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Take Home Messages

•  Gluino could acquire a Dirac mass by pairing up with
    an fermion in adjoint rep

•  An exact or approximately Dirac gluino
     •  suppresses gluino-mediated FCNC
     •  can be ≈ 5-7 times heavier than Majorana gluino
         but just as natural w.r.t. EWSB
     •  automatically suppresses colored sparticle production

•  Dirac + Majorana mass for
   -> gluino slightly lowers squark production
   -> adj ferm slightly increases squark production

•  One of the “last chances” for weak scale supersymmetry 
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Dirac Gauginos in Supersymmetry

SUSY breaking to gauginos communicated 
through D-term spurions:

exclude flavor violation is to communicate supersymmetry breaking from a flavor independent

interaction. Various possibilities include gauge mediation [14–16], anomaly mediation [1, 17]

and gaugino mediation [18,19].

As an alternative to F -term SUSY breaking, supersymmetry can also be broken by a D-

component vev of a hidden sector vector superfield, with gauge field strength W ′
α. However,

the lowest dimension gauge invariant operator which directly contributes to scalar masses

squared is
∫

d4θ
(W ′αW ′

α)†W ′βW ′
β

M6
Q†Q. (2.3)

If M ∼ MPl, this term will be subdominant to anomaly mediated soft masses, while in gauge

mediated models it actually contributes negatively to sfermion masses squared [20]. Since

D-terms do not break an R-symmetry, they cannot contribute to Majorana gaugino masses.

In our framework, D-terms can be the only source of supersymmetry breaking. We will

assume the presence of an hidden sector U(1)′ which acquires a D-component vev.5 With the

additional fields from the gauge extension, we can add the operator

∫

d2θ
√

2
W ′

αW α
j Aj

M
. (2.4)

As we shall discuss shortly in section 2.3, this operator is supersoft, in that it does not give

log divergent radiative contributions to other soft parameters, as would, e.g., a Majorana

gaugino mass. Including this operator, the Lagrangian contains the terms

L ⊃ −mDλj ãj −
√

2mD(aj + a∗j)Dj − Dj(
∑

i

gkq
∗
i tjqi) −

1

2
D2

j (2.5)

offshell, and

L ⊃ −mDλj ãj − m2
D(aj + a∗j)

2 −
√

2mD(aj + a∗j )(
∑

i

gkq
∗
i taqi) (2.6)

onshell, where mD = D′/M , a is the complex scalar component of A, and q represents all

fields charged under the group Gj . Notice that the gaugino now has a Dirac mass with

the ESP fermion ã. (We use tildes to designate fields which are R-parity odd.) Dirac gluino

masses were considered previously in theories with a U(1)R symmetry [21,22]. The possibility

of adding triplets to the theory, one of which could marry the SU(2) gauginos was considered

by [23], who noted that such masses could be explained by the presence of the term in (2.4).

However, the gaugino mass is only one effect of this term. We additionally have given a

mass to the real scalar piece of a, leaving the pseudoscalar massless. There are new trilinear

terms between a and the MSSM scalar fields which have no analog in the MSSM.

5The presence of such a D-term makes a kinetic mixing between U(1)′ and hypercharge potentially very

dangerous. However, if hypercharge arises as a generator of a non-Abelian symmetry such as a GUT, this will

naturally be absent and radiatively stable.
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II. R-SYMMETRY IN SUPERSYMMETRY

The supersymmetry algebra automatically contains a
continuous R-symmetry. It was argued long ago [14] that
the existence of an R-symmetry in the hidden sector is a
necessary condition for supersymmetry breaking. A va-
riety of supersymmetric theories exhibit supersymmetry
breaking without breaking the R-symmetry, notably the
recently discovered nonsupersymmetric metastable vacua
in supersymmetric gauge theories [15, 16, 17]. Why, then,
has unbroken R-symmetry not played a larger role in su-
persymmetric model building?

There are three basic reasons. The phenomenological
lore has been that gaugino masses require R-symmetry
breaking. This is true for Majorana gaugino masses, but
perfectly viable Dirac gaugino masses (see [18, 19, 20])
are possible when the gaugino is paired up with the
fermion from a chiral superfield in the adjoint represen-
tation. Similarly, the µ term also breaks R-symmetry, in
the presence of the Bµ term, and is also needed to give
the Higgsinos a mass.

The second reason is that models of dynamical su-
persymmetry breaking generally break the R-symmetry.
However, as already alluded to above, nonsupersymmet-
ric vacua do not always break the R-symmetry. For
example, O’Raifeartaigh models may preserve an R-
symmetry, and, intriguingly, some simple models of su-
persymmetry breaking in meta-stable vacua also preserve
the R-symmetry, for a review see [16].

The last reason is related to embedding supersymme-
try breaking in supergravity. At the very least, two con-
ditions must be satisfied: the gravitino must acquire a
mass, and the cosmological constant must be tunable to
(virtually) zero. The second condition is usually satisfied
by adding a constant term in the superpotential, breaking
the R-symmetry explicitly. Indeed, it is this term that
ensures the R-axion that results from a spontaneously
broken R-symmetry is given a small but non-zero mass
[21]. There are potential loopholes to this generic argu-
ment, however. One is that, in some cases, the cosmo-
logical constant could also be canceled by fields in the
Kähler potential that acquire large expectation values
[22]. Second, we show in Sec. VI that even with only
an approximate R-symmetry, with small R-violating ef-
fects (as in the “supersymmetry without supergravity”
framework of [23], [24]), much of the benefits to reduc-
ing the supersymmetric contributions to flavor violation
carry through.

III. BUILDING AN R-SYMMETRIC
SUPERSYMMETRIC MODEL

Our starting point is thus supersymmetry breaking
originating from hidden sector spurions that preserve the
R-symmetry. Both F -type and D-type supersymmetry
breaking is allowed, which we can write in terms of the
spurions X = θ2F and W ′

α = θαD, where the R-charge

assignments of the spurions are necessarily +2 and +1
respectively. The W ′ can be considered a hidden sector
U(1)′ that acquires a D-term. We assume that the sizes
of the F -type and D-type breaking are roughly compa-
rable up to an order of magnitude or so. Coupling these
spurions in an R-preserving manner to a low energy su-
persymmetric theory gives rise to the most general theory
with softly broken supersymmetry and an R-symmetry.

Assuming ordinary Yukawa couplings are R-
symmetric, and that electroweak symmetry breaking
expectation values 〈Hu,d〉 do not break R-symmetry,
the quark and lepton superfields must have R-charge
+1 and the Higgs superfields have R-charge 0. Gauge
superfields Wi have their usual R-charge +1.

For the MSSM, writing all operators consistent with
the SM gauge symmetries and the extended R-symmetry,
we find:

• Majorana gaugino masses are forbidden.

• The µ-term, and hence Higgsino mass, is forbidden.

• A-terms are forbidden.

• Left-right squark and slepton mass mixing is absent
(no µ-term and no A-terms).

• The dangerous ∆B = 1 and ∆L = 1 operators,
QLLLDR, URURDR, LLLLER, and HuLL, are for-
bidden.

• Proton decay through dimension-five operators,
QLQLQLLL and URURDRER, is forbidden [68].

• ∆L = 2 Majorana neutrino mass, HuHuLLLL, is
allowed.

Already we see that the extended R-symmetry leads
to several improvements over the MSSM. However, the
MSSM gauginos and Higgsinos are massless, in obvious
conflict with experiment. We must therefore augment
the MSSM in such a way that allows for R-symmetric
gaugino and Higgsino masses.

A. Gaugino masses

The first obstacle to overcome is to generate a gaug-
ino mass. Remarkably, R-symmetric gaugino masses are
possible when the gauginos are Dirac. Such a possibil-
ity has been explored in a number of contexts previously.
For instance, in [25, 26], gluinos were made Dirac by
adding a color octet, and electroweak gauginos acquired
their masses via marrying the superpartners of the Gold-
stone modes in the Higgs supermultiplet. In [19], Dirac
gauginos were motivated as an ultraviolet insensitive and
flavor blind means of mediating SUSY breaking, which
resulted in the so-called “supersoft” spectrum with gaug-
inos a factor of (4π/α)1/2 above the scalars. They have
additionally been considered in a variety of phenomeno-
logical contexts recently [27, 28, 29, 30, 31, 32, 33, 34].
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giving

Dirac gaugino masses arise from:

So far we have not included any explicit Majorana mass for the ESP fields. Since a is

massive, we can integrate it out, yielding the condition

∂L
∂Re(aj)

= 0 → Dj = 0. (2.7)

Since D-flatness is an automatic consequence of these fields, in the absence of a Majorana

mass, no low-energy D-term quartic couplings will be present, including the very important

Higgs quartic potential terms. In the presence of explicit supersymmetric Majorana masses

M1,2 for the U(1) and SU(2) ESPs, the quartic coupling will not vanish. For example, the

Higgs quartic coupling rescales as

g′2 + g2

8
→

1

8

(

M2
1 g′2

M2
1 + 4m2

1
+

M2
2 g2

M2
2 + 4m2

2

)

. (2.8)

As we will discuss shortly, there are the usual one-loop contributions to the quartic coupling,

including those from top loops, which become very important in this scenario.

2.2 Other supersoft operators

With the extended field content and the U(1)′ D-term, there is one other supersoft operator

which we can write:
∫

d2θ
W ′

αW ′α

M2
A2

j . (2.9)

While we have written it for the ESP fields, this term can be written for any real representation

of a gauge group. This term splits the scalar and pseudoscalar masses squared by equal

amounts, leaving some component with a negative contribution to its mass squared. If that

is the scalar, which already has a positive contribution, this is not troublesome. If, instead,

it is the pseudoscalar, then we must require a Majorana ESP mass from an N = 1 preserving

superpotential term, in order to prevent color and charge breaking.

Although there is no symmetry which allows the terms in (2.4) but forbids those in (2.9),

these terms are technically independent, as (2.4) will not generate (2.9) and vice versa.

2.3 Radiative Corrections

Below the scale M , where (2.4) is generated, the gaugino has a mass, so we would naively

expect that it would give a logarithmically divergent “gaugino mediated” contribution to the

scalar masses squared. However, from a general argument, we can see that this is not the

case.

We have a renormalizable effective theory with only soft supersymmetry breaking. Fur-

thermore the supersymmetry breaking can be parametrized by a spurion W ′
α/M = θαmD,

and written as the gauge invariant, supersymmetric term of (2.4), with mD = D′/M . If this

soft supersymmetry breaking introduces divergent corrections to the soft masses of squarks

and sleptons, we should be able to write down a supersymmetric, gauge invariant counterterm

5

exclude flavor violation is to communicate supersymmetry breaking from a flavor independent

interaction. Various possibilities include gauge mediation [14–16], anomaly mediation [1, 17]

and gaugino mediation [18,19].

As an alternative to F -term SUSY breaking, supersymmetry can also be broken by a D-

component vev of a hidden sector vector superfield, with gauge field strength W ′
α. However,

the lowest dimension gauge invariant operator which directly contributes to scalar masses

squared is
∫

d4θ
(W ′αW ′

α)†W ′βW ′
β

M6
Q†Q. (2.3)

If M ∼ MPl, this term will be subdominant to anomaly mediated soft masses, while in gauge

mediated models it actually contributes negatively to sfermion masses squared [20]. Since

D-terms do not break an R-symmetry, they cannot contribute to Majorana gaugino masses.

In our framework, D-terms can be the only source of supersymmetry breaking. We will

assume the presence of an hidden sector U(1)′ which acquires a D-component vev.5 With the

additional fields from the gauge extension, we can add the operator

∫

d2θ
√

2
W ′

αW α
j Aj

M
. (2.4)

As we shall discuss shortly in section 2.3, this operator is supersoft, in that it does not give

log divergent radiative contributions to other soft parameters, as would, e.g., a Majorana

gaugino mass. Including this operator, the Lagrangian contains the terms

L ⊃ −mDλj ãj −
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Dirac Gauginos in Supersymmetry II

Dirac gaugino masses require extending the MSSM
with chiral superfields in adjoint representation:

8
<

:

Aj j = 1 . . . 8
Aj j = 1 . . . 3
Aj j = 1

color octet
weak triplet
singlet



Figure 2: Loop contributions to scalar masses. The new contribution from the purely scalar loop
cancels the logarithmic divergence resulting from a gaugino mass alone.

for the masses involving this spurion. The only possible such counterterm is proportional to

(2.3), and gives
∫

d4θ
θ2θ

2
m4

D

Λ2
Q†Q. (2.10)

Since we have four powers of mD, we have to introduce another scale to make this dimen-

sionfully consistent. Since the only other scale is the cutoff Λ, this operator is suppressed

by Λ2, and, in the limit that Λ → ∞, must vanish. Consequently, we conclude all radiative

corrections to the scalar soft masses are finite.

While a gaugino mass (including a Dirac mass) would ordinarily result in a logarith-

mic divergence, here this is cancelled by the new contribution from the scalar loop. The

contribution to the scalar soft mass squared is given by

4g2
i Ci(φ)

∫

d4k

(2π)4
1

k2
−

1

k2 − m2
i

+
m2

i

k2(k2 − δ2
i )

, (2.11)

where mi is the mass of the gaugino of the gauge group i, and δ2 is the SUSY breaking mass

squared of the real component of ai. If the term in (2.9) is absent, then δ = 2mi. As expected,

this integral is finite, yielding the result

m2 =
Ci(r)αim2

i

π
log

(

δ2

m2
i

)

. (2.12)

Note that as δ approaches mi from above, these one loop contributions will vanish! If A has

a Majorana mass of M , then this formula generalizes

m2 =
Ci(r)αim2

i

π

[

log

(

M2 + δ2

m2
i

)

−
M

2∆
log

(

2∆ + M

2∆ − M

)

]

, (2.13)

where ∆2 = M2/4 + m2
i .

These contributions, arising from gauge interactions, are positive and flavor blind as in

gauge and gaugino mediation, but there are two other remarkable features of this result.
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Squark/Slepton Masses
One-loop contributions:

Giving

Several phenomenological implications of Dirac gauginos
as well as fully R-symmetric supersymmetry have been
explored in [39–60].

In this study we do not consider bounds on the third
generation squarks. Third generation squarks receive
modifications to their masses through their interactions
with the Higgs supermultiplets. Given that supersoft su-
persymmetry has a suppressed D-term for the Higgs po-
tential, typically this requires heavier stop masses as well
as separating the scalar masses of the adjoint superfields
from the corresponding Dirac gaugino masses. This could
be accomplished through additional R-symmetric F -term
contributions to their masses. In any case, third genera-
tion squarks have distinct signals involving heavy flavor
(with or without leptons), and thus require incorporating
a much larger class of LHC search strategies. We believe
there are interesting di⇥erences between the third gen-
eration phenomenology of a supersoft model versus the
MSSM, but we leave this for future work.

We also do not consider potentially large flavor-
violation in the squark-gaugino (or squark-gravitino) in-
teractions, as could occur in an R-symmetric model [30].
This would add to the heavy flavor component of signals
while subtracting from the nj + /ET signals that concern
us in this paper. In the interests of demonstrating the
di⇥erences between the SSSM and the simplified models
of the MSSM, the latter of which cannot have large fla-
vor violation, we do not consider flavor-violation in the
squark interactions of the SSSM.

III. ASPECTS OF DIRAC GAUGINO MASSES

A. Supersoftness

A supersoft supersymmetric model contains chiral su-
perfields in the adjoint representation of each gauge
group of the SM in addition to the superfields of
the MSSM. Supersymmetry breaking communicated
through a D-term spurion leads to Dirac gaugino masses
that pair up the fermionic component from each field
strength with the fermionic component of the corre-
sponding adjoint superfield. The adjoint superfields also
contain a complex scalar, whose real and imaginary com-
ponent masses are not uniquely determined in terms of
the Dirac gaugino mass. The Lagrangian for this setup,
in terms of four component spinors, is given in Ap-
pendix A.

The scalar components of chiral superfields receive one-
loop finite contributions to their soft masses from gaug-
inos and adjoint scalars, as was shown clearly by [21]

M2
f̃
=

⇧

i

Ci(f)�iM2
i

⌅
log

m̃2
i

M2
i

. (1)

The sum runs over the three SM gauge groups where
Ci(f) is quadratic Casimir of the fermion f under the
gauge group i. The m̃i are the soft masses for the real

scalar components of the adjoint superfields. The Mi

are the Dirac masses for the gauginos. Assuming the
contribution to the squark masses is dominated by the
Dirac gluino,

M2
q̃ ⇤ (700 GeV)2

�
M3

5 TeV

⇥2 log r̃3
log 1.5

(2)

where r̃i ⇥ m̃2
i /M

2
i . Somewhat smaller or larger soft

masses can be achieved by adjusting the ratio r̃3, since
we hold the Dirac gluino mass M3 = 5 TeV fixed in the
SSSM.

B. Naturalness

The up-type Higgs mass-squared m2
Hu

receives positive
one-loop finite contributions from the Dirac electroweak
gauginos as well as negative one-loop contributions from
the stops. As was emphasized in Ref. [21], the latter
contribution can easily overwhelm the former, leading to
a negative Higgs mass-squared and thus radiative elec-
troweak symmetry breaking. Unlike the MSSM, however,
the usual logarithmic divergence from the stop contribu-
tions to the Higgs mass is cuto⇥ by the Dirac gluino mass,
giving

⇥m2
Hu

= �3⇤2
t

8⌅2
M2

t̃ log
M2

3

M2
t̃

. (3)

Using Eq. (1), and approximating log[M2
3 /M

2
t̃
] ⇤

log[3⌅/(4�s)], we obtain

⇥m2
Hu

|SSSM ⇤ �
�
M3

22

⇥2 log r̃3
log 1.5

. (4)

Contrast this expression with the analogous one from the
MSSM [7]

⇥m2
Hu

|MSSM ⇤ �
⇤
M̃3

4

⌅2 ⇤
log�/M̃3

3

⌅2

. (5)

where M̃3 corresponds to the Majorana gluino mass.
This makes it clear that a Dirac gluino can be several
times larger than a Majorana gluino in an MSSM-type
model and yet be just as natural, even when compar-
ing against an MSSM model with a mediation scale that
is as low as conceivable, � ⇤ 20M̃3. Our choice of
Dirac gluino mass M3 = 5 TeV with r̃3 ⇤ 1.5 is thus
roughly equivalent, in the degree of naturalness, to a low-
scale mediation MSSM model with Majorana gluino mass
M̃3 ⇤ 900 GeV.

C. Colored Sparticle Production

For LHC phenomenology, there are several impli-
cations of a heavy Dirac gluino. First, gluino pair
production and associated gluino/squark production is

3



Squark/Slepton Masses

Figure 2: Loop contributions to scalar masses. The new contribution from the purely scalar loop
cancels the logarithmic divergence resulting from a gaugino mass alone.
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i .
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gauge and gaugino mediation, but there are two other remarkable features of this result.
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One-loop contributions:

Giving Would-be log divergence 
is cutoff by adjoint scalar
contribution.

Several phenomenological implications of Dirac gauginos
as well as fully R-symmetric supersymmetry have been
explored in [39–60].

In this study we do not consider bounds on the third
generation squarks. Third generation squarks receive
modifications to their masses through their interactions
with the Higgs supermultiplets. Given that supersoft su-
persymmetry has a suppressed D-term for the Higgs po-
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be accomplished through additional R-symmetric F -term
contributions to their masses. In any case, third genera-
tion squarks have distinct signals involving heavy flavor
(with or without leptons), and thus require incorporating
a much larger class of LHC search strategies. We believe
there are interesting di⇥erences between the third gen-
eration phenomenology of a supersoft model versus the
MSSM, but we leave this for future work.

We also do not consider potentially large flavor-
violation in the squark-gaugino (or squark-gravitino) in-
teractions, as could occur in an R-symmetric model [30].
This would add to the heavy flavor component of signals
while subtracting from the nj + /ET signals that concern
us in this paper. In the interests of demonstrating the
di⇥erences between the SSSM and the simplified models
of the MSSM, the latter of which cannot have large fla-
vor violation, we do not consider flavor-violation in the
squark interactions of the SSSM.

III. ASPECTS OF DIRAC GAUGINO MASSES

A. Supersoftness

A supersoft supersymmetric model contains chiral su-
perfields in the adjoint representation of each gauge
group of the SM in addition to the superfields of
the MSSM. Supersymmetry breaking communicated
through a D-term spurion leads to Dirac gaugino masses
that pair up the fermionic component from each field
strength with the fermionic component of the corre-
sponding adjoint superfield. The adjoint superfields also
contain a complex scalar, whose real and imaginary com-
ponent masses are not uniquely determined in terms of
the Dirac gaugino mass. The Lagrangian for this setup,
in terms of four component spinors, is given in Ap-
pendix A.

The scalar components of chiral superfields receive one-
loop finite contributions to their soft masses from gaug-
inos and adjoint scalars, as was shown clearly by [21]

M2
f̃
=

⇧

i

Ci(f)�iM2
i

⌅
log

m̃2
i

M2
i

. (1)

The sum runs over the three SM gauge groups where
Ci(f) is quadratic Casimir of the fermion f under the
gauge group i. The m̃i are the soft masses for the real

scalar components of the adjoint superfields. The Mi

are the Dirac masses for the gauginos. Assuming the
contribution to the squark masses is dominated by the
Dirac gluino,

M2
q̃ ⇤ (700 GeV)2

�
M3

5 TeV

⇥2 log r̃3
log 1.5

(2)

where r̃i ⇥ m̃2
i /M

2
i . Somewhat smaller or larger soft

masses can be achieved by adjusting the ratio r̃3, since
we hold the Dirac gluino mass M3 = 5 TeV fixed in the
SSSM.

B. Naturalness

The up-type Higgs mass-squared m2
Hu

receives positive
one-loop finite contributions from the Dirac electroweak
gauginos as well as negative one-loop contributions from
the stops. As was emphasized in Ref. [21], the latter
contribution can easily overwhelm the former, leading to
a negative Higgs mass-squared and thus radiative elec-
troweak symmetry breaking. Unlike the MSSM, however,
the usual logarithmic divergence from the stop contribu-
tions to the Higgs mass is cuto⇥ by the Dirac gluino mass,
giving

⇥m2
Hu

= �3⇤2
t

8⌅2
M2

t̃ log
M2

3

M2
t̃

. (3)

Using Eq. (1), and approximating log[M2
3 /M

2
t̃
] ⇤

log[3⌅/(4�s)], we obtain

⇥m2
Hu

|SSSM ⇤ �
�
M3

22

⇥2 log r̃3
log 1.5

. (4)

Contrast this expression with the analogous one from the
MSSM [7]

⇥m2
Hu

|MSSM ⇤ �
⇤
M̃3

4

⌅2 ⇤
log�/M̃3

3

⌅2

. (5)

where M̃3 corresponds to the Majorana gluino mass.
This makes it clear that a Dirac gluino can be several
times larger than a Majorana gluino in an MSSM-type
model and yet be just as natural, even when compar-
ing against an MSSM model with a mediation scale that
is as low as conceivable, � ⇤ 20M̃3. Our choice of
Dirac gluino mass M3 = 5 TeV with r̃3 ⇤ 1.5 is thus
roughly equivalent, in the degree of naturalness, to a low-
scale mediation MSSM model with Majorana gluino mass
M̃3 ⇤ 900 GeV.

C. Colored Sparticle Production

For LHC phenomenology, there are several impli-
cations of a heavy Dirac gluino. First, gluino pair
production and associated gluino/squark production is
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and gaugino mediation [18,19].

As an alternative to F -term SUSY breaking, supersymmetry can also be broken by a D-

component vev of a hidden sector vector superfield, with gauge field strength W ′
α. However,

the lowest dimension gauge invariant operator which directly contributes to scalar masses

squared is
∫

d4θ
(W ′αW ′

α)†W ′βW ′
β

M6
Q†Q. (2.3)

If M ∼ MPl, this term will be subdominant to anomaly mediated soft masses, while in gauge

mediated models it actually contributes negatively to sfermion masses squared [20]. Since

D-terms do not break an R-symmetry, they cannot contribute to Majorana gaugino masses.

In our framework, D-terms can be the only source of supersymmetry breaking. We will

assume the presence of an hidden sector U(1)′ which acquires a D-component vev.5 With the

additional fields from the gauge extension, we can add the operator
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2
W ′

αW α
j Aj

M
. (2.4)

As we shall discuss shortly in section 2.3, this operator is supersoft, in that it does not give

log divergent radiative contributions to other soft parameters, as would, e.g., a Majorana

gaugino mass. Including this operator, the Lagrangian contains the terms
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i tjqi) −
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offshell, and
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2mD(aj + a∗j )(
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i

gkq
∗
i taqi) (2.6)

onshell, where mD = D′/M , a is the complex scalar component of A, and q represents all

fields charged under the group Gj . Notice that the gaugino now has a Dirac mass with

the ESP fermion ã. (We use tildes to designate fields which are R-parity odd.) Dirac gluino

masses were considered previously in theories with a U(1)R symmetry [21,22]. The possibility

of adding triplets to the theory, one of which could marry the SU(2) gauginos was considered

by [23], who noted that such masses could be explained by the presence of the term in (2.4).

However, the gaugino mass is only one effect of this term. We additionally have given a

mass to the real scalar piece of a, leaving the pseudoscalar massless. There are new trilinear

terms between a and the MSSM scalar fields which have no analog in the MSSM.

5The presence of such a D-term makes a kinetic mixing between U(1)′ and hypercharge potentially very

dangerous. However, if hypercharge arises as a generator of a non-Abelian symmetry such as a GUT, this will

naturally be absent and radiatively stable.
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also

Additional contributions

So far we have not included any explicit Majorana mass for the ESP fields. Since a is

massive, we can integrate it out, yielding the condition

∂L
∂Re(aj)

= 0 → Dj = 0. (2.7)

Since D-flatness is an automatic consequence of these fields, in the absence of a Majorana

mass, no low-energy D-term quartic couplings will be present, including the very important

Higgs quartic potential terms. In the presence of explicit supersymmetric Majorana masses

M1,2 for the U(1) and SU(2) ESPs, the quartic coupling will not vanish. For example, the

Higgs quartic coupling rescales as

g′2 + g2

8
→

1

8

(

M2
1 g′2

M2
1 + 4m2

1
+

M2
2 g2

M2
2 + 4m2

2

)

. (2.8)

As we will discuss shortly, there are the usual one-loop contributions to the quartic coupling,

including those from top loops, which become very important in this scenario.

2.2 Other supersoft operators

With the extended field content and the U(1)′ D-term, there is one other supersoft operator

which we can write:
∫

d2θ
W ′

αW ′α

M2
A2

j . (2.9)

While we have written it for the ESP fields, this term can be written for any real representation

of a gauge group. This term splits the scalar and pseudoscalar masses squared by equal

amounts, leaving some component with a negative contribution to its mass squared. If that

is the scalar, which already has a positive contribution, this is not troublesome. If, instead,

it is the pseudoscalar, then we must require a Majorana ESP mass from an N = 1 preserving

superpotential term, in order to prevent color and charge breaking.

Although there is no symmetry which allows the terms in (2.4) but forbids those in (2.9),

these terms are technically independent, as (2.4) will not generate (2.9) and vice versa.

2.3 Radiative Corrections

Below the scale M , where (2.4) is generated, the gaugino has a mass, so we would naively

expect that it would give a logarithmically divergent “gaugino mediated” contribution to the

scalar masses squared. However, from a general argument, we can see that this is not the

case.

We have a renormalizable effective theory with only soft supersymmetry breaking. Fur-

thermore the supersymmetry breaking can be parametrized by a spurion W ′
α/M = θαmD,

and written as the gauge invariant, supersymmetric term of (2.4), with mD = D′/M . If this

soft supersymmetry breaking introduces divergent corrections to the soft masses of squarks

and sleptons, we should be able to write down a supersymmetric, gauge invariant counterterm

5

Masses for Re[aj] and Im[aj]
(opposite signs)



Several phenomenological implications of Dirac gauginos
as well as fully R-symmetric supersymmetry have been
explored in [39–60].

In this study we do not consider bounds on the third
generation squarks. Third generation squarks receive
modifications to their masses through their interactions
with the Higgs supermultiplets. Given that supersoft su-
persymmetry has a suppressed D-term for the Higgs po-
tential, typically this requires heavier stop masses as well
as separating the scalar masses of the adjoint superfields
from the corresponding Dirac gaugino masses. This could
be accomplished through additional R-symmetric F -term
contributions to their masses. In any case, third genera-
tion squarks have distinct signals involving heavy flavor
(with or without leptons), and thus require incorporating
a much larger class of LHC search strategies. We believe
there are interesting di⇥erences between the third gen-
eration phenomenology of a supersoft model versus the
MSSM, but we leave this for future work.

We also do not consider potentially large flavor-
violation in the squark-gaugino (or squark-gravitino) in-
teractions, as could occur in an R-symmetric model [30].
This would add to the heavy flavor component of signals
while subtracting from the nj + /ET signals that concern
us in this paper. In the interests of demonstrating the
di⇥erences between the SSSM and the simplified models
of the MSSM, the latter of which cannot have large fla-
vor violation, we do not consider flavor-violation in the
squark interactions of the SSSM.

III. ASPECTS OF DIRAC GAUGINO MASSES

A. Supersoftness

A supersoft supersymmetric model contains chiral su-
perfields in the adjoint representation of each gauge
group of the SM in addition to the superfields of
the MSSM. Supersymmetry breaking communicated
through a D-term spurion leads to Dirac gaugino masses
that pair up the fermionic component from each field
strength with the fermionic component of the corre-
sponding adjoint superfield. The adjoint superfields also
contain a complex scalar, whose real and imaginary com-
ponent masses are not uniquely determined in terms of
the Dirac gaugino mass. The Lagrangian for this setup,
in terms of four component spinors, is given in Ap-
pendix A.

The scalar components of chiral superfields receive one-
loop finite contributions to their soft masses from gaug-
inos and adjoint scalars, as was shown clearly by [21]

M2
f̃
=

⇧

i

Ci(f)�iM2
i

⌅
log

m̃2
i

M2
i

. (1)

The sum runs over the three SM gauge groups where
Ci(f) is quadratic Casimir of the fermion f under the
gauge group i. The m̃i are the soft masses for the real

scalar components of the adjoint superfields. The Mi

are the Dirac masses for the gauginos. Assuming the
contribution to the squark masses is dominated by the
Dirac gluino,

M2
q̃ ⇤ (700 GeV)2

�
M3

5 TeV

⇥2 log r̃3
log 1.5

(2)

where r̃i ⇥ m̃2
i /M

2
i . Somewhat smaller or larger soft

masses can be achieved by adjusting the ratio r̃3, since
we hold the Dirac gluino mass M3 = 5 TeV fixed in the
SSSM.

B. Naturalness

The up-type Higgs mass-squared m2
Hu

receives positive
one-loop finite contributions from the Dirac electroweak
gauginos as well as negative one-loop contributions from
the stops. As was emphasized in Ref. [21], the latter
contribution can easily overwhelm the former, leading to
a negative Higgs mass-squared and thus radiative elec-
troweak symmetry breaking. Unlike the MSSM, however,
the usual logarithmic divergence from the stop contribu-
tions to the Higgs mass is cuto⇥ by the Dirac gluino mass,
giving

⇥m2
Hu

= �3⇤2
t

8⌅2
M2

t̃ log
M2

3

M2
t̃

. (3)

Using Eq. (1), and approximating log[M2
3 /M

2
t̃
] ⇤

log[3⌅/(4�s)], we obtain
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log 1.5

. (4)

Contrast this expression with the analogous one from the
MSSM [7]
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where M̃3 corresponds to the Majorana gluino mass.
This makes it clear that a Dirac gluino can be several
times larger than a Majorana gluino in an MSSM-type
model and yet be just as natural, even when compar-
ing against an MSSM model with a mediation scale that
is as low as conceivable, � ⇤ 20M̃3. Our choice of
Dirac gluino mass M3 = 5 TeV with r̃3 ⇤ 1.5 is thus
roughly equivalent, in the degree of naturalness, to a low-
scale mediation MSSM model with Majorana gluino mass
M̃3 ⇤ 900 GeV.

C. Colored Sparticle Production

For LHC phenomenology, there are several impli-
cations of a heavy Dirac gluino. First, gluino pair
production and associated gluino/squark production is

3
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where M̃3 corresponds to the Majorana gluino mass.
This makes it clear that a Dirac gluino can be several
times larger than a Majorana gluino in an MSSM-type
model and yet be just as natural, even when compar-
ing against an MSSM model with a mediation scale that
is as low as conceivable, � ⇤ 20M̃3. Our choice of
Dirac gluino mass M3 = 5 TeV with r̃3 ⇤ 1.5 is thus
roughly equivalent, in the degree of naturalness, to a low-
scale mediation MSSM model with Majorana gluino mass
M̃3 ⇤ 900 GeV.

C. Colored Sparticle Production

For LHC phenomenology, there are several impli-
cations of a heavy Dirac gluino. First, gluino pair
production and associated gluino/squark production is
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Several phenomenological implications of Dirac gauginos
as well as fully R-symmetric supersymmetry have been
explored in [39–60].

In this study we do not consider bounds on the third
generation squarks. Third generation squarks receive
modifications to their masses through their interactions
with the Higgs supermultiplets. Given that supersoft su-
persymmetry has a suppressed D-term for the Higgs po-
tential, typically this requires heavier stop masses as well
as separating the scalar masses of the adjoint superfields
from the corresponding Dirac gaugino masses. This could
be accomplished through additional R-symmetric F -term
contributions to their masses. In any case, third genera-
tion squarks have distinct signals involving heavy flavor
(with or without leptons), and thus require incorporating
a much larger class of LHC search strategies. We believe
there are interesting di⇥erences between the third gen-
eration phenomenology of a supersoft model versus the
MSSM, but we leave this for future work.

We also do not consider potentially large flavor-
violation in the squark-gaugino (or squark-gravitino) in-
teractions, as could occur in an R-symmetric model [30].
This would add to the heavy flavor component of signals
while subtracting from the nj + /ET signals that concern
us in this paper. In the interests of demonstrating the
di⇥erences between the SSSM and the simplified models
of the MSSM, the latter of which cannot have large fla-
vor violation, we do not consider flavor-violation in the
squark interactions of the SSSM.

III. ASPECTS OF DIRAC GAUGINO MASSES

A. Supersoftness

A supersoft supersymmetric model contains chiral su-
perfields in the adjoint representation of each gauge
group of the SM in addition to the superfields of
the MSSM. Supersymmetry breaking communicated
through a D-term spurion leads to Dirac gaugino masses
that pair up the fermionic component from each field
strength with the fermionic component of the corre-
sponding adjoint superfield. The adjoint superfields also
contain a complex scalar, whose real and imaginary com-
ponent masses are not uniquely determined in terms of
the Dirac gaugino mass. The Lagrangian for this setup,
in terms of four component spinors, is given in Ap-
pendix A.

The scalar components of chiral superfields receive one-
loop finite contributions to their soft masses from gaug-
inos and adjoint scalars, as was shown clearly by [21]
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where M̃3 corresponds to the Majorana gluino mass.
This makes it clear that a Dirac gluino can be several
times larger than a Majorana gluino in an MSSM-type
model and yet be just as natural, even when compar-
ing against an MSSM model with a mediation scale that
is as low as conceivable, � ⇤ 20M̃3. Our choice of
Dirac gluino mass M3 = 5 TeV with r̃3 ⇤ 1.5 is thus
roughly equivalent, in the degree of naturalness, to a low-
scale mediation MSSM model with Majorana gluino mass
M̃3 ⇤ 900 GeV.

C. Colored Sparticle Production

For LHC phenomenology, there are several impli-
cations of a heavy Dirac gluino. First, gluino pair
production and associated gluino/squark production is
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where M̃3 corresponds to the Majorana gluino mass.
This makes it clear that a Dirac gluino can be several
times larger than a Majorana gluino in an MSSM-type
model and yet be just as natural, even when compar-
ing against an MSSM model with a mediation scale that
is as low as conceivable, � ⇤ 20M̃3. Our choice of
Dirac gluino mass M3 = 5 TeV with r̃3 ⇤ 1.5 is thus
roughly equivalent, in the degree of naturalness, to a low-
scale mediation MSSM model with Majorana gluino mass
M̃3 ⇤ 900 GeV.
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For LHC phenomenology, there are several impli-
cations of a heavy Dirac gluino. First, gluino pair
production and associated gluino/squark production is
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where M̃3 corresponds to the Majorana gluino mass.
This makes it clear that a Dirac gluino can be several
times larger than a Majorana gluino in an MSSM-type
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LHC Implications
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Squark masses at which the cross-section of the final state sqL,sqR 
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Red: Both generations, blue: just the first generation.
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Simplified Models for Comparisons
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FIG. 1. The spectra for the simplified models considered in this paper. The left-most pane illustrates our primary interest – the
supersoft supersymmetric simplified model (SSSM). It contains a gluino with a large Dirac mass M3 = 5 TeV, first and second
generation squarks that are roughly 5 � 10 times lighter than gluino, and an LSP that is generally assumed to be much lighter
than the squarks. The three right-most panes illustrate the three simplified models of the MSSM to which we compare. We
write the gluino Dirac mass as M3 to be distinguished from a Majorana mass written as M̃3. Two of the comparison simplified
models of the MSSM (“equal MSSM” and “intermediate MSSM”) are designed to provide comparisons between typical MSSM
spectra and the SSSM. The third comparison model, “heavy MSSM”, directly compares the results for a Dirac gluino versus a
Majorana gluino of the same mass. Generally the LSP mass is taken to be kinematically negligible, however we also comment
on the relaxation of the bounds on the SSSM when the LSP is heavier.

II. SIMPLIFIED MODELS AND THE SSSM

We are interested in calculating the bounds on su-
persymmetric models with Dirac gaugino masses. Our
approach is to first construct a supersoft supersymmet-
ric simplified model (SSSM) on which we can apply the
nj + /ET limits from LHC. This is completely analogous
to the construction of simplified models of the MSSM
[22, 23], which are now widely used in presenting the re-
sults from LHC searches for supersymmetry. The SSSM,
illustrated in the far left pane of Fig. 1, has a gluino with
a large, purely Dirac mass, degenerate first and second
generation squarks (of both handedness), and the light-
est supersymmetric particle (LSP) at the bottom of the
spectrum. In defining the SSSM, we have explicitly cho-
sen the Dirac gluino mass to have a fixed large value,
M3 = 5 TeV. The large gluino mass implies gluino pair
production is kinematically forbidden while associated
gluino/squark production is highly suppressed, leaving
squark production as the only potentially viable colored
sparticle production at the LHC. Squarks decay through
q̃ � q + LSP, where the quark flavor and chirality de-
pends on the initial squark.

To perform an apples-for-apples comparison of the con-
straints on supersoft supersymmetry versus the MSSM,
we calculate the bounds not only on the SSSM, but also
three other simplified models of the MSSM. In all of
the simplified models, the first and second generation
squarks are degenerate and the LSP is massless. The
spectra of the three comparison simplified models of the
MSSM are shown in the three right-most panes of Fig. 1.
The purpose of the comparison models is to both vali-
date our analysis against the actual bounds from exper-
imental analyses (where available), as well as to directly
show the weakness of the bounds on the SSSM in direct

contrast to the MSSM. The “equal MSSM” and “inter-
mediate MSSM” simplified models are chosen to provide
a comparison with typical MSSM spectra. The “heavy
MSSM” simplified model is highly unnatural within the
usual MSSM as we have already discussed. Nevertheless,
it illustrates the di�erences in squark mass bounds that
remain between a heavy Majorana gluino versus a heavy
Dirac gluino even when they have the same mass.

Our analyses generally assume the LSP has a kine-
matically negligible mass. In the Discussion we also con-
sider the weakening of the bounds as the LSP mass is
increased. The LSP could be light gravitino, or could
instead be some other light neutral superpartner, so long
as the squark decay proceeds directly to the LSP in the
one step process q̃ � q+LSP. We also assume all decays
into the LSP are prompt. The assumption of short decay
chains from heavy squarks to a massless LSP implies the
bounds we obtain are the most optimistic possible using
the jets plus missing energy searches with no leptons in
the final state.

Mapping the bounds from the SSSM onto theories
with Dirac gaugino masses is straightforward in princi-
ple, though model-dependent in practice. In particular,
we do not include electroweak gauginos or Higgsinos in
our spectrum. The supersoft supersymmetric model has
heavy Dirac gaugino masses, with an ordinary MSSM
µ-term for the Higgs sector [21]. Several other models
incorporate Dirac gauginos [24–38]. In several cases, the
gaugino sector approximately preserves a U(1)R symme-
try, while the Higgs sector does not. In [30] a fully R-
symmetric supersymmetric model was constructed that
incorporated not only Dirac gaugino masses but also R-
symmetric Higgsino masses. In this model, additional R-
symmetric contributions to the soft masses were allowed,
and notably, could be nearly arbitrary in flavor-space.

2

Construct a supersoft supersymmetric simplified model (SSSM)
and perform apples-for-apples comparison against MSSM.



neutralinos, such as same-sign lepton final states, may
not yield strong bounds if the model is approximately R-
symmetric, and so again we are left to model-dependent
investigations to make quantitative statements.

IV. RECASTING LHC LIMITS

To recast LHC limits on colored superparticle produc-
tion into the SSSM, we follow the analyses searching for
supersymmetry through nj + /ET signals performed by
ATLAS [61] and CMS [62–64]. Of the existing supersym-
metry searches, jets plus missing energy is the simplest,
and involves the fewest assumptions about the spectrum.

To simulate the supersymmetric signal, we use
PYTHIA6.4 [65]; the first and second generation squarks
are set to have equal mass, the gravitino is chosen to be
the LSP, and all other superpartners are decoupled (set
to 5 TeV). We use CTEQ6L1 parton distribution func-
tions, generating a su⌅cient number of events such that
statistical fluctuations have negligible e�ect on our re-
sults. To incorporate detector e�ects into our signal sim-
ulations, all events are passed through the Delphes [66]
program using ATLAS or CMS detector options and
adopting the corresponding experiment’s jet definitions:
anti-kT , R = 0.4 for the ATLAS search [61], and anti-
kT , R = 0.5 for the CMS searches [62–64]. We repeat the
same steps for the three simplified models of the MSSM
(c.f. Fig. 1) allowing all combinations of q̃q̃, q̃�q̃�, q̃q̃� as
well as gluino pair production and associated squark plus
gluino production. Note that our “heavy MSSM” simpli-
fied model is an existing CMS simplified model, “T2”
[67].

Colored superpartner production cross sections receive
sizable next-to-leading order (NLO) corrections. To in-
corporate these corrections, we feed the spectra into
PROSPINO [68], restricting the processes appropriately
for each simplified model (i.e., just pp ⇤ q̃q̃� for the
SSSM). The cross sections are shown in Fig. 3 for each of
the simplified models as a function of squark mass. De-
pending on the scale choice and the squark mass, we find
the K-factor ranges from 1.7-2.1. This takes into account
the increased rate at NLO, through not the kinematic
distribution of events.

The analyses we are interested in [61–64], are broken
up into several channels. For some analyses the channels
are orthogonal, while in other analyses one event can
fall into multiple channels. To set limits we begin by
counting the number of supersymmetry events in each
analysis channel for several squark masses. The number
of supersymmetric events passing cuts is translated into
a mass-dependent acceptance for each channel. We then
form the 95% CL limit, using the likelihood ratio test

400 600 800 1000 120010�4

0.001

0.01

0.1

1

10

100

Mq⌅ �GeV⇥

⇤
�pp⇧

co
lo
re
d
su
pe
rp
ar
tn
er
s⇥�pb

⇥ MSSM, M3 ⇥ Mq⌅

MSSM, M3 ⇥ 2 Mq⌅

MSSM, M3⇥ 5 TeV
SSSM

FIG. 3. Cross sections at the 7 TeV LHC for colored super-
partner production. The four lines correspond to the four
simplified models shown in Fig. 1, where the first and second
generation squarks are degenerate with mass Mq̃. The solid
line shows the cross section for the SSSM where the cross
section is dominated by q̃q̃� final states, while the dashed
lines show cross sections for the three simplified models of the
MSSM. All cross sections are calculated to next-to-leading or-
der using PROSPINOv2.1 [68], CTEQ6L1 parton distribution
functions, and default scale choices. For event generation, we
use PYTHIA6.4 [65] and rescale the cross section to match
those shown here.
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Here µi,b ⇥ Ni,exp is the number of expected SM back-
ground events and µi,s ⇥ Ni,SUSY is the number of signal
events. To estimate the e�ects of systematic errors, the
number of SM events is modulated by a Gaussian weight-
ing factor [70]. Specifically, we shift µb ⇤ µb(1 + fb),
where fb is drawn from a Gaussian distribution centered
at zero and with standard deviation ⇤f = ⇤i,SM/Ni,exp,
where ⇤i,SM is the quoted systematic uncertainty (taken
directly from [61–64]). Whenever the systematic error is
asymmetric, we use the larger (in absolute value) num-
ber. To combine channels (when appropriate), we simply
replace the right-hand side of Eq. (6) with the product
over all channels.
The number of supersymmetry events in a particular

channel is the product of the cross section, luminosity,
acceptance and e⌅ciency,

Ni,SUSY = L ·K(Mq̃)⇤(Mq̃) ·A(Mq̃) · �, (7)

where K(Mq̃) is the mass-dependent K-factor to account
for the larger rate at NLO. Within our simplified setup,
the only parameter the cross section and acceptance de-
pend upon is the mass of the squark – thus Eq. (6) is
simply a limit on the squark mass.
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   Pythia with NLO K-factors from Prospino
   CTEQ6L
   DELPHES
   jet definitions appropriate to experiments

Backgrounds from ATLAS, CMS analysis notes.

Use simplified models of MSSM as cross checks that 
we are approximately matching expt analyses limits.



B Excluded regions in supersymmetry parameter space showing the chan-
nel with the best expected exclusion at each point
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Figure 38: 95% CLs exclusion limits obtained by using the signal region with the best expected sensi-
tivity at each point in a simplified MSSM scenario with only strong production of gluinos and first- and
second-generation squarks, and direct decays to jets and neutralinos (left); and in the (m0 ; m1/2) plane
of MSUGRA/CMSSM for tan � = 10, A0 = 0 and µ > 0 (right). The red lines show the observed limits,
the dashed-blue lines the median expected limits, and the dotted blue lines the ±1⇥ variation on the ex-
pected limits. The labels A-E refer to the channel with the best expected exclusion at each point, while
the su�xes l, m and t refer to the loose, medium and tight selections for each signal region. ATLAS EPS
2011 limits are from [17] and LEP results from [59].

34

ATLAS-CONF-2012-033

(old) ATLAS jets + missing search strategy
Process

Signal Region

SRC loose SRE loose SRA medium SRA’ medium SRC medium SRE medium

tt̄+ Single Top 74 ± 13 (75) 66 ± 26 (64) 7 ± 5 (5.1) 11 ± 3.4 (10) 12 ± 4.5 (10) 17 ± 5.8 (13)

Z/�+jets 70 ± 22 (61) 22 ± 6.4 (13) 31 ± 9.9 (34) 64 ± 20 (69) 17 ± 5.9 (16) 8 ± 2.9 (4.4)

W+jets 62 ± 9.3 (61) 23 ± 11 (23) 19 ± 4.5 (21) 26 ± 4.6 (30) 8.1 ± 2.9 (11) 5.9 ± 3 (4.7)

Multi-jets 0.39 ± 0.4 (0.16) 3.7 ± 1.9 (3.8) 0.14 ± 0.24 (0.13) 0 ± 0.13 (0.38) 0.024 ± 0.034 (0.013) 0.8 ± 0.53 (0.64)

Di-Bosons 7.9 ± 4 (7.9) 4.2 ± 2 (4.2) 7.3 ± 3.7 (7.5) 15 ± 7.4 (16) 1.7 ± 0.87 (1.7) 2.7 ± 1.3 (2.7)

Total 214 ± 24.9 ± 13 119 ± 32.6 ± 11.6 64.8 ± 10.2 ± 6.92 115 ± 19 ± 9.69 38.6 ± 6.68 ± 4.77 34 ± 4.47 ± 5.57

Data 210 148 59 85 36 25

local p-value (Gaus. ⇥) 0.55(-0.14) 0.21(0.8) 0.65(-0.4) 0.9(-1.3) 0.6(-0.26) 0.85(-1)

UL on NBSM 58(6044
83) 84(6952

93) 25(2820
39) 29(4332

60) 18(1914
27) 12(1612

23)

UL on ⇥BSM /(fb) 12(139.3
18 ) 18(1511

20) 5.3(64.3
8.2) 6.2(9.26.7

13 ) 3.7(4.13
5.7) 2.5(3.52.5

5 )

Process
Signal Region

SRA tight SRB tight SRC tight SRD tight SRE tight

tt̄+ Single Top 0.22 ± 0.35 (0.046) 0.21 ± 0.33 (0.066) 1.8 ± 1.6 (0.96) 2 ± 1.7 (0.92) 3.9 ± 4 (2.6)

Z/�+jets 2.9 ± 1.5 (3.1) 2.5 ± 1.4 (1.6) 2.1 ± 1.1 (4.4) 0.95 ± 0.58 (2.7) 3.2 ± 1.4 (1.8)

W+jets 2.1 ± 0.99 (1.9) 0.97 ± 0.6 (0.84) 1.2 ± 1.2 (2.7) 1.7 ± 1.5 (2.5) 2.3 ± 1.7 (1.5)

Multi-jets 0 ± 0.0024 (0.002) 0 ± 0.0034 (0.0032) 0 ± 0.0058 (0.0023) 0 ± 0.0072 (0.021) 0.22 ± 0.25 (0.24)

Di-Bosons 1.7 ± 0.95 (2) 1.7 ± 0.95 (1.9) 0.49 ± 0.26 (0.51) 2.2 ± 1.2 (2.2) 2.5 ± 1.3 (2.5)

Total 7 ± 0.999 ± 2.26 5.39 ± 0.951 ± 2.01 5.68 ± 1.79 ± 1.51 6.84 ± 1.7 ± 2.1 12.1 ± 4.59 ± 3.04

Data 1 1 14 9 13

local p-value (Gaus. ⇥) 0.98(-2.1) 0.95(-1.7) 0.018(2.1) 0.29(0.55) 0.45(0.13)

UL on NBSM 2.9(6.14.2
9 ) 3.1(5.53.8

8.3) 16(117.6
15 ) 10(8.96.4

13 ) 12(128.5
17 )

UL on ⇥BSM /(fb) 0.62(1.30.89
1.9 ) 0.65(1.20.8

1.8) 3.5(2.31.6
3.2) 2.2(1.91.4

2.7) 2.6(2.51.8
3.5)

Table 3: Observed numbers of events in data and fitted background components in each SR. For the total background estimates, the quoted errors
give the systematic and statistical (MC and CR combined) uncertainties respectively. For the individual background components, the total uncertainties
are given, with the values in parenthesis indicating the pre-fit predictions for the MC expectations. For W+jets, Z+jets and tt̄+jets, these predictions
are from ALPGEN, and scaled by additional factors of 0.75, 0.78 and 0.73 respectively, determined by normalisation to data in corresponding control
regions in channel A. In the case of the multi-jet background, the pre-fit values are from the data-driven method. The p-values give the probability of the
observation being consistent with the estimated background, and the “Gaus. ⇥” values the number of standard deviations in a Gaussian approximation,
evaluated for a single observation at a time. The last two lines show the upper limits on the excess number of events, and the excess cross-section, above
that expected from the Standard Model. The observed upper limit is followed in brackets by the expected limit, with the super- and sub-scripts showing
the variation in the expectation from ±1⇥ changes in the background.
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At Am A’ Bt
Requirement

Channel

A A’ B C D E

Emiss
T [GeV] > 160

pT( j1) [GeV] > 130

pT( j2) [GeV] > 60

pT( j3) [GeV] > – – 60 60 60 60

pT( j4) [GeV] > – – – 60 60 60

pT( j5) [GeV] > – – – – 40 40

pT( j6) [GeV] > – – – – – 40

��(jet, Emiss
T )min > 0.4 (i = {1, 2, (3)}) 0.4 (i = {1, 2, 3}), 0.2 (pT > 40 GeV jets)

Emiss
T /me↵(N j) > 0.3 (2j) 0.4 (2j) 0.25 (3j) 0.25 (4j) 0.2 (5j) 0.15 (6j)

me↵(incl.) [GeV] > 1900/1400/– –/1200/– 1900/–/– 1500/1200/900 1500/–/– 1400/1200/900

Table 1: Cuts used to define each of the channels in the analysis. The Emiss
T /me↵ cut in any N jet channel

uses a value of me↵ constructed from only the leading N jets (indicated in parentheses). However, the
final me↵(incl.) selection, which is used to define the signal regions, includes all jets with pT > 40 GeV.
The three me↵(incl.) selections listed in the final row denote the ‘tight’, ‘medium’ and ‘loose’ selections
respectively. Not all channels include all three SRs.

In Table 1, ��(jet, Emiss
T )min is the smallest of the azimuthal separations between ~P miss

T and the re-
constructed jets. For channels A, A’ and B, the selection requires ��(jet, Emiss

T )min > 0.4 using up to
three leading jets. For the other channels an additional requirement ��(jet, Emiss

T )min > 0.2 is placed on
all jets with pT > 40 GeV. Requirements on ��(jet, Emiss

T )min and Emiss
T /me↵ are designed to reduce the

background from multi-jet processes.
Standard Model background processes contribute to the event counts in the signal regions. The

dominant sources are: W+jets, Z+jets, top quark pair, single top quark, and multi-jet production, with
a smaller contribution from diboson production. The majority of the W+jets background is composed
of W ! ⌧⌫ events, or W ! e⌫, µ⌫ events in which no electron or muon candidate is reconstructed.
The largest part of the Z+jets background comes from the irreducible component in which Z ! ⌫⌫̄
decays generate large Emiss

T . Top quark pair production followed by semileptonic decays, in particular
tt̄ ! bb̄⌧⌫qq with the ⌧-lepton decaying hadronically, as well as single top quark events, can also generate
large Emiss

T and pass the jet and lepton requirements at a non-negligible rate. The multi-jet background in
the signal regions is caused by misreconstruction of jet energies in the calorimeters leading to apparent
missing transverse momentum, as well as by neutrino production in semileptonic decays of heavy quarks.
Extensive validation of the MC simulation against data has been performed for each of these background
sources and for a wide variety of control regions (CRs).

Each of the six channels is used to construct between one and three signal regions with ‘tight’,
‘medium’ and/or ‘loose’ me↵(incl.) selections. In order to estimate the backgrounds in a consistent and
robust fashion, five control regions are defined for each of the eleven signal regions, giving 55 CRs in
total. The orthogonal CR event selections are designed to provide uncorrelated data samples enriched in
particular background sources. Each ensemble of one SR and five CRs constitutes a di↵erent ‘stream’ of
the analysis. The CR selections are optimised to maintain adequate statistical weight, while minimising
as far as possible the systematic uncertainties arising from extrapolation to the SR.

The control regions are chosen to be as close kinematically as possible to the corresponding SR in
order to minimise theoretical uncertainties arising from extrapolation between them. The CRs are listed

3

Requirement
Channel

A A’ B C D E

Emiss
T [GeV] > 160

pT( j1) [GeV] > 130

pT( j2) [GeV] > 60

pT( j3) [GeV] > – – 60 60 60 60

pT( j4) [GeV] > – – – 60 60 60

pT( j5) [GeV] > – – – – 40 40

pT( j6) [GeV] > – – – – – 40

��(jet, Emiss
T )min > 0.4 (i = {1, 2, (3)}) 0.4 (i = {1, 2, 3}), 0.2 (pT > 40 GeV jets)

Emiss
T /me↵(N j) > 0.3 (2j) 0.4 (2j) 0.25 (3j) 0.25 (4j) 0.2 (5j) 0.15 (6j)

me↵(incl.) [GeV] > 1900/1400/– –/1200/– 1900/–/– 1500/1200/900 1500/–/– 1400/1200/900

Table 1: Cuts used to define each of the channels in the analysis. The Emiss
T /me↵ cut in any N jet channel

uses a value of me↵ constructed from only the leading N jets (indicated in parentheses). However, the
final me↵(incl.) selection, which is used to define the signal regions, includes all jets with pT > 40 GeV.
The three me↵(incl.) selections listed in the final row denote the ‘tight’, ‘medium’ and ‘loose’ selections
respectively. Not all channels include all three SRs.

In Table 1, ��(jet, Emiss
T )min is the smallest of the azimuthal separations between ~P miss

T and the re-
constructed jets. For channels A, A’ and B, the selection requires ��(jet, Emiss

T )min > 0.4 using up to
three leading jets. For the other channels an additional requirement ��(jet, Emiss

T )min > 0.2 is placed on
all jets with pT > 40 GeV. Requirements on ��(jet, Emiss

T )min and Emiss
T /me↵ are designed to reduce the

background from multi-jet processes.
Standard Model background processes contribute to the event counts in the signal regions. The

dominant sources are: W+jets, Z+jets, top quark pair, single top quark, and multi-jet production, with
a smaller contribution from diboson production. The majority of the W+jets background is composed
of W ! ⌧⌫ events, or W ! e⌫, µ⌫ events in which no electron or muon candidate is reconstructed.
The largest part of the Z+jets background comes from the irreducible component in which Z ! ⌫⌫̄
decays generate large Emiss

T . Top quark pair production followed by semileptonic decays, in particular
tt̄ ! bb̄⌧⌫qq with the ⌧-lepton decaying hadronically, as well as single top quark events, can also generate
large Emiss

T and pass the jet and lepton requirements at a non-negligible rate. The multi-jet background in
the signal regions is caused by misreconstruction of jet energies in the calorimeters leading to apparent
missing transverse momentum, as well as by neutrino production in semileptonic decays of heavy quarks.
Extensive validation of the MC simulation against data has been performed for each of these background
sources and for a wide variety of control regions (CRs).

Each of the six channels is used to construct between one and three signal regions with ‘tight’,
‘medium’ and/or ‘loose’ me↵(incl.) selections. In order to estimate the backgrounds in a consistent and
robust fashion, five control regions are defined for each of the eleven signal regions, giving 55 CRs in
total. The orthogonal CR event selections are designed to provide uncorrelated data samples enriched in
particular background sources. Each ensemble of one SR and five CRs constitutes a di↵erent ‘stream’ of
the analysis. The CR selections are optimised to maintain adequate statistical weight, while minimising
as far as possible the systematic uncertainties arising from extrapolation to the SR.

The control regions are chosen to be as close kinematically as possible to the corresponding SR in
order to minimise theoretical uncertainties arising from extrapolation between them. The CRs are listed

3



AmAtAt'BtClCmDtEm AmAtAt'BtClCmDtEm AmAtAt'BtClCmDtEm AmAtAt'BtClCmDtEm0
250
500
750
1000
1250
1500

SSSM
M3 = 5 TeV

MSSM
M3 = Msq

MSSM
M3 = 2 Msq

MSSM
M3 = 5 TeV

1s
t,2

nd
 g
en

er
at
io
n 
sq

ua
rk
 m

as
s

ATLAS Search Bounds

Kribs & Martin



AmAtAt'BtClCmDtEm AmAtAt'BtClCmDtEm AmAtAt'BtClCmDtEm AmAtAt'BtClCmDtEm0
250
500
750
1000
1250
1500

SSSM
M3 = 5 TeV

MSSM
M3 = Msq

MSSM
M3 = 2 Msq

MSSM
M3 = 5 TeV

1s
t,2

nd
 g
en

er
at
io
n 
sq

ua
rk
 m

as
s

ATLAS Search Bounds

Kribs & Martin

B Excluded regions in supersymmetry parameter space showing the chan-
nel with the best expected exclusion at each point
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Figure 38: 95% CLs exclusion limits obtained by using the signal region with the best expected sensi-
tivity at each point in a simplified MSSM scenario with only strong production of gluinos and first- and
second-generation squarks, and direct decays to jets and neutralinos (left); and in the (m0 ; m1/2) plane
of MSUGRA/CMSSM for tan � = 10, A0 = 0 and µ > 0 (right). The red lines show the observed limits,
the dashed-blue lines the median expected limits, and the dotted blue lines the ±1⇥ variation on the ex-
pected limits. The labels A-E refer to the channel with the best expected exclusion at each point, while
the su�xes l, m and t refer to the loose, medium and tight selections for each signal region. ATLAS EPS
2011 limits are from [17] and LEP results from [59].
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neutralinos, such as same-sign lepton final states, may
not yield strong bounds if the model is approximately R-
symmetric, and so again we are left to model-dependent
investigations to make quantitative statements.

IV. RECASTING LHC LIMITS

To recast LHC limits on colored superparticle produc-
tion into the SSSM, we follow the analyses searching for
supersymmetry through nj + /ET signals performed by
ATLAS [61] and CMS [62–64]. Of the existing supersym-
metry searches, jets plus missing energy is the simplest,
and involves the fewest assumptions about the spectrum.

To simulate the supersymmetric signal, we use
PYTHIA6.4 [65]; the first and second generation squarks
are set to have equal mass, the gravitino is chosen to be
the LSP, and all other superpartners are decoupled (set
to 5 TeV). We use CTEQ6L1 parton distribution func-
tions, generating a su⌅cient number of events such that
statistical fluctuations have negligible e�ect on our re-
sults. To incorporate detector e�ects into our signal sim-
ulations, all events are passed through the Delphes [66]
program using ATLAS or CMS detector options and
adopting the corresponding experiment’s jet definitions:
anti-kT , R = 0.4 for the ATLAS search [61], and anti-
kT , R = 0.5 for the CMS searches [62–64]. We repeat the
same steps for the three simplified models of the MSSM
(c.f. Fig. 1) allowing all combinations of q̃q̃, q̃�q̃�, q̃q̃� as
well as gluino pair production and associated squark plus
gluino production. Note that our “heavy MSSM” simpli-
fied model is an existing CMS simplified model, “T2”
[67].

Colored superpartner production cross sections receive
sizable next-to-leading order (NLO) corrections. To in-
corporate these corrections, we feed the spectra into
PROSPINO [68], restricting the processes appropriately
for each simplified model (i.e., just pp ⇤ q̃q̃� for the
SSSM). The cross sections are shown in Fig. 3 for each of
the simplified models as a function of squark mass. De-
pending on the scale choice and the squark mass, we find
the K-factor ranges from 1.7-2.1. This takes into account
the increased rate at NLO, through not the kinematic
distribution of events.

The analyses we are interested in [61–64], are broken
up into several channels. For some analyses the channels
are orthogonal, while in other analyses one event can
fall into multiple channels. To set limits we begin by
counting the number of supersymmetry events in each
analysis channel for several squark masses. The number
of supersymmetric events passing cuts is translated into
a mass-dependent acceptance for each channel. We then
form the 95% CL limit, using the likelihood ratio test
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FIG. 3. Cross sections at the 7 TeV LHC for colored super-
partner production. The four lines correspond to the four
simplified models shown in Fig. 1, where the first and second
generation squarks are degenerate with mass Mq̃. The solid
line shows the cross section for the SSSM where the cross
section is dominated by q̃q̃� final states, while the dashed
lines show cross sections for the three simplified models of the
MSSM. All cross sections are calculated to next-to-leading or-
der using PROSPINOv2.1 [68], CTEQ6L1 parton distribution
functions, and default scale choices. For event generation, we
use PYTHIA6.4 [65] and rescale the cross section to match
those shown here.

statistic [69]:

0.05 =

⇥⇤
0 db⇥

�Ni,obs

0
(µi,b+µi,s)

Ni,obse�(µi,b+µi,s)

(Ni,obs)!
G(µb, b⇥)

⇥⇤
0 db⇥

�Ni,obs

0
µ
Ni,obs
b e�µb

(Ni,obs)!
G(µb, b⇥)

.

(6)

Here µi,b ⇥ Ni,exp is the number of expected SM back-
ground events and µi,s ⇥ Ni,SUSY is the number of signal
events. To estimate the e�ects of systematic errors, the
number of SM events is modulated by a Gaussian weight-
ing factor [70]. Specifically, we shift µb ⇤ µb(1 + fb),
where fb is drawn from a Gaussian distribution centered
at zero and with standard deviation ⇤f = ⇤i,SM/Ni,exp,
where ⇤i,SM is the quoted systematic uncertainty (taken
directly from [61–64]). Whenever the systematic error is
asymmetric, we use the larger (in absolute value) num-
ber. To combine channels (when appropriate), we simply
replace the right-hand side of Eq. (6) with the product
over all channels.
The number of supersymmetry events in a particular

channel is the product of the cross section, luminosity,
acceptance and e⌅ciency,

Ni,SUSY = L ·K(Mq̃)⇤(Mq̃) ·A(Mq̃) · �, (7)

where K(Mq̃) is the mass-dependent K-factor to account
for the larger rate at NLO. Within our simplified setup,
the only parameter the cross section and acceptance de-
pend upon is the mass of the squark – thus Eq. (6) is
simply a limit on the squark mass.
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“The expected limits for [decoupled gluino] do not extend substantially beyond 
those obtained from the previous published ATLAS analysis [17] because the 
events closely resemble the predominant W/Z + 2-jet background, leading 
the background uncertainties to be dominated by systematics.”

The limits we set with the 6-bin approach are conser-
vative estimates. Utilizing an unbinned likelihood ap-
proach (as done in Ref. [64]), our limits may improve.
However, the unbinned approach requires a complete,
smooth description of the background (and signal) in the
two-dimensional (R, MR) plane and makes our limit more
sensitive to details of the detector modeling and correla-
tions among systematics.

V. LUMINOSITY EXTRAPOLATION

It is interesting to extrapolate the squark mass lim-
its set in the previous section out to higher luminosity.
Since we do not have the observed data from the future,
we extrapolate using the expected limit, meaning Ni,obs

is set equal to Ni,exp in Eq. (6). As we want to vary the
luminosity, the background number of events is actually
Ni,ex ⇥ (L/L0) where L0 is the luminosity used to derive
e�ciencies (the luminosity in [61–64]), and L is the pro-
jection luminosity. This extrapolation is conservative in
that it assumes there is no re-optimization of the anal-
ysis cuts and that the systematic uncertainties remain
unchanged.

We perform an extrapolation using the individual
channel with the strongest limits from the various anal-
yses, as well as the combined channels for the CMS ↵T

strategy and the CMS razor strategy. These extrapola-
tions are shown in Fig. 4. As the luminosity increases,
we find the limits on the squark mass do not improve
dramatically. The CMS ↵T search appears to be the
best performing future search on the SSSM, with im-
provements on the squark mass bounds of expected to
be roughly 15-25%. The limits asymptote fairly quickly
once the analyses become dominated by systematic un-
certainties rather than by statistical uncertainties. If the
background systematics improve in the future, these pro-
jections could easily be redone using the signal accep-
tance times e�ciency curves shown earlier.

VI. DISCUSSION

We have shown that our simplified model of supersoft
supersymmetry is clearly much less constrained by LHC
searches for supersymmetry than comparable simplified
models of the MSSM. We find the bounds on first and
second generation squark masses in the SSSM to be be-
tween 680 to 750 GeV, depending on the experiment, the
particular search strategy, and the amount of integrated
luminosity analyzed. This is fully consistent with the
one-loop finite mass generated from a 5 TeV Dirac gluino
(with r̃3 ' 1.5), as we showed in detail in Sec. III. Impor-
tantly, these bounds are only modestly improved with the
increased luminosity of the LHC. We emphasize that our
luminosity extrapolation was done assuming the search
strategies were unchanged, and applied to more luminos-
ity at

p
s = 7 TeV. Nevertheless, the clear conclusion
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FIG. 4. Projection of the expected limits to larger inte-
grated luminosity holding the analysis strategy fixed as well
as

p
s = 7 TeV. For each detector analysis strategy, the

strongest individual channel is shown, while for the ↵T and ra-
zor analyses we show the projection of the combined channel
limit as well. The red line corresponds to CMS jets plus /ET ,
the blue corresponds to CMS ↵T (solid is the single channel
limit, dashed is the combined limit), green (solid and dashed)
shows CMS razor, and purple is ATLAS jets + /ET . We em-
phasize that we have plotted only the expected limits, to be
distinguished from the observed limits that we show in Table I.
The small di↵erences between the expected and observed lim-
its are at roughly the 10% level, characteristic of background
fluctuations.

from the extrapolation is that the SSSM with a kinemat-
ically inaccessible Dirac gluino production remains safe
from LHC bounds now and into the near future.

One of the more striking results is that the CMS ↵T

analysis provided the strongest bound on the squark
masses of the SSSM at 1 fb�1. The ATLAS jets plus
missing energy search strategy, despite the considerable
integrated luminosity 4.7 fb�1, resulted in only a slightly
better bound. Our interpretation of these results is the
↵T search, which was designed to maximize signal over
background with 2 jets plus missing energy, provides an
ideal search strategy for the SSSM. This is due in large
part because the ↵T strategy implements a wide range
of search channels at intermediate values of HT that are
precisely within the range expected for ⇠ 600 ! 800 GeV
squarks of the SSSM. This is also borne out by the best
bound from the CMS MHT strategy being the lower miss-
ing energy, lower HT channel (distinctly di↵erent from
the simplified models of the MSSM with lighter gluinos).
Examining the expected limits from Fig. 4, we see that
the 1 fb�1 CMS ↵T strategy is expected to yield the same
bound on squarks in the SSSM as about a 4 fb�1 jets plus
missing energy ATLAS analysis. This appears to be be-
cause the 2 jet search strategies done by ATLAS require
very large meff . Indeed, the ATLAS channel with the
best bound on the SSSM (SRA0) had the least restric-

tive cut on meff (greater than 1200 GeV). Similarly, the
CMS razor analysis appears to be best optimized for very
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“The limits asymptote fairly quickly 
once the analyses become dominated 
by systematic uncertainties rather than 
by statistical uncertainties.”

Kribs, Martin 1203.4821

Our prediction...

...appears to be true:



“Mixed Gauginos”

(Dirac + Majorana masses for gluino and adjoint fermion)



Mixed Gauginos

Supersymmetry breaking could lead to both Dirac and Majorana 
masses, e.g. both D-term mediation and F-term mediation.  
This leads to a mass matrix for the gluino of the form:

terms for the gaugino and adjoint superfield are (in 2-
component language)

Lg̃mass =
�

g  

�✓
Mm Md

Md M

0
m

◆✓
g

 

◆
+ h.c. (7)

where we have suppressed the SU(3)c color indices on
the fields. The relative size of the Dirac and Majorana
contributions are set by the coe�cients of the operators
(evaluated at the weak scale). While we take the coe�-
cients to be arbitrary, our main phenomenological inter-
est is the range Md � Mm, M

0
m to Md & Mm, M

0
m.

From Eq. (7), the 2-component fermions g and  mix,
giving us the mass eigenstates of the gluino

✓
g1

g2

◆
=

✓
cos ✓g̃ sin ✓g̃

� sin ✓g̃ cos ✓g̃

◆✓
 

g

◆
, (8)

where the mixing angle is given by

cos ✓g̃ =

r
1

2

 
1 +

Mm � M

0
mp

(Mm � M

0
m)2 + 4M

2
d

!1/2

. (9)

Diagonalizing the Lagrangian, Eq. (7), gives the two
eigenvalues that we write as �Mg̃1 and Mg̃2 respectively,

�Mg̃1 =
1

2

✓
Mm + M

0
m �

q
(Mm � M

0
m)2 + 4M

2
d

◆

Mg̃2 =
1

2

✓
Mm + M

0
m +

q
(Mm � M

0
m)2 + 4M

2
d

◆
(10)

We have chosen to define Mg̃1 to be the negative of
the eigenvalue of the mass matrix so that when M

2
d >

MmM

0
m, both Mg̃1 and Mg̃2 are positive. We could have

instead redefined the eigenstates to absorb this sign, how-
ever this would lead to proliferation of i’s in the following,
that we prefer to avoid.

The two familiar limits of these equations are now ev-
ident: For a pure Dirac gluino (Mm = 0), Mg̃1 = Mg̃2 =
Md, the mixing angle ✓g̃ = ⇡/4, and then the gluino
eigenstates are g1,2 = (g ±  )/

p
2. For a pure Majorana

gluino (Md = 0), the mixing angle ✓g̃ = 0, which means
the gluino and its adjoint fermion partner do not mix,
i.e., g1 = g, g2 =  . Consequently, Mg̃1 = Mm and
Mg̃2 = M

0
m.

The quark-gluino-squark interactions are given by

Lint =

�
p

2gs

�
ũ

⇤
L,i t

a
ga uL,i + d̃

⇤
L,i t

a
ga dL,i

� ũ

⇤
R,i t

a
gauR,i � d̃

⇤
R,i t

a
ga dR,i

�
+ h.c. (11)

where the index i runs over each quark generation and the
squark color indices have been suppressed. Expanding

masses by pairing up with additional fermions in the triplet rep-

resentation of SU(2)W ), that we relegate to App. B.

using Eq. (8), this becomes

�Lint/
p

2gs =

+ ũ

⇤
L,i t

a
g1,a cos ✓g̃ uL,i + ũ

⇤
L,i t

a
g2,a sin ✓g̃ uL,i

+ d̃

⇤
L,i t

a
g1,a cos ✓g̃ dL,i + d̃

⇤
L,i t

a
g2,a sin ✓g̃ dL,i

� ũ

⇤
R,i t

a
g1,a cos ✓g̃ uR,i � ũ

⇤
R,i t

a
g2,a sin ✓g̃ uR,i

� d̃

⇤
R,i t

a
g1,a cos ✓g̃ dR,i � d̃

⇤
R,i t

a
g2,a sin ✓g̃ dR,i

+ h.c. (12)

This is the form of the interaction Lagrangian most useful
for our phenomenological study.

In order to understand the implications of a mixed
gluino arising from both a Dirac and a Majorana mass,
we first need to parameterize the mixing in a way relevant
to our collider study. There are two distinct e↵ects when
simultaneously varying Md, Mm, and M

0
m: the coupling

constants to the squarks and quarks change, according to
Eq. (12), and the masses of the gluino eigenstates change,
according to Eq. (10). This leads to changes in both the
dynamics (the coupling constants) and the kinematics

(the gluino masses) of the squark production cross sec-
tions. We are interested in separating these e↵ects, to
the extent possible.

A. Review of pure Dirac gluinos

Before embarking on our study of mixed gluinos, we
first want to review the e↵ects of a pure Dirac gluino on
the various squark production processes. The relevant
squark production processes include2 pp ! q̃L,Rq̃L,R and
pp ! q̃L,Rq̃

⇤
L,R. Fig. 1 shows the relative contributions

of these two production modes for di↵erent (pure Dirac)
gluino masses, depicted by the solid curves. The domi-
nant e↵ects of t-channel gluino exchange impact just the
first generation of squarks. However, since a common
simplified model that ATLAS and CMS use in quoting
bounds is to sum over all squarks of the first two genera-
tions assuming the flavors and chiralities are degenerate
in mass, we do this also. The lightest supersymmetric
particle (LSP) is taken to be a neutral particle odd un-
der R-parity. The gravitino is one possibility, though as
we will see, a Majorana bino is another distinct possibil-
ity.

At low squark masses, 400 GeV (Fig. 1a), the pro-
duction cross section is heavily dominated by squark-
antisquark production with quarks or gluons in the initial
state. This is because squark pair production through
t-channel (Dirac) gluino exchange can only yield pp !
q̃Lq̃R; the other processes (LL, RR) are absent. As
the squark mass is increased, the modes q̃L/R, q̃

⇤
L/R and

q̃L, q̃R become comparable to each other. For Mq̃ =

2
The third combination, antisquark-antisquark production, can

be ignored since its rate is highly suppressed by PDFs.

3

that splits the Dirac gluino into two (pseudo-Dirac)
Majorana fermions.

Focus on Mm < Md & Mm’ < Md (large Majorana masses
re-introduce fine-tuning in electroweak sector)



Mixed Gaugino Spectrum

We probed how quickly the suppressed cross-section results 
for a pure Dirac gluino become more similar to a Majorana 
gluino as the Majorana masses Mm, Mm’ are introduced.

We considered 3 spectra:
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FIG. 2: The method we employ for adding Majorana masses Mm, M

0
m to the supersoft Dirac mass Md of a gaugino.

The lower eigenmass Mg̃1 is kept constant as Mm/Md or M

0
m/Md is varied.

400, 800 and 1200 GeV.
There are several interesting features shown in Fig. 3.

Holding the lightest gluino eigenmass constant, we see
that the squark production cross section decreases as a
Majorana mass Mm is introduced. This we explore in
detail below. Next, we see distinctly di↵erent rates of
variation in the cross sections across the three plots. At
Mq̃ = 1200 GeV (Fig. 3f) the cross section falls by an
order of magnitude as Mg̃1 goes from 1 to 4 TeV, after
which it is roughly constant, whereas for squark masses
400 GeV (Fig. 3b) and 800 GeV (Fig. 3d) we find much
less variation: the cross section drops by a factor of a few
as Mg̃1 is increased from 1 to 2 TeV, and then asymp-
totes to a fixed value. The larger variation is present be-
cause, as we saw earlier, for larger squark masses, the s-
channel squark—anti-squark cross section becomes more
competitive with the t-channel gluino exchange induced
squark-squark production processes. It is this competi-
tion between the two leading modes for gluino masses
below ⇠ 4 TeV that results in the larger rate of variation
of the cross section in that region in Fig. 3f. The domi-
nation of squark-antisquark production for gluino masses
above 4 TeV results in the constancy of the cross section
observed in the right end of the plot.

We now turn our attention to the plots on the left,
depicting contours of the ratios of the corresponding
cross sections on the right to those of a pure Majorana
gluino with a mass the same as Mg̃1. To understand
the features of these plots, we will have to consider the
competition between three di↵erent modes: squark–anti-
squark production, same-handed squark pair production
and opposite-handed squark pair production. Two dis-
tinctive features seen here are (i) at a low squark mass of
400 GeV, the ratio increases as we move horizontally to
the right, as shown in Fig. 3a, (ii) at higher squark masses
of 800 and 1200 GeV, the ratio first decreases and then
increases as we move in the horizontal direction, with the
local minimum shifting to the right as Mq̃ is increased,
as shown in Figs. 3c and 3e.

The first feature is a result of the same mechanism

that results in the lack of variation in Fig. 3b. The
squark–anti-squark production dominates over squark-
squark production for a large range of gluino masses at
Mq̃ = 400 GeV, and as Mg̃1 is increased, this domina-
tion increases for both a Majorana and a mixed gluino
(with the domination in the Majorana case weaker) as
we saw earlier in Fig. 1a. Hence we observe a uniform
increase in the ratio, seen to approach unity. The sec-
ond feature can be understood in terms of Figs. 1b and
1c. In Fig. 1b, for instance, we notice that near the left
extreme (Mg̃1 ⇠ 1 TeV), the Majorana cross section is
dominated by squark pair production and the Dirac cross
section gets nearly equal contributions from both squark–
anti-squark and squark pair production. Near the right
extreme (Mg̃1 ⇠ 5 TeV), the dominant mode of Majo-
rana cross section has fallen and the total cross section
has near-equal contributions from both modes, while the
Dirac cross section, dominated strongly by squark–anti-
squark production, is now comparable to either mode of
the Majorana case. At either extreme, the total Dirac
cross section is able to catch up to an extent with the to-
tal Majorana cross section, for di↵erent reasons. In the
intermediary mass range, however, the Dirac cross sec-
tion, dominated by only squark–anti-squark production,
is much smaller than the Majorana case. This argument
can be extended to mixed gluinos as well, and hence the
local minimum observed in Fig. 3c. The above discussion
applies also to Fig. 3e, except that, as seen in Fig. 1c, the
Dirac cross section catches up with the Majorana at even
higher gluino masses. This results in the rightward shift
compared to the Mq̃ = 800 GeV case in the local mini-
mum.

If we now move vertically anywhere in Fig. 3f, or for
gluino masses below 2 TeV in Figs. 3b,3d, we observe a
drop in cross section. We notice the same for the contours
of the ratios of cross sections, ie., Figs. 3a, 3c and 3e.
This may seem counter to what we would expect when
increasing the Majorana content of the model. The rea-
sons for the diminishment would become clear were we
to investigate the physics of each individual subprocess
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completely negligible due to the kinematic suppression.
Squark–anti-squark production can proceed at tree-level
through gg, qq̄ ! q̃Lq̃⇤L, q̃Rq̃⇤R, while the t-channel Dirac
gluino exchange diagrams are suppressed by a factor
1/M2

3 . There are also mixed-handedness production pro-
cesses pp ! q̃Lq̃R, q̃⇤Lq̃⇤R through t-channel gluino ex-
change, but again suppressed by 1/M2

3 in the ampli-
tude. The contribution of these Dirac gluino exchange
diagrams with M3 = 5 TeV are at the level of a few per-
cent – far smaller than the NLO QCD corrections – and
thus negligible. The remaining tree-level unsuppressed
Feynman diagrams that contribute to squark production
are shown in Fig. 2. We emphasize that all of these sub-
processes require sea quarks or gluons to initiate at the
LHC.

The MSSM also contains the same-handedness pro-
cesses pp ! q̃Lq̃L, q̃Rq̃R through t-channel Majorana
gluino exchange, leading to contributions suppressed by
just one power of the gluino mass, 1/M̃3. These pro-
cesses, as well as the mixed-handedness ones (pp !
q̃Lq̃R, q̃⇤Lq̃⇤R) are initiated by two valence quarks, and
can lead to a large fraction of the total pp ! (colored
superpartner) cross section. In the SSSM, the same-
handedness processes are simply absent (no chirality-
flipping Majorana mass) while the mixed-handedness
processes are more suppressed by 1/M2

3 instead of 1/M̃3.
This means the cross section for squark production in the
SSSM can thus be smaller by a factor of 3 or more even
when comparing the SSSM (M3 = 5 TeV) against the
“heavy MSSM” simplified model (M̃3 = 5 TeV). Also,
the di↵erence between the SSSM and the MSSM grows
as the squark mass increases, because the final state re-
quires more energy, and thus higher partonic x, where
valence quark distributions dominate over gluons or sea
quark distributions.

D. Electroweak inos

The SSSM, by definition, does not include the e↵ects of
the Higgsinos or electroweak gauginos. For general elec-
troweakino masses, there are two potential e↵ects on our
results: squark cross sections could change due to virtual
Higgsino or electroweak gaugino exchange; squark decay
chains could change due to cascades through Higgsinos
or electroweak gauginos.

Higgsino exchange contributions to first and second
generation squark production is negligible, due to the
small Yukawa couplings. Electroweak gaugino exchange
is suppressed by the smaller electroweak couplings, and
thus not relevant unless the electroweak gauginos are sig-
nificantly lighter than the squarks. We thus do not expect
that our squark production cross section calculations to
be significantly a↵ected by the Higgsino and electroweak
gaugino spectrum.

Moreover, while the masses of the electroweak gaug-
inos are model-dependent, a supersoft supersymmetric
model would predict the electroweak gauginos to be

q̃�
L,R

q̃L,R

q̃�
L,R

q̃L,R

q̃�
L,R

q̃L,R

FIG. 2. The dominant tree level Feynman diagrams for squark
production at the LHC in the SSSM. Dirac gluino t-channel
exchange diagrams (not shown) are suppressed by 1/M2

3 and
thus negligible. In the MSSM, by contrast, Majorana gluino
exchange is suppressed by 1/M̃3, and thus relevant even when
M̃3 is large, as shown in Fig. 3.

' 4⇡/g heavier than sleptons. Imposing the LEP II
bound on slepton masses implies the electroweak gaugi-
nos are generically heavier than the masses of the squarks
we consider in this paper. Thus, squark cascade decay
through electroweak gauginos is kinematically forbidden
in supersoft models, and thus we do not need to consider
it further.

Higgsinos, however, may be lighter than both the
squarks and the electroweak gauginos. Naturalness – ob-
taining the right electroweak symmetry breaking vacuum
without significant tuning – certainly favors lighter Hig-
gsinos. Squark cascade decay through Higgsinos would
lead to changes in the energies of the decay products, as
well as the potential addition of charged leptons or neu-
trinos in the final state. Detailed simulation of these cases
is highly model-dependent. Nevertheless, the jets plus
missing energy bounds on models with lighter Higgsi-
nos could be substantially weaker if the average hadronic
activity is reduced. On the other hand, the bounds
from other supersymmetric searches could be substan-
tially stronger if the squark cascade through Higgsinos
results in hard leptons or photons. We note however
that searches more specific to models with Majorana
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Example:  M(g1) = 5 TeV; m(sq) = 1200 GeV

Independent of Dirac/Majorana (as it should be)

ũL
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Lũ
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FIG. 4: cross sections of the various unique modes that constitute up squark production when M

0
m is set to zero.

The blue curves show these as a function x = Mm/Md, while the dashed red horizontal lines denote the
corresponding cross section for the case of a pure Majorana gluino of the same mass as Mg̃1. Here the squark mass

Mũ is 1200 GeV and the mass of the lighter gluino eigenstate Mg̃1 is 5 TeV.

separately.

2. Individual modes

Let us now consider primarily the gluino t-channel
pair-production of squarks with quarks in the initial
state. A Feynman diagram depicting this channel is
shown in Fig. 9. No arrows and labels are shown, which
allows us to keep the discussion as generic as possible at
this point. Let us first divide pair production into six
distinct possibilities:

(i) q̃L, q̃L or q̃R, q̃R

(ii) q̃

⇤
L, q̃L or q̃

⇤
R, q̃R

(iii) q̃

⇤
L, q̃

⇤
L or q̃

⇤
Rq̃

⇤
R

(iv) q̃L, q̃R

(v) q̃L, q̃

⇤
R or q̃R, q̃

⇤
L

(vi) q̃

⇤
L, q̃

⇤
R

In Fig. 4, we illustrate the physics behind each of these
modes with a single flavor: up squarks. Here the squark
mass is taken as 1200 GeV and the absolute mass of the
lighter gluino eigenstate (|Mg̃1| = 5 TeV while the heavier
eigenmass, Mg̃2, is varied. These are illustrative values,
to gain intuition for the e↵ects of varying x = Mm/Md

on the cross sections of the individual modes. In this
section, we state the results obtained, leaving the detailed
behavior of the analytic expressions of certain amplitudes
to App. A.

(i) ũL, ũL

The cross section increases from zero and saturates
at a value far below the Majorana cross section as x =
Mm/Md is increased, as shown in Fig. 4a. The amplitude
is written in App. A, where we find that it is suppressed
by p

2
/M

3
g̃1 (times a function of x that becomes just one

power x for small values), considerably smaller than the
naive result of 1/Mg̃1. Moreover, at larger x ' 1, the
amplitude is not scaling with x. This is due to the light-
est gaugino eigenstate becoming increasingly the adjoint
fermion, which does not couple to quarks and squarks.

(ii) ũ

⇤
L, ũL

The dominant contribution to this diagram is produc-
tion via an s-channel gluon. In Fig. 4b we see a nearly
unvarying cross section as we increase x as shown by the
the blue line. Since the sub-dominant t-channel gluino
diagram is negligible, we find that the cross section val-
ues nearly coincides with the pure Majorana case.

(iii) ũ

⇤
L, ũ

⇤
L

The physical principles are the same as (i), hence the
similar trends observed in Fig. 4c. However, the cross
section values are much smaller since the PDF e↵ects of
anti-up quarks cause to suppress this mode.

(iv) ũL, ũR

The amplitude, and hence the cross section, turns out
to be numerically the same for the cases of pure Majorana
and pure Dirac gluinos. This is reflected in Fig. 4d, where
the blue and red curves intersect at x = 0. As x is
increased to 1, however, the cross section decreases to
roughly 1/13 of the cross section of the pure Majorana
case. The reasons for this decline are given in App. A,
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Case 1:  Squark sub-processes

Example:  M(g1) = 5 TeV; m(sq) = 1200 GeV

Amplitude proportional to
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FIG. 14: Constraints set by the b-jet search on the
parameter space of our model. Since Fig. 13 indicates

that the bound is set at Mq̃ ⇡ 800 GeV at an exclusion
cross section ⇡ 0.03 pb, we have included the contour of
that value for that squark mass. All three scenarios we
have considered are shown, and the space to the left of

the contour is excluded in each scenario.

searches that were based on final states with /

ET and 0,
1, 2, 3, or � 4 b-jets at

p
s = 8 TeV and L = 11.7/fb [7].

In all these analyses the LSP is taken to be massless.

The limits obtained are Mq̃ � 775 GeV for a Dirac-
gluino-only scenario and Mq̃ � 825 GeV when both the
electroweakinos are at their MEI values. We get these
limits by checking where the CMS exclusion cross sec-
tions intersect the cross sections predicted by our mod-
els, as plotted in Fig. 13. It deserves to be mentioned
that the bound for a pure Dirac gluino case di↵ers from
that found by the CMS collaboration (Mq̃ � 800 GeV)
by a small margin. As a general comment we would like
to mention that such numerical di↵erences in the bounds
of simplified models, particularly when a comparison is
made in a plot spanning four orders of magnitude (like
Fig. 13), are an inevitable consequence of the nature of
the CMS exclusion plots. The method of reading o↵ cross
sections from color gradients makes it necessarily di�cult
to pinpoint the values with great accuracy.

The pure Dirac gluino bound also enables us to set con-
straints on the parameter space of mixed gluinos. Since
the exclusion cross section at Mq̃ = 800 GeV is ⇠ 0.03 pb,
we can overlay the contours of di↵erent mixed gluino sce-
narios corresponding to that cross section. Fig. 14 shows
this superimposition, and for each scenario the parameter
space to the left of the corresponding contour is excluded.

VI. DISCUSSION

- mixed gluino summary
- mixing with electroweakino summary
- simplified model proposal?
-
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Appendix A: Individual modes

Here we describe the analytic behavior of the indi-
vidual subprocesses ũLũL and ũLũR that are critical in
understanding the results of Sec. III.

(a) ũLũL

This amplitude takes the form

�iT
g

2
CF

=

 
c

2
✓g̃

Mg̃2

p

2 + M

2
g̃2

+ s

2
✓g̃

�Mg̃1

p

2 + M

2
g̃1

!
uLuL

where CF (= 4/3) is the appropriate Casimir invariant,
uL is a 2-component spinor denoting an incoming left-
handed up quark with spinor indices suppressed, and the
second term on the RHS has a minus sign since the mass
of g̃1 is the negative of Mg̃1.

In Case I (M 0
m = 0), using the expressions for the mix-

ing angle in Eq. (9), expanding the amplitude to leading
order in p

2
/M

2
g̃ , and then writing it in terms of Mg̃1 and

x = Mm/Md, we obtain

c

2
✓g̃

Mg̃2

p

2 + M

2
g̃2

�
s

2
✓g̃

Mg̃1

p

2 + M

2
g̃1

=
p

2

M

3
g̃1

x

⇣p
x

2 + 4 � x

⌘3

+ O(p4/M4
g̃1) (A1)

In Case II (Mm = M

0
m), the mixing angle is fixed c

2
✓g̃

=

1/2. Expanding the amplitude to leading order in p

2
/M

2
g̃ ,

and then writing it in terms of Mg̃1 and x = Mm/Md =
M

0
m/Md, we obtain

= � x

Mg̃1(x + 1)
+

p

2
x

3 + 3x

M

3
g̃1(x + 1)3

+ O(p4/M4
g̃1) (A2)

In Case III (Mm = 0), again using Eq. (9), expanding the
amplitude to leading order in p

2
/M

2
g̃ , and then writing
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Remains suppressed even as Mm ≈ Md!
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Lũ
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FIG. 4: cross sections of the various unique modes that constitute up squark production when M

0
m is set to zero.

The blue curves show these as a function x = Mm/Md, while the dashed red horizontal lines denote the
corresponding cross section for the case of a pure Majorana gluino of the same mass as Mg̃1. Here the squark mass

Mũ is 1200 GeV and the mass of the lighter gluino eigenstate Mg̃1 is 5 TeV.

separately.

2. Individual modes

Let us now consider primarily the gluino t-channel
pair-production of squarks with quarks in the initial
state. A Feynman diagram depicting this channel is
shown in Fig. 9. No arrows and labels are shown, which
allows us to keep the discussion as generic as possible at
this point. Let us first divide pair production into six
distinct possibilities:

(i) q̃L, q̃L or q̃R, q̃R

(ii) q̃

⇤
L, q̃L or q̃

⇤
R, q̃R

(iii) q̃

⇤
L, q̃

⇤
L or q̃

⇤
Rq̃

⇤
R

(iv) q̃L, q̃R

(v) q̃L, q̃

⇤
R or q̃R, q̃

⇤
L

(vi) q̃

⇤
L, q̃

⇤
R

In Fig. 4, we illustrate the physics behind each of these
modes with a single flavor: up squarks. Here the squark
mass is taken as 1200 GeV and the absolute mass of the
lighter gluino eigenstate (|Mg̃1| = 5 TeV while the heavier
eigenmass, Mg̃2, is varied. These are illustrative values,
to gain intuition for the e↵ects of varying x = Mm/Md

on the cross sections of the individual modes. In this
section, we state the results obtained, leaving the detailed
behavior of the analytic expressions of certain amplitudes
to App. A.

(i) ũL, ũL

The cross section increases from zero and saturates
at a value far below the Majorana cross section as x =
Mm/Md is increased, as shown in Fig. 4a. The amplitude
is written in App. A, where we find that it is suppressed
by p

2
/M

3
g̃1 (times a function of x that becomes just one

power x for small values), considerably smaller than the
naive result of 1/Mg̃1. Moreover, at larger x ' 1, the
amplitude is not scaling with x. This is due to the light-
est gaugino eigenstate becoming increasingly the adjoint
fermion, which does not couple to quarks and squarks.

(ii) ũ

⇤
L, ũL

The dominant contribution to this diagram is produc-
tion via an s-channel gluon. In Fig. 4b we see a nearly
unvarying cross section as we increase x as shown by the
the blue line. Since the sub-dominant t-channel gluino
diagram is negligible, we find that the cross section val-
ues nearly coincides with the pure Majorana case.

(iii) ũ

⇤
L, ũ

⇤
L

The physical principles are the same as (i), hence the
similar trends observed in Fig. 4c. However, the cross
section values are much smaller since the PDF e↵ects of
anti-up quarks cause to suppress this mode.

(iv) ũL, ũR

The amplitude, and hence the cross section, turns out
to be numerically the same for the cases of pure Majorana
and pure Dirac gluinos. This is reflected in Fig. 4d, where
the blue and red curves intersect at x = 0. As x is
increased to 1, however, the cross section decreases to
roughly 1/13 of the cross section of the pure Majorana
case. The reasons for this decline are given in App. A,
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FIG. 4: cross sections of the various unique modes that constitute up squark production when M

0
m is set to zero.

The blue curves show these as a function x = Mm/Md, while the dashed red horizontal lines denote the
corresponding cross section for the case of a pure Majorana gluino of the same mass as Mg̃1. Here the squark mass

Mũ is 1200 GeV and the mass of the lighter gluino eigenstate Mg̃1 is 5 TeV.

separately.

2. Individual modes

Let us now consider primarily the gluino t-channel
pair-production of squarks with quarks in the initial
state. A Feynman diagram depicting this channel is
shown in Fig. 9. No arrows and labels are shown, which
allows us to keep the discussion as generic as possible at
this point. Let us first divide pair production into six
distinct possibilities:

(i) q̃L, q̃L or q̃R, q̃R

(ii) q̃

⇤
L, q̃L or q̃

⇤
R, q̃R

(iii) q̃

⇤
L, q̃

⇤
L or q̃

⇤
Rq̃

⇤
R

(iv) q̃L, q̃R

(v) q̃L, q̃

⇤
R or q̃R, q̃

⇤
L

(vi) q̃

⇤
L, q̃

⇤
R

In Fig. 4, we illustrate the physics behind each of these
modes with a single flavor: up squarks. Here the squark
mass is taken as 1200 GeV and the absolute mass of the
lighter gluino eigenstate (|Mg̃1| = 5 TeV while the heavier
eigenmass, Mg̃2, is varied. These are illustrative values,
to gain intuition for the e↵ects of varying x = Mm/Md

on the cross sections of the individual modes. In this
section, we state the results obtained, leaving the detailed
behavior of the analytic expressions of certain amplitudes
to App. A.

(i) ũL, ũL

The cross section increases from zero and saturates
at a value far below the Majorana cross section as x =
Mm/Md is increased, as shown in Fig. 4a. The amplitude
is written in App. A, where we find that it is suppressed
by p

2
/M

3
g̃1 (times a function of x that becomes just one

power x for small values), considerably smaller than the
naive result of 1/Mg̃1. Moreover, at larger x ' 1, the
amplitude is not scaling with x. This is due to the light-
est gaugino eigenstate becoming increasingly the adjoint
fermion, which does not couple to quarks and squarks.

(ii) ũ

⇤
L, ũL

The dominant contribution to this diagram is produc-
tion via an s-channel gluon. In Fig. 4b we see a nearly
unvarying cross section as we increase x as shown by the
the blue line. Since the sub-dominant t-channel gluino
diagram is negligible, we find that the cross section val-
ues nearly coincides with the pure Majorana case.

(iii) ũ

⇤
L, ũ

⇤
L

The physical principles are the same as (i), hence the
similar trends observed in Fig. 4c. However, the cross
section values are much smaller since the PDF e↵ects of
anti-up quarks cause to suppress this mode.

(iv) ũL, ũR

The amplitude, and hence the cross section, turns out
to be numerically the same for the cases of pure Majorana
and pure Dirac gluinos. This is reflected in Fig. 4d, where
the blue and red curves intersect at x = 0. As x is
increased to 1, however, the cross section decreases to
roughly 1/13 of the cross section of the pure Majorana
case. The reasons for this decline are given in App. A,
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ũR

it in terms of Mg̃1 and x = M

0
m/Md, we obtain

=
x(x +

p
x

2 + 4)

2Mg̃1
+

p

2
x(x2 + 2)(

p
x

2 + 4 � x)3

8M

3
g̃1

+ O(p4/M4
g̃1) (A3)

Clearly all of these expressions vanish in the Dirac limit,
x ! 0. The key di↵erence is how quickly each expression
turns on, and its asymptotic form as x gets large (by
which we mean near 1). For example, at small x, Case I
scales as p

2
x/M

3
g̃1 whereas Case II and III scale as x/Mg̃1.

This illustrates that Case I is further suppressed as the
Majorana mass Mm is turned on. As a second example,
when x = 1, Case I becomes �p

2
/M

3
g̃1, Case II becomes

�1/(2Mg̃1), and Case III becomes (1 � p
5)/(2Mg̃1).

We have checked the the functional form of the squared
amplitudes agrees well with our results shown in
Figs. 4a, 6a and 8a. Finally, we can recover the heavy
pure Majorana case (the MSSM) where c

2
✓ = 1 and

Mg̃1 = 0, Mg̃2 = 5000 GeV. In this case, the amplitude
becomes Mg̃2/(p2 + M

2
g̃2) where g̃2 is interpreted as the

Majorana gluino. This is obviously suppressed by just
one power of the gluino mass, giving a large cross section
as indicated by the dashed red line in Figs. 4a, 6a and 8a.
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where u

†
R denotes an incoming right-handed up squark.

For |p| ⌧ Mg̃, this amplitude is suppressed by 1/M

2. In
Case I (M 0
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to leading order in p
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and in Case III (Mm = 0), writing in terms of x =
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FIG. 15: Feynman diagrams for the process pp ! ũLd̃L

in MSSM and models with both Dirac and Majorana
gaugino masses.

These analytic expressions agree well with our results
shown in Figs. 4d, 6d, and 8d.

We observe in Fig. 4d that the cross sections for x = 0
and for the pure Majorana gluino are identical in this
mode. This is because in the pure Dirac case, s

2
✓ = c

2
✓ =

0.5 and Mg̃2 = Mg̃1 = M (say), rendering the co-e�cient
of the spinors in the amplitude p ·�↵�̇/(p2 +M

2), and in

the pure Majorana limit, c

2
✓ = 1 and we once again have

p · �↵�̇/(p2 + M

2) in the amplitude.
By inspecting the expressions in Eqs. A1, A2, A3 and

comparing with their ũLũR counterparts, one can also
see that (i) in Case I, ũLũL never catches up with ũLũR

as x goes from 0 to 1, (ii) in Case II, it catches up at
about x = 0.2, and (iii) in Case III, it catches up at a
very small value of x. This is reflected in Figs. 4, 6 and
8 and hence in the respective contour plots.

Appendix B: “Dirac” Charginos

In this section we discuss the changes to expect in the
process pp ! ũLd̃L (and its equivalents for other gen-
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completely negligible due to the kinematic suppression.
Squark–anti-squark production can proceed at tree-level
through gg, qq̄ ! q̃Lq̃⇤L, q̃Rq̃⇤R, while the t-channel Dirac
gluino exchange diagrams are suppressed by a factor
1/M2

3 . There are also mixed-handedness production pro-
cesses pp ! q̃Lq̃R, q̃⇤Lq̃⇤R through t-channel gluino ex-
change, but again suppressed by 1/M2

3 in the ampli-
tude. The contribution of these Dirac gluino exchange
diagrams with M3 = 5 TeV are at the level of a few per-
cent – far smaller than the NLO QCD corrections – and
thus negligible. The remaining tree-level unsuppressed
Feynman diagrams that contribute to squark production
are shown in Fig. 2. We emphasize that all of these sub-
processes require sea quarks or gluons to initiate at the
LHC.

The MSSM also contains the same-handedness pro-
cesses pp ! q̃Lq̃L, q̃Rq̃R through t-channel Majorana
gluino exchange, leading to contributions suppressed by
just one power of the gluino mass, 1/M̃3. These pro-
cesses, as well as the mixed-handedness ones (pp !
q̃Lq̃R, q̃⇤Lq̃⇤R) are initiated by two valence quarks, and
can lead to a large fraction of the total pp ! (colored
superpartner) cross section. In the SSSM, the same-
handedness processes are simply absent (no chirality-
flipping Majorana mass) while the mixed-handedness
processes are more suppressed by 1/M2

3 instead of 1/M̃3.
This means the cross section for squark production in the
SSSM can thus be smaller by a factor of 3 or more even
when comparing the SSSM (M3 = 5 TeV) against the
“heavy MSSM” simplified model (M̃3 = 5 TeV). Also,
the di↵erence between the SSSM and the MSSM grows
as the squark mass increases, because the final state re-
quires more energy, and thus higher partonic x, where
valence quark distributions dominate over gluons or sea
quark distributions.

D. Electroweak inos

The SSSM, by definition, does not include the e↵ects of
the Higgsinos or electroweak gauginos. For general elec-
troweakino masses, there are two potential e↵ects on our
results: squark cross sections could change due to virtual
Higgsino or electroweak gaugino exchange; squark decay
chains could change due to cascades through Higgsinos
or electroweak gauginos.

Higgsino exchange contributions to first and second
generation squark production is negligible, due to the
small Yukawa couplings. Electroweak gaugino exchange
is suppressed by the smaller electroweak couplings, and
thus not relevant unless the electroweak gauginos are sig-
nificantly lighter than the squarks. We thus do not expect
that our squark production cross section calculations to
be significantly a↵ected by the Higgsino and electroweak
gaugino spectrum.

Moreover, while the masses of the electroweak gaug-
inos are model-dependent, a supersoft supersymmetric
model would predict the electroweak gauginos to be

q̃�
L,R

q̃L,R

q̃�
L,R

q̃L,R

q̃�
L,R

q̃L,R

FIG. 2. The dominant tree level Feynman diagrams for squark
production at the LHC in the SSSM. Dirac gluino t-channel
exchange diagrams (not shown) are suppressed by 1/M2

3 and
thus negligible. In the MSSM, by contrast, Majorana gluino
exchange is suppressed by 1/M̃3, and thus relevant even when
M̃3 is large, as shown in Fig. 3.

' 4⇡/g heavier than sleptons. Imposing the LEP II
bound on slepton masses implies the electroweak gaugi-
nos are generically heavier than the masses of the squarks
we consider in this paper. Thus, squark cascade decay
through electroweak gauginos is kinematically forbidden
in supersoft models, and thus we do not need to consider
it further.

Higgsinos, however, may be lighter than both the
squarks and the electroweak gauginos. Naturalness – ob-
taining the right electroweak symmetry breaking vacuum
without significant tuning – certainly favors lighter Hig-
gsinos. Squark cascade decay through Higgsinos would
lead to changes in the energies of the decay products, as
well as the potential addition of charged leptons or neu-
trinos in the final state. Detailed simulation of these cases
is highly model-dependent. Nevertheless, the jets plus
missing energy bounds on models with lighter Higgsi-
nos could be substantially weaker if the average hadronic
activity is reduced. On the other hand, the bounds
from other supersymmetric searches could be substan-
tially stronger if the squark cascade through Higgsinos
results in hard leptons or photons. We note however
that searches more specific to models with Majorana
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ũL

ũ⇤
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FIG. 8: cross sections of the various unique modes that constitute up squark production when Mm is set to zero.
The blue curves show these as a function x = Mm/Md, while the dashed red horizontal lines denote the

corresponding cross section for the case of a pure Majorana gluino of the same mass as Mg̃1. Here the squark mass
Mũ is 1200 GeV and the mass of the lighter gluino eigenstate Mg̃1 is 5 TeV.
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FIG. 9: General Feynman diagrams (without arrows)
for t-channel gluino-mediated squark production. The

solid lines (initial state) may be labelled with all
combinations from the quark fields qL, q

†
L, qR, q

†
R, and

the dashed lines (final state) with the corresponding
squark fields q̃L, q̃

⇤
L, q̃R, q̃
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R.

crease as x = Mm/Md was increased, we now notice that
it first decreases and then increases, a trend particularly
pronounced for Mq̃ = 800 GeV and 1200 GeV, as seen
in Figs. 5c-5f. This feature can again by understood in
terms of the individual subprocesses, which are given in
the plots of Figs. 6.

In Case I, we saw that the trend-setter for the total
cross section was the production mode q̃Lq̃R, which de-
creased by an order of magnitude as x was varied from
0 to 1. Even though the modes (q̃Lq̃L, q̃Rq̃R, q̃Lq̃

⇤
R) in-

creased in the same range, their values never caught up
with the opposite-handed squark pair production. This
is not the situation here. Figs. 6a and 6e show that al-
though the same-handed modes begin at zero cross sec-
tion, they overtake opposite-handed modes at around
x = 0.2, bolstering the total production.

D. Case III: Mm = 0, x

0 = M

0
m/Md

Lastly, we consider the scenario Mm = 0, M

0
m .

Md. In this Case, the simplified expressions for the
masses in Eqs. (13)-(14) carry over here with the replace-
ment Mm $ M

0
m, while the mixing angle is cos ✓g̃ =p

Mg̃1/(Mg̃1 + Mg̃2). This means that the relevant mix-
ing angle ranges are switched, with cos ✓g̃ varying from
1/

p
2 to 0.53 and sin ✓g̃ from 1/

p
2 to 0.85 as x

0 =
M

0
m/Md is varied from 0 to 1. Hence the lighter eigen-

state is more of the gluino, and the heavier eigenstate
more of the adjoint fermion. If x

0 were to be taken to
infinity, cos ✓g̃ ! 0 and the heavier eigenstate decouples,
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FIG. 8: cross sections of the various unique modes that constitute up squark production when Mm is set to zero.
The blue curves show these as a function x = Mm/Md, while the dashed red horizontal lines denote the

corresponding cross section for the case of a pure Majorana gluino of the same mass as Mg̃1. Here the squark mass
Mũ is 1200 GeV and the mass of the lighter gluino eigenstate Mg̃1 is 5 TeV.
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R, and
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crease as x = Mm/Md was increased, we now notice that
it first decreases and then increases, a trend particularly
pronounced for Mq̃ = 800 GeV and 1200 GeV, as seen
in Figs. 5c-5f. This feature can again by understood in
terms of the individual subprocesses, which are given in
the plots of Figs. 6.

In Case I, we saw that the trend-setter for the total
cross section was the production mode q̃Lq̃R, which de-
creased by an order of magnitude as x was varied from
0 to 1. Even though the modes (q̃Lq̃L, q̃Rq̃R, q̃Lq̃

⇤
R) in-

creased in the same range, their values never caught up
with the opposite-handed squark pair production. This
is not the situation here. Figs. 6a and 6e show that al-
though the same-handed modes begin at zero cross sec-
tion, they overtake opposite-handed modes at around
x = 0.2, bolstering the total production.

D. Case III: Mm = 0, x

0 = M

0
m/Md

Lastly, we consider the scenario Mm = 0, M

0
m .

Md. In this Case, the simplified expressions for the
masses in Eqs. (13)-(14) carry over here with the replace-
ment Mm $ M

0
m, while the mixing angle is cos ✓g̃ =p

Mg̃1/(Mg̃1 + Mg̃2). This means that the relevant mix-
ing angle ranges are switched, with cos ✓g̃ varying from
1/

p
2 to 0.53 and sin ✓g̃ from 1/

p
2 to 0.85 as x

0 =
M

0
m/Md is varied from 0 to 1. Hence the lighter eigen-

state is more of the gluino, and the heavier eigenstate
more of the adjoint fermion. If x

0 were to be taken to
infinity, cos ✓g̃ ! 0 and the heavier eigenstate decouples,
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it in terms of Mg̃1 and x = M

0
m/Md, we obtain

=
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+ O(p4/M4
g̃1) (A3)

Clearly all of these expressions vanish in the Dirac limit,
x ! 0. The key di↵erence is how quickly each expression
turns on, and its asymptotic form as x gets large (by
which we mean near 1). For example, at small x, Case I
scales as p

2
x/M

3
g̃1 whereas Case II and III scale as x/Mg̃1.

This illustrates that Case I is further suppressed as the
Majorana mass Mm is turned on. As a second example,
when x = 1, Case I becomes �p

2
/M

3
g̃1, Case II becomes

�1/(2Mg̃1), and Case III becomes (1 � p
5)/(2Mg̃1).

We have checked the the functional form of the squared
amplitudes agrees well with our results shown in
Figs. 4a, 6a and 8a. Finally, we can recover the heavy
pure Majorana case (the MSSM) where c

2
✓ = 1 and

Mg̃1 = 0, Mg̃2 = 5000 GeV. In this case, the amplitude
becomes Mg̃2/(p2 + M

2
g̃2) where g̃2 is interpreted as the

Majorana gluino. This is obviously suppressed by just
one power of the gluino mass, giving a large cross section
as indicated by the dashed red line in Figs. 4a, 6a and 8a.

(b) ũLũR

The amplitude for this subprocess is
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where u

†
R denotes an incoming right-handed up squark.

For |p| ⌧ Mg̃, this amplitude is suppressed by 1/M

2. In
Case I (M 0

m = 0), using Eq. (9), expanding the amplitude
to leading order in p

2
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g̃ , and then writing it in terms

of Mg̃1 and x = Mm/Md, we obtain
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and in Case II (Mm = M
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m), writing in terms of x =
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and in Case III (Mm = 0), writing in terms of x =
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FIG. 15: Feynman diagrams for the process pp ! ũLd̃L

in MSSM and models with both Dirac and Majorana
gaugino masses.

These analytic expressions agree well with our results
shown in Figs. 4d, 6d, and 8d.

We observe in Fig. 4d that the cross sections for x = 0
and for the pure Majorana gluino are identical in this
mode. This is because in the pure Dirac case, s

2
✓ = c

2
✓ =

0.5 and Mg̃2 = Mg̃1 = M (say), rendering the co-e�cient
of the spinors in the amplitude p ·�↵�̇/(p2 +M

2), and in

the pure Majorana limit, c

2
✓ = 1 and we once again have

p · �↵�̇/(p2 + M

2) in the amplitude.
By inspecting the expressions in Eqs. A1, A2, A3 and

comparing with their ũLũR counterparts, one can also
see that (i) in Case I, ũLũL never catches up with ũLũR

as x goes from 0 to 1, (ii) in Case II, it catches up at
about x = 0.2, and (iii) in Case III, it catches up at a
very small value of x. This is reflected in Figs. 4, 6 and
8 and hence in the respective contour plots.

Appendix B: “Dirac” Charginos

In this section we discuss the changes to expect in the
process pp ! ũLd̃L (and its equivalents for other gen-
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it in terms of Mg̃1 and x = M
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m/Md, we obtain
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Clearly all of these expressions vanish in the Dirac limit,
x ! 0. The key di↵erence is how quickly each expression
turns on, and its asymptotic form as x gets large (by
which we mean near 1). For example, at small x, Case I
scales as p

2
x/M

3
g̃1 whereas Case II and III scale as x/Mg̃1.

This illustrates that Case I is further suppressed as the
Majorana mass Mm is turned on. As a second example,
when x = 1, Case I becomes �p

2
/M

3
g̃1, Case II becomes

�1/(2Mg̃1), and Case III becomes (1 � p
5)/(2Mg̃1).

We have checked the the functional form of the squared
amplitudes agrees well with our results shown in
Figs. 4a, 6a and 8a. Finally, we can recover the heavy
pure Majorana case (the MSSM) where c

2
✓ = 1 and

Mg̃1 = 0, Mg̃2 = 5000 GeV. In this case, the amplitude
becomes Mg̃2/(p2 + M

2
g̃2) where g̃2 is interpreted as the

Majorana gluino. This is obviously suppressed by just
one power of the gluino mass, giving a large cross section
as indicated by the dashed red line in Figs. 4a, 6a and 8a.
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The amplitude for this subprocess is
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where u

†
R denotes an incoming right-handed up squark.

For |p| ⌧ Mg̃, this amplitude is suppressed by 1/M

2. In
Case I (M 0

m = 0), using Eq. (9), expanding the amplitude
to leading order in p
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g̃ , and then writing it in terms
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and in Case II (Mm = M
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and in Case III (Mm = 0), writing in terms of x =
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FIG. 15: Feynman diagrams for the process pp ! ũLd̃L

in MSSM and models with both Dirac and Majorana
gaugino masses.

These analytic expressions agree well with our results
shown in Figs. 4d, 6d, and 8d.

We observe in Fig. 4d that the cross sections for x = 0
and for the pure Majorana gluino are identical in this
mode. This is because in the pure Dirac case, s

2
✓ = c

2
✓ =

0.5 and Mg̃2 = Mg̃1 = M (say), rendering the co-e�cient
of the spinors in the amplitude p ·�↵�̇/(p2 +M

2), and in

the pure Majorana limit, c

2
✓ = 1 and we once again have

p · �↵�̇/(p2 + M

2) in the amplitude.
By inspecting the expressions in Eqs. A1, A2, A3 and

comparing with their ũLũR counterparts, one can also
see that (i) in Case I, ũLũL never catches up with ũLũR

as x goes from 0 to 1, (ii) in Case II, it catches up at
about x = 0.2, and (iii) in Case III, it catches up at a
very small value of x. This is reflected in Figs. 4, 6 and
8 and hence in the respective contour plots.

Appendix B: “Dirac” Charginos

In this section we discuss the changes to expect in the
process pp ! ũLd̃L (and its equivalents for other gen-
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Case 3:  Squark sub-processes

Example:  M(g1) = 5 TeV; m(sq) = 1200 GeV
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Lũ
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0.0 0.2 0.4 0.6 0.8 1.010-11
10-9
10-7
10-5
0.001

x' = Mm'êMd

s
HpbL

(e) ũLũ
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FIG. 8: cross sections of the various unique modes that constitute up squark production when Mm is set to zero.
The blue curves show these as a function x = Mm/Md, while the dashed red horizontal lines denote the

corresponding cross section for the case of a pure Majorana gluino of the same mass as Mg̃1. Here the squark mass
Mũ is 1200 GeV and the mass of the lighter gluino eigenstate Mg̃1 is 5 TeV.

g2

+

g1

FIG. 9: General Feynman diagrams (without arrows)
for t-channel gluino-mediated squark production. The

solid lines (initial state) may be labelled with all
combinations from the quark fields qL, q

†
L, qR, q

†
R, and

the dashed lines (final state) with the corresponding
squark fields q̃L, q̃

⇤
L, q̃R, q̃

⇤
R.

crease as x = Mm/Md was increased, we now notice that
it first decreases and then increases, a trend particularly
pronounced for Mq̃ = 800 GeV and 1200 GeV, as seen
in Figs. 5c-5f. This feature can again by understood in
terms of the individual subprocesses, which are given in
the plots of Figs. 6.

In Case I, we saw that the trend-setter for the total
cross section was the production mode q̃Lq̃R, which de-
creased by an order of magnitude as x was varied from
0 to 1. Even though the modes (q̃Lq̃L, q̃Rq̃R, q̃Lq̃

⇤
R) in-

creased in the same range, their values never caught up
with the opposite-handed squark pair production. This
is not the situation here. Figs. 6a and 6e show that al-
though the same-handed modes begin at zero cross sec-
tion, they overtake opposite-handed modes at around
x = 0.2, bolstering the total production.

D. Case III: Mm = 0, x

0 = M

0
m/Md

Lastly, we consider the scenario Mm = 0, M

0
m .

Md. In this Case, the simplified expressions for the
masses in Eqs. (13)-(14) carry over here with the replace-
ment Mm $ M

0
m, while the mixing angle is cos ✓g̃ =p

Mg̃1/(Mg̃1 + Mg̃2). This means that the relevant mix-
ing angle ranges are switched, with cos ✓g̃ varying from
1/

p
2 to 0.53 and sin ✓g̃ from 1/

p
2 to 0.85 as x

0 =
M

0
m/Md is varied from 0 to 1. Hence the lighter eigen-

state is more of the gluino, and the heavier eigenstate
more of the adjoint fermion. If x

0 were to be taken to
infinity, cos ✓g̃ ! 0 and the heavier eigenstate decouples,
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it in terms of Mg̃1 and x = M

0
m/Md, we obtain

=
x(x +

p
x

2 + 4)

2Mg̃1
+

p

2
x(x2 + 2)(

p
x

2 + 4 � x)3

8M

3
g̃1

+ O(p4/M4
g̃1) (A3)

Clearly all of these expressions vanish in the Dirac limit,
x ! 0. The key di↵erence is how quickly each expression
turns on, and its asymptotic form as x gets large (by
which we mean near 1). For example, at small x, Case I
scales as p

2
x/M

3
g̃1 whereas Case II and III scale as x/Mg̃1.

This illustrates that Case I is further suppressed as the
Majorana mass Mm is turned on. As a second example,
when x = 1, Case I becomes �p

2
/M

3
g̃1, Case II becomes

�1/(2Mg̃1), and Case III becomes (1 � p
5)/(2Mg̃1).

We have checked the the functional form of the squared
amplitudes agrees well with our results shown in
Figs. 4a, 6a and 8a. Finally, we can recover the heavy
pure Majorana case (the MSSM) where c

2
✓ = 1 and

Mg̃1 = 0, Mg̃2 = 5000 GeV. In this case, the amplitude
becomes Mg̃2/(p2 + M

2
g̃2) where g̃2 is interpreted as the

Majorana gluino. This is obviously suppressed by just
one power of the gluino mass, giving a large cross section
as indicated by the dashed red line in Figs. 4a, 6a and 8a.

(b) ũLũR

The amplitude for this subprocess is

�iT
g

2
CF

= u

↵
L
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2 + M

2
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+ s

2
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p · �↵�̇
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2
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!
(u†

R)�̇

(A4)
where u

†
R denotes an incoming right-handed up squark.

For |p| ⌧ Mg̃, this amplitude is suppressed by 1/M

2. In
Case I (M 0

m = 0), using Eq. (9), expanding the amplitude
to leading order in p

2
/M

2
g̃ , and then writing it in terms

of Mg̃1 and x = Mm/Md, we obtain
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2
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2
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+
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2
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2
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+ O(p2/M2
g̃1) (A5)

and in Case II (Mm = M

0
m), writing in terms of x =

Mm/Md = M

0
m/Md we obtain
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and in Case III (Mm = 0), writing in terms of x =
M

0
m/Md we obtain
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FIG. 15: Feynman diagrams for the process pp ! ũLd̃L

in MSSM and models with both Dirac and Majorana
gaugino masses.

These analytic expressions agree well with our results
shown in Figs. 4d, 6d, and 8d.

We observe in Fig. 4d that the cross sections for x = 0
and for the pure Majorana gluino are identical in this
mode. This is because in the pure Dirac case, s

2
✓ = c

2
✓ =

0.5 and Mg̃2 = Mg̃1 = M (say), rendering the co-e�cient
of the spinors in the amplitude p ·�↵�̇/(p2 +M

2), and in

the pure Majorana limit, c

2
✓ = 1 and we once again have

p · �↵�̇/(p2 + M

2) in the amplitude.
By inspecting the expressions in Eqs. A1, A2, A3 and

comparing with their ũLũR counterparts, one can also
see that (i) in Case I, ũLũL never catches up with ũLũR

as x goes from 0 to 1, (ii) in Case II, it catches up at
about x = 0.2, and (iii) in Case III, it catches up at a
very small value of x. This is reflected in Figs. 4, 6 and
8 and hence in the respective contour plots.

Appendix B: “Dirac” Charginos

In this section we discuss the changes to expect in the
process pp ! ũLd̃L (and its equivalents for other gen-
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Not all Majorana masses are created equal!
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FIG. 2: The method we employ for adding Majorana masses Mm, M

0
m to the supersoft Dirac mass Md of a gaugino.

The lower eigenmass Mg̃1 is kept constant as Mm/Md or M

0
m/Md is varied.

400, 800 and 1200 GeV.
There are several interesting features shown in Fig. 3.

Holding the lightest gluino eigenmass constant, we see
that the squark production cross section decreases as a
Majorana mass Mm is introduced. This we explore in
detail below. Next, we see distinctly di↵erent rates of
variation in the cross sections across the three plots. At
Mq̃ = 1200 GeV (Fig. 3f) the cross section falls by an
order of magnitude as Mg̃1 goes from 1 to 4 TeV, after
which it is roughly constant, whereas for squark masses
400 GeV (Fig. 3b) and 800 GeV (Fig. 3d) we find much
less variation: the cross section drops by a factor of a few
as Mg̃1 is increased from 1 to 2 TeV, and then asymp-
totes to a fixed value. The larger variation is present be-
cause, as we saw earlier, for larger squark masses, the s-
channel squark—anti-squark cross section becomes more
competitive with the t-channel gluino exchange induced
squark-squark production processes. It is this competi-
tion between the two leading modes for gluino masses
below ⇠ 4 TeV that results in the larger rate of variation
of the cross section in that region in Fig. 3f. The domi-
nation of squark-antisquark production for gluino masses
above 4 TeV results in the constancy of the cross section
observed in the right end of the plot.

We now turn our attention to the plots on the left,
depicting contours of the ratios of the corresponding
cross sections on the right to those of a pure Majorana
gluino with a mass the same as Mg̃1. To understand
the features of these plots, we will have to consider the
competition between three di↵erent modes: squark–anti-
squark production, same-handed squark pair production
and opposite-handed squark pair production. Two dis-
tinctive features seen here are (i) at a low squark mass of
400 GeV, the ratio increases as we move horizontally to
the right, as shown in Fig. 3a, (ii) at higher squark masses
of 800 and 1200 GeV, the ratio first decreases and then
increases as we move in the horizontal direction, with the
local minimum shifting to the right as Mq̃ is increased,
as shown in Figs. 3c and 3e.

The first feature is a result of the same mechanism

that results in the lack of variation in Fig. 3b. The
squark–anti-squark production dominates over squark-
squark production for a large range of gluino masses at
Mq̃ = 400 GeV, and as Mg̃1 is increased, this domina-
tion increases for both a Majorana and a mixed gluino
(with the domination in the Majorana case weaker) as
we saw earlier in Fig. 1a. Hence we observe a uniform
increase in the ratio, seen to approach unity. The sec-
ond feature can be understood in terms of Figs. 1b and
1c. In Fig. 1b, for instance, we notice that near the left
extreme (Mg̃1 ⇠ 1 TeV), the Majorana cross section is
dominated by squark pair production and the Dirac cross
section gets nearly equal contributions from both squark–
anti-squark and squark pair production. Near the right
extreme (Mg̃1 ⇠ 5 TeV), the dominant mode of Majo-
rana cross section has fallen and the total cross section
has near-equal contributions from both modes, while the
Dirac cross section, dominated strongly by squark–anti-
squark production, is now comparable to either mode of
the Majorana case. At either extreme, the total Dirac
cross section is able to catch up to an extent with the to-
tal Majorana cross section, for di↵erent reasons. In the
intermediary mass range, however, the Dirac cross sec-
tion, dominated by only squark–anti-squark production,
is much smaller than the Majorana case. This argument
can be extended to mixed gluinos as well, and hence the
local minimum observed in Fig. 3c. The above discussion
applies also to Fig. 3e, except that, as seen in Fig. 1c, the
Dirac cross section catches up with the Majorana at even
higher gluino masses. This results in the rightward shift
compared to the Mq̃ = 800 GeV case in the local mini-
mum.

If we now move vertically anywhere in Fig. 3f, or for
gluino masses below 2 TeV in Figs. 3b,3d, we observe a
drop in cross section. We notice the same for the contours
of the ratios of cross sections, ie., Figs. 3a, 3c and 3e.
This may seem counter to what we would expect when
increasing the Majorana content of the model. The rea-
sons for the diminishment would become clear were we
to investigate the physics of each individual subprocess
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FIG. 2: The method we employ for adding Majorana masses Mm, M

0
m to the supersoft Dirac mass Md of a gaugino.

The lower eigenmass Mg̃1 is kept constant as Mm/Md or M

0
m/Md is varied.

400, 800 and 1200 GeV.
There are several interesting features shown in Fig. 3.

Holding the lightest gluino eigenmass constant, we see
that the squark production cross section decreases as a
Majorana mass Mm is introduced. This we explore in
detail below. Next, we see distinctly di↵erent rates of
variation in the cross sections across the three plots. At
Mq̃ = 1200 GeV (Fig. 3f) the cross section falls by an
order of magnitude as Mg̃1 goes from 1 to 4 TeV, after
which it is roughly constant, whereas for squark masses
400 GeV (Fig. 3b) and 800 GeV (Fig. 3d) we find much
less variation: the cross section drops by a factor of a few
as Mg̃1 is increased from 1 to 2 TeV, and then asymp-
totes to a fixed value. The larger variation is present be-
cause, as we saw earlier, for larger squark masses, the s-
channel squark—anti-squark cross section becomes more
competitive with the t-channel gluino exchange induced
squark-squark production processes. It is this competi-
tion between the two leading modes for gluino masses
below ⇠ 4 TeV that results in the larger rate of variation
of the cross section in that region in Fig. 3f. The domi-
nation of squark-antisquark production for gluino masses
above 4 TeV results in the constancy of the cross section
observed in the right end of the plot.

We now turn our attention to the plots on the left,
depicting contours of the ratios of the corresponding
cross sections on the right to those of a pure Majorana
gluino with a mass the same as Mg̃1. To understand
the features of these plots, we will have to consider the
competition between three di↵erent modes: squark–anti-
squark production, same-handed squark pair production
and opposite-handed squark pair production. Two dis-
tinctive features seen here are (i) at a low squark mass of
400 GeV, the ratio increases as we move horizontally to
the right, as shown in Fig. 3a, (ii) at higher squark masses
of 800 and 1200 GeV, the ratio first decreases and then
increases as we move in the horizontal direction, with the
local minimum shifting to the right as Mq̃ is increased,
as shown in Figs. 3c and 3e.

The first feature is a result of the same mechanism

that results in the lack of variation in Fig. 3b. The
squark–anti-squark production dominates over squark-
squark production for a large range of gluino masses at
Mq̃ = 400 GeV, and as Mg̃1 is increased, this domina-
tion increases for both a Majorana and a mixed gluino
(with the domination in the Majorana case weaker) as
we saw earlier in Fig. 1a. Hence we observe a uniform
increase in the ratio, seen to approach unity. The sec-
ond feature can be understood in terms of Figs. 1b and
1c. In Fig. 1b, for instance, we notice that near the left
extreme (Mg̃1 ⇠ 1 TeV), the Majorana cross section is
dominated by squark pair production and the Dirac cross
section gets nearly equal contributions from both squark–
anti-squark and squark pair production. Near the right
extreme (Mg̃1 ⇠ 5 TeV), the dominant mode of Majo-
rana cross section has fallen and the total cross section
has near-equal contributions from both modes, while the
Dirac cross section, dominated strongly by squark–anti-
squark production, is now comparable to either mode of
the Majorana case. At either extreme, the total Dirac
cross section is able to catch up to an extent with the to-
tal Majorana cross section, for di↵erent reasons. In the
intermediary mass range, however, the Dirac cross sec-
tion, dominated by only squark–anti-squark production,
is much smaller than the Majorana case. This argument
can be extended to mixed gluinos as well, and hence the
local minimum observed in Fig. 3c. The above discussion
applies also to Fig. 3e, except that, as seen in Fig. 1c, the
Dirac cross section catches up with the Majorana at even
higher gluino masses. This results in the rightward shift
compared to the Mq̃ = 800 GeV case in the local mini-
mum.

If we now move vertically anywhere in Fig. 3f, or for
gluino masses below 2 TeV in Figs. 3b,3d, we observe a
drop in cross section. We notice the same for the contours
of the ratios of cross sections, ie., Figs. 3a, 3c and 3e.
This may seem counter to what we would expect when
increasing the Majorana content of the model. The rea-
sons for the diminishment would become clear were we
to investigate the physics of each individual subprocess
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(a) Mq̃ = 400 GeV: ratios
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(b) Mq̃ = 400 GeV: cross sections
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(c) Mq̃ = 800 GeV: ratios

0.16

0.14

0.12

0.1 0.12

0.14

0.16

0.18

0.2

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Mg1è HTeVL

x=
M
m
êM

d

(d) Mq̃ = 800 GeV: cross sections
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(e) Mq̃ = 1200 GeV: ratios
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(f) Mq̃ = 1200 GeV: cross sections
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FIG. 3: LEFT: Contours of the ratio of the total production cross section of the first two generations of squarks at
LHC with

p
s = 8 TeV in our model to the cross sections in MSSM. RIGHT: Contours of the cross sections

themselves, in pb, at LHC with
p

s = 8 TeV. In these plots, we show the variation as the lightest gaugino mass
(Mg̃1) is varied simultaneous with varying the relative size of the Mm and Md, parameterized by x = Mm/Md. The

details of the critical features are explained in the text.
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Case 1 Case 3
Contours of σ(mixed)/σ(Majorana) 

for 1st,2nd squark production at LHC (8 TeV) with m(sq) = 800 GeV
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(b) Mq̃ = 400 GeV: cross sections

1.8

2

2.2

2.4
2.6

2.8

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Mg1è HTeVL

x'=
M
m
'êM

d

(c) Mq̃ = 800 GeV: ratios
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(d) Mq̃ = 800 GeV: cross sections
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(e) Mq̃ = 1200 GeV: ratios
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(f) Mq̃ = 1200 GeV: cross sections
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FIG. 7: LEFT: Contours of the ratio of the total production cross section of the first two generations of squarks at
LHC with

p
s = 8 TeV in our model to the cross sections in MSSM. RIGHT: Contours of the cross sections

themselves, in pb, at LHC with
p

s = 8 TeV. We show the variation as the lightest gaugino mass (Mg̃1) is varied
simultaneous with varying M

0
m and Md, parameterized by x

0 = M

0
m/Md. The critical features are explained in the

text.
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FIG. 14: Constraints set by the b-jet search on the
parameter space of our model. Since Fig. 13 indicates

that the bound is set at Mq̃ ⇡ 800 GeV at an exclusion
cross section ⇡ 0.03 pb, we have included the contour of
that value for that squark mass. All three scenarios we
have considered are shown, and the space to the left of

the contour is excluded in each scenario.

searches that were based on final states with /

ET and 0,
1, 2, 3, or � 4 b-jets at

p
s = 8 TeV and L = 11.7/fb [7].

In all these analyses the LSP is taken to be massless.

The limits obtained are Mq̃ � 775 GeV for a Dirac-
gluino-only scenario and Mq̃ � 825 GeV when both the
electroweakinos are at their MEI values. We get these
limits by checking where the CMS exclusion cross sec-
tions intersect the cross sections predicted by our mod-
els, as plotted in Fig. 13. It deserves to be mentioned
that the bound for a pure Dirac gluino case di↵ers from
that found by the CMS collaboration (Mq̃ � 800 GeV)
by a small margin. As a general comment we would like
to mention that such numerical di↵erences in the bounds
of simplified models, particularly when a comparison is
made in a plot spanning four orders of magnitude (like
Fig. 13), are an inevitable consequence of the nature of
the CMS exclusion plots. The method of reading o↵ cross
sections from color gradients makes it necessarily di�cult
to pinpoint the values with great accuracy.

The pure Dirac gluino bound also enables us to set con-
straints on the parameter space of mixed gluinos. Since
the exclusion cross section at Mq̃ = 800 GeV is ⇠ 0.03 pb,
we can overlay the contours of di↵erent mixed gluino sce-
narios corresponding to that cross section. Fig. 14 shows
this superimposition, and for each scenario the parameter
space to the left of the corresponding contour is excluded.

VI. DISCUSSION

- mixed gluino summary
- mixing with electroweakino summary
- simplified model proposal?
-
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Appendix A: Individual modes

Here we describe the analytic behavior of the indi-
vidual subprocesses ũLũL and ũLũR that are critical in
understanding the results of Sec. III.

(a) ũLũL

This amplitude takes the form

�iT
g

2
CF

=

 
c

2
✓g̃

Mg̃2

p

2 + M

2
g̃2

+ s

2
✓g̃

�Mg̃1

p

2 + M

2
g̃1

!
uLuL

where CF (= 4/3) is the appropriate Casimir invariant,
uL is a 2-component spinor denoting an incoming left-
handed up quark with spinor indices suppressed, and the
second term on the RHS has a minus sign since the mass
of g̃1 is the negative of Mg̃1.

In Case I (M 0
m = 0), using the expressions for the mix-

ing angle in Eq. (9), expanding the amplitude to leading
order in p

2
/M

2
g̃ , and then writing it in terms of Mg̃1 and

x = Mm/Md, we obtain
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⌘3

+ O(p4/M4
g̃1) (A1)

In Case II (Mm = M

0
m), the mixing angle is fixed c

2
✓g̃

=

1/2. Expanding the amplitude to leading order in p

2
/M

2
g̃ ,

and then writing it in terms of Mg̃1 and x = Mm/Md =
M

0
m/Md, we obtain

= � x

Mg̃1(x + 1)
+

p

2
x

3 + 3x

M

3
g̃1(x + 1)3

+ O(p4/M4
g̃1) (A2)

In Case III (Mm = 0), again using Eq. (9), expanding the
amplitude to leading order in p

2
/M

2
g̃ , and then writing
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Summary

*  Heavy Dirac Gluino in “supersoft”, “R-symmetric” naturally
   suppresses colored sparticle production substantially

*  Bounds on 1st,2nd generation squarks up to about 800-840 GeV 
    with current ATLAS & CMS data; now systematics dominanted

*  Best search in 2012 was αT (Mar 2012); 
    -->  optimizing over range of HT crucial

*  Very high mass searches 
       (e.g. ATLAS Meff > 1400-1900 GeV)
    not effective at constraining lighter squarks 

*  Majorana masses do not substantially change conclusions;
   --> Majorana mass for gluino further suppresses σ(squark)
   --> Majorana mass for adj fermion leads to 
             σ(Dirac)  < σ(Mm’ ≠ 0)  <  σ(Majorana)


