Induced EWSB and SUSY Naturalness

Markus Luty UC Davis

A. Azatov, J. Galloway, ML 1106.3346, 1106.4815
J. Galloway, ML, Y. Tsai, Y. Zhao 1306.6354

Introduction

$m_{h}=125 \mathrm{GeV}$, SM-like couplings ($\pm 10 \%$)
Good for SUSY?
MSSM: tree-level: $\lambda_{h} \sim g \Rightarrow m_{h}<m_{Z}$

$$
\text { loops: } \begin{aligned}
& \Delta \lambda_{h} \sim y_{t}^{4} \ln m_{\tilde{t}} \\
& \Delta m_{h}^{2} \sim y_{t}^{2} m_{\tilde{t}}^{2} \Rightarrow \text { tuned }
\end{aligned}
$$

NMSSM, non-decoupling D terms, fat Higgs,. . .

- Tension with unification
- ‘Natural’ only for special parameters

Look for robust natural solution

Induced EWSB

'Auxiliary' Higgs sector with large quartic, no Yukawa couplings
$v^{2}=v_{u}^{2}+v_{d}^{2}+f^{2}=(246 \mathrm{GeV})^{2}$
$f \simeq 150 \mathrm{GeV} \Rightarrow \sqrt{v_{u}^{2}+v_{d}^{2}} \simeq 195 \mathrm{GeV}$

Superconformal Technicolor

N. Arkani-Hamed

Superconformal Technicolor

It’s back!

Superconformal Technicolor

SUSY breaking triggers confinement, EWSB in strong superconformal sector

- S reduced because 'pions' massive
- $\Delta T>0$ from $H_{u} \mathcal{O}_{d} \neq H_{d} \mathcal{O}_{u}$

Superconformal Technicolor

Simplified Perturbative Model

$V=m_{H}^{2}|H|^{2}+m_{\Sigma}^{2}|\Sigma|^{2}-\kappa^{2}\left(\Sigma^{\dagger} H+\right.$ h.c. $)+\lambda_{\Sigma}|\Sigma|^{4}$
$\langle H\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{h}} \quad\langle\Sigma\rangle=\frac{1}{\sqrt{2}}\binom{0}{f}$
Lightest CP-even mass eigenstate $=125 \mathrm{GeV}$
$\Rightarrow 2$ parameters $\left(f, \lambda_{\Sigma}\right)$

Decoupling Limit

Induced Tadpole

$\lambda_{\Sigma} \rightarrow \infty \Rightarrow m_{\Sigma}^{2} \rightarrow-\infty$
$\kappa^{2} \sim$ constant $\Rightarrow H, \Sigma$ decoupled
$f^{2}=\frac{m_{\Sigma}^{2}}{\lambda_{\Sigma}}=$ fixed $\quad m_{2}^{2}=2 \lambda_{\Sigma} f^{2} \rightarrow+\infty$
$V_{\text {eff }}=\frac{1}{2} m_{H}^{2} h_{1}^{2}-\kappa^{2} f h_{1}+\cdots$
$v_{h}=\frac{\kappa^{2} f^{2}}{m_{H}}$

$$
m_{1}^{2}=m_{H}^{2}
$$

Higher orders in κ^{2} suppressed by $\frac{\kappa^{2} h}{\lambda_{\Sigma} f^{2}} \sim \frac{m_{1}^{2}}{m_{2}^{2}} \frac{v_{h}^{2}}{f^{2}}$
Higgs quartic (cubic) can be small!

D-Term Models

$\Sigma_{u, d}=$ EW doublets
$\Phi, \tilde{\Phi}=$ EW singlets
Charged under new gauge group $G_{S} \Rightarrow \lambda_{\Sigma} \sim g_{S}^{2}$ Effective theory (induced tadpole): $\langle\Phi\rangle,\langle\tilde{\Phi}\rangle \sim u$

Unification \& Precision EW

Similar to non-decoupling D-term models, but more 'modular'
$\Phi, \Sigma \in$ complete $S U(5)$ multiplets \Rightarrow unification

Precision electroweak:
$\langle\Sigma\rangle$ mixes G_{S} and $S U(2)_{w}$
\Rightarrow tree-level ΔT
$\Rightarrow u \gtrsim 2 \mathrm{TeV}$
Also protects unification...

Tuning

$f, v \sim \frac{u}{10} \Rightarrow$ little hierarchy

Tree level: $\Delta m_{\Sigma}^{2} \sim g_{S}^{2}\left(u^{2}-\tilde{u}^{2}\right)$

$$
u=\langle\Phi\rangle, \tilde{u}=\langle\tilde{\Phi}\rangle
$$

$$
\Rightarrow u \simeq \tilde{u} \text { (D-flat direction) }
$$

Higgs Phenomenology

$\lambda_{h}<\frac{1}{2} \lambda_{\text {SM }}$ in most of parameter space

The Model

$S U(2)_{S} \times S U(5)_{S M}$
$\left(\Sigma_{u}, T\right) \sim(2,5)$
$\left(\Sigma_{d}, \tilde{T}\right) \sim(2, \overline{5})$ $\Phi, \tilde{\Phi} \sim(2,1)$
$\beta\left(g_{s}\right)=2$ loop

$\Rightarrow g_{s}$ naturally large at weak scale?

UV Completion

All $S U(2)_{s}$ charged fields in $S U(5)$ multiplets
\Rightarrow simple UV completion of g_{s} Landau pole
$S U(3)_{s}$ with 7 flavors
(Extra Higgs field to break $S U(3)_{S} \rightarrow S U(2)_{S}$)
Has strong IR stable fixed point Broken at scale $\lesssim 10^{3} \mathrm{TeV}$
$\Rightarrow g_{s} \gtrsim 2.3, f \lesssim 165 \mathrm{GeV}$
Or top compositeness...

F-Term Models

$W=\lambda_{s} S \Sigma_{u} \Sigma_{d}$

Phenomenology

- Auxiliary Higgs must mix with MSSM Higgs
\Rightarrow can't hide!
- Higgs cubic highly suppressed in most of parameter space
- Naturalness motivates light stop, Higgsino, gluino

Conclusions

- Induced EWSB gives a robust solution to Higgs naturalness in SUSY
- Will be tested at LHC14

Backup

"Sister Higgs"

$$
\begin{aligned}
& W=\lambda \Phi \Sigma H \\
& \Rightarrow \Delta V=|\lambda|^{2}[\underbrace{|\Sigma H|^{2}}_{\text {good }}+\underbrace{|\Phi|^{2}\left(|\Sigma|^{2}+|H|^{2}\right)}_{\text {bad }}]
\end{aligned}
$$

