running and corrections, from SoftSusy and Spheno)

GENERIC PREDICTIONS from compactified M theories

- Squarks, sleptons 30-60 TeV, trilinears > scalars, no R symmetry
- Non thermal cosmological history
- Low scale gauge mediation not significant source of supersymmetry breaking since gravitino mass of order 50 TeV
- $B_s \rightarrow \mu\mu$ within 1-2% of SM
- (g-s)_μ within 5-10% of SM
- $tan\beta \gtrsim 10$
- $M_h = 126 \pm 2$, susy higgs sector decoupling so H, A,H $^{\pm}$ > 30 TeV
- No invisible h decays
- Gluino \lesssim 1 TeV, gluino decays flavor violating, 3rd family larger
- EDMe $\approx 10^{-30}$
- LSP wino-like but μ small so mixing
- Relic density of LSPs, axions both order 1
- $\sigma_{\scriptscriptstyle{
 m SI}}\!\sim\!10^{\text{-46}}$