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Outline

® Motivation and introduction
® The need for NNLO QCD
® N-jettiness as a subtraction scheme

e Jet phenomenology at NNLO: W+jet, Z+jet, H+jet at the
LHC; comparison with LHC data

® Summary
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What 1s our precision goal for
LHC Run II?



What 1s our precision goal for
LHC Run II?

This 1s set by the experimental accuracy. Consider a few examples.



Higgs production
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W/Z+1jet

* They provide stringent tests on the SM, as they are measured
with small errors over a large energy range. Important for
improving PDFs, and detector calibration as well.
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Ht Distribution

e An other example: Hr, 1t 1s the scalar sum of the transverse momenta of all
reconstructed jets, and 1s called St by ATLAS.
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e St distributions in W+ and Z+j exhibit mixed agreement with theoretical
predictions. NLO QCD predictions and exclusive sum approach undershoot the
data 1in the highest-St region. Some parton shower simulations overshoot the high-

St data and others don’t. ,
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Ht Distribution

NLO QCD and parton showers

are not always enough to explain
data, need to go beyond
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Ingredients for NNLO Calculations

® Need the following ingredients for NNLO cross sections
\'AY% RV RR

* IR singularities cancel in the sum of\real and virtual corrections and
mass factorization counterterms but only after phase space integratjon for

real radiations

e Virtual corrections have explicit IR polesy whereas real corrections \have
implicit IR poles that need to be extracted.
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Ingredients for NNLO Calculations

® Need the following ingredients for NNLO cross sections

e IR singularities cancel in the sum of real and virtual corrections and
mass factorization counterterms but only after phase space integration for
real radiations.

e Virtual corrections have explicit IR poles, whereas real corrections have
implicit IR poles that need to be extracted.

e A generic procedure to extract IR singularities from RR and RV was
unknown when jets 1n the final state are involved, until very recently.

. 1
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Techniques for NNLO

e Numerous proposed techniques for handling singularities at NNLO,
which can be divided into two distinct categories:

;, (quasi-)Local: add and subtract counterterms § ', Resummation-assisted: leverage knowledge %
§ that approximate real-emission matrix 3 § of analytic resummation to remove double-
¢ elements 1n all singular limits { & real emission singularities.

eSector dGCOInpOSitiOIl: Anastasiou, Melnikov, Petriello; Binoth, Heinrich
e Antennae subtraction: Kosower; Gehrmann, Gehrmann-de Ridder, Glover
L.ocal: eSector-improved residue subraction: Czakon; RB, Melnikov, Petriello
eColortul subtraction: Del Duca, Somogyi, Trocsanyi
eProjection-to-Born: Cacciari, Dreyer, Karlberg, Salam, Zanderighi

RG_ eqr-subtraction: Catani, Grazzini
eN-jettiness subtraction: RB, Focke, Liu, Petriello; Gaunt, Stahlhofen,

N SlSted Tackmann, Walsh

: 11
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Techniques for NNLO
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RG_ eqr-subtraction: Catani, Grazzini
eN-jettiness subtraction: RB, Focke, Liu, Petriello; Gaunt, Stahlhofen,

aSSISted Tackmann, Walsh
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N-jettiness

e N-jettiness, Tn, 1S an event-shape variable designed to veto final-
state jets Stewart, Tackmann, Waalewijn 0910.0467

r ()1)

T = min; 4k
> & \

N=number of final-state jets

All final-state part
Momenta of the two beams Nal-State partons

and the final-state jets Measure of the jet
hardness (we take Qi=2E))

N j eks < TN

> wore than N jekbs
svwall \

large

Small N-jettiness vetoes events with more than N-jets
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N-jettiness

e N-jettiness, Tn, 1S an event-shape variable designed to veto final-
state jets Stewart, Tackmann, Waalewijn 0910.0467

( ()1)

/7'} — EA: min; / (2.1 \

N=number of final-state jets

All final-
Momenta of the two beams inal-state partons

and the final-state jets Measure of the jet
hardness (we take Qi=2E))

Tn=0: all radiation 1s either soft, or
collinear to a beam/jet; at NNLO, gives
the double-unresolved limiat.

: 14
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N-jettiness

e N-jettiness, Tn, 1S an event-shape variable designed to veto final-
state jets Stewart, Tackmann, Waalewijn 0910.0467

/TN ) zk:mmz //9 pcéz \

N=number of final-state jets

All final-state partons

Momenta of the two beams
and the final-state jets Measure of the jet

hardness (we take Qi=2E))

w~>0: at least one additional radiation 1s
resolved; have N+1 final-state jets.

. 1
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N-jettiness

e N-jettiness, Tn, 1S an event-shape variable designed to veto final-
state jets Stewart, Tackmann, Waalewijn 0910.0467

(20 - qr |
Tn = min;
> V& \

N=number of final-state jets

All final-state part
Momenta of the two beams Ihal-state partons

and the final-state jets Measure of the jet
hardness (we take Qi=2E))

This 1s the resolution parameter
we are looking for!

. 1
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N-jettiness subtraction

e N-jettiness can be applied to obtain exact NNLO cross sections
RB, Focke, Liu, Petriello 1504.02131

e Introduce ™~ that separates the tn=0 doubly-unresolved limit of
phase space from the single-unresolved and hard regions

onnLo(Tn < T]\Crut) ~onnNrol(Tn > Tﬁut)

contribution from all double contribution from everything else,
unresolved singularities, with at least N+1 hard radiations
including double soft, triple present in the final state

collinear, soft-collinear, etc

: 17
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N-jettiness subtraction

e For tn>tne, at least one of the two additional radiations that appear at
NNLO 1s resolved; this region of phase space contains the NLO correction
to the N+1 jet process. Can be obtained from any NLO program.

e For tn<tn®™, both additional radiations are unresolved. A factorization

theorem giving the all-orders result for small N-jettiness was derived
Stewart, Tackmann, Waalew1yn 0910.0467

o(tTn <7T3¢) = [HRBR®B®S® {ngn}_|_

™" must be much smaller than any hard scale in the process
and any experimental cuts in order to suppress power
corrections. Final result must be independent of T

: 18
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WHet@NNLO: validation

e A powerful check of the N-jettiness subtraction formalism 1s the
independence of the final result from Tn°™.

e The above-cut and below cut contributions separately depend on In®(Tne™),

where n ranges from 1 to 4 at NNLO. This dependence must cancel when
the two regions are summed.

W (= lv)+1j@ NNLO, 8 TeV

QCD(>T™)
e CMS cuts: p17>30 GeV, mj|<2.4 O T S P |
* CT10 PDFs, po=Mw, vary by
factor of 2 to estimate error S| : _
b : g g
e NLO prediction using N- ° Ot' __________________________ . !
jettiness agrees with known | '
results. Y e S S
e Sum of above-cut and below- 4l
cut contributions stable to better 3 0,05 [
thaIl O 1% Of Ototal % .
4 , , .
OI(?]€39 O.I07 O.IO8 O.IlO
Radja Boughezal, ANL

T, [GeV]  NNLO Jet Phenomenology



/+1et@NNLO: validation

e How do the power corrections 1in % look like for the Z+j process?

e Factorization theorem
behaves as expected, the
power corrections are
important at high t°%

R.B., Campbell, Ellis, Focke, Giele, Liu, Petriello, 2016
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/ZH1et@NNLO: validation

e How do the power corrections 1in % look like for the Z+j process?

R.B., Campbell, Ellis, Focke, Giele, Liu, Petriello, 2016
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e Factorization theorem
behaves as expected, the
power corrections are
important at high t°%

e Power corrections are not
just linear, they contain
logarithms of T"/Q

e There 1s a region where we
have no dependence on the
power corrections. This 1s
the region where the
prediction is taken from
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/ZH1et@NNLO: validation

e How do the power corrections 1in % look like for the Z+j process?

R.B., Campbell, Ellis, Focke, Giele, Liu, Petriello, 2016
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H+jet@NNLO: validation

e The production of the Higgs at high-pt will provide an important probe of
BSM physics in Run 11

* Need improvement on two fronts: / Our focus

i O(as?) correction in the m—oo limit ~ §

¢ suppressed operators

R.B., Focke, Giele, Liu, Petriello 1505.03893

Harlander, Neumann, Ozeren 1206.0157; . . . . .
Dawson, Lewis, Zeng 1409.6299 10| e e e - gg;’;(jr)) :
| | —e QCD+SC1ET.
S
e p1>30 GeV, ny|<2.4, R=0.5 =
s
e NNPDF PDFs, po=Mms, vary by | : _ _ _
factor of 2 to estimate error 5 | e s e s
e Perfect stability with respect to L | | |
varying T P —
E 0.2 pr oo ceecs AU J
B 0 100 B S SR S
Oé)g O.I06 O.I07 0.68 0.I10
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H+jet@NNLO: validation

e An additional check 1s possible 1n this case. The dominant qg and gg
scattering channels were also computed using the sector-improved residue

subtraction technique

R.B., Caola, Melnikov, Petriello, Schulze 1504.07922

- NNPDF2.3, 8 TeV

NNLO ——

LO

40

60 80 100 1

20 140 1
po|GeV]
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240

-+ 8000
NLO —— |

7000

6000
5000
4000

3000

e Agreement between the
two calculations at the per-
mille level

e Effect of missing qq
channels 1n the sector-
improved calculation at the

1-2% level

e Reduced scale dependence
at NNLO; preference for
smaller scales

Important validation of NNLO calculational technology!

Radja Boughezal, ANL

24

NNLO Jet Phenomenology



H+jet@NNLO: validation

* Good perturbative behavior and smaller uncertainties
for all differential distributions (pru, pTj, Y;)

e Corrections 1n inclusive ¢ are 20% for for u = mu and
4% for for 1 = mpu/2.

: 2
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Comparison to data

: 2
Radja Boughezal, ANL © NNLO Jet Phenomeno logy



W/Z+1et Processes

® During LHC Run I, ATLAS and CMS probed jet momenta in
W/Z+j up to 1TeV. These results were compared for 7 TeV with a
wide range of QCD predictions: merged tree level + parton
shower, NLO+parton shower, etc. Many distributions had mixed
agreement between the data and the available theory predictions.

e In all the comparisons shown next we do the following:

% Use CT14NNLO PDFs for NNLO results, CT14NLO for NLO results
* Vary muF and muR independently

* A correction factor for non-perturbative effects for prjand yj1s
accounted for for ATLAS (no correction factor was provided by CMS)

* A correction factor for QED FSR 1s included for Ptjand y; for ATLAS
(no correction factor was provided by CMS)

: 27
Radja Boughezal, ANL NNLO Jet Phenomenology



Fiducial Cross Sections For Inclusive W+

RB, Liu, Petriello 1602.05612

e For CMS cuts NNLO corrections lead W-boson cuts | ATLAS [10] CMS [11]

to better agreement between the
prediction and the measurement.

e For ATLAS cuts NNLO result 1s

lepton pr pfr > 25 GeV pfr > 25 GeV
lepton n n'| < 2.5 ' < 2.1
missing By | EM > 25 GeV —

slightly below the measured value, but
within the 1-6 experimental error.

transverse mass| mp > 40 GeV |mp > 50 GeV

jet pr p% > 30 GeV p% > 30 GeV

e NNLO result decreases the residual
scale dependence from +5% at NLO to
+1% at NNLO.

jet n’| < 4.4 n!| < 2.4
anti-k7 radius R=04 R =0.5

: 2
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The Ht Distribution

e Hr is the scalar sum of the transverse momenta of all reconstructed jets, and 1s

called St by ATLAS.
RB, Liu, Petriello 1602.05612
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e While NLO QCD results undershoot the ATLAS and CMS data for most of the
Ht/St range, NNLO QCD corrections lead to a much better description of data

over the entire range.

e NNLO correction 1n the 1-jet bin plays an important role in describing Hr,

: 2
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Leading Jet Transverse Momentum

7 TeV ATLAS W
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e Good agreement between theory and ATLAS data, with theory slightly
undershooting the data. Scale variation error 1s smaller than the experimental

errors throughout the entire studied range.

e Both NLO and NNLO corrections are systematically higher than the CMS
data. Similar discrepancies between merged leading-order plus parton-shower

and CMS data were observed.
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Leading Jet Rapidity Distributions

0 7 TeV CMS W 100 | 1 TeV ATLAS W |
<] NLO 250 71 NLO
B \NNLO |/ s B NNLO |
Jézoo T
=~ 1504
2 5
LI S 100} |
£ <
50 q:‘:i:
50 ' %0 0.5 1'0 1.5 2.0 2.5 3.0
0.0 0.5 1.0 1.5 2.0 : .
1.20 . '
g S I
S L0 Co p YT 3
S }'88' """"""" TR R I LT S S Ex
A i 0 G 0 B e e o i ; S
S 090 e Lo =
0.8 Tl T
0.80
0.0 0.5

e Good agreement between the NNLO prediction and ATLAS data over the
entire range.

e For CMS, theory predictions agree well with data at central rapidities, but
differ slightly at high rapidities.

: 31
Radja Boughezal, ANL NNLO Jet Phenomenology



Fiducial Cross Sections For Inclusive Z+j

RB, Liu, Petriello 1602.05612

* NNLO theory predictions are 1n good
agreement with both ATLAS and
CMS fiducial cross sections, within
the experimental errors.

e NNLO result decreases the residual
scale dependence from +5% at NLO
to below +£1% at NNLO.

Radja Boughezal, ANL

Z-boson cuts

ATLAS [12]

CMS [13]

lepton pp

lepton n

plr > 20 GeV
n'| < 2.5

Pk > 20 GeV
n'| < 2.4

lepton separation

lepton invariant mass

ARy > 0.2
66 GeV < my; < 116 GeV

71 GeV < my < 111 GeV

jet pr
jet n

anti-kr radius

32

p% > 30 GeV

In’| < 4.4
R =04

p% > 30 GeV
In’| < 2.4
R =05
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The Ht Distribution

RB, Liu, Petriello 1602.05612

7 TeV CMS Z | o 7 TeV ATLAS Z

[<1 NLO

po = \/Mg, +) (pr')?

1 0'5 I Il Il Il Il Il Il Il
100 200 300 400 500 600 700

)
T

=

b\ B
I I

theory/data
() (] () [S— [—

~
T

e While NLO QCD results significantly underestimate the cross section at
intermediate and high HT, the ATLAS and CMS data for the entire Ht/St

range are well described with the NNLO QCD corrections.

Radja Boughezal, ANL 33 NNLO Jet Phenomenology



The Ht Distribution

RB, Liu, Petriello 1602.05612
7| TeV CMS Z
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NNLO does a better job 1n

describing the shape and the
normalization of this distribution
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Leading Jet Transverse Momentum

" TTeVCMSZ | | N 7 TeV ATLAS Z
E ] NLO | ] NLO |
L 10%F BN NNLO | BN NNLO |
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3 107
S
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—_ 102

a
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e Excellent agreement of NNLO results with CMS data over the entire Prj; range.

e The NNLO prediction is systematically slightly lower than the ATLAS data,
lying right outside the experimental 1o error bars.
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Leading Jet Rapidity Distributions

40 7 TeV CMS Z 40 7 TeV ATLAS Z
l | NLO 35% <] NLO }
35T ) BN NNLO ] = B NNLO
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£ T . Fe
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5 20 | S
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e Good agreement between the NNLO prediction and ATLAS data over the entire

range, with a slight undershoot consistent with the behavior seen in the fiducial
Cross section.

e Theory prediction 1s consistent with CMS data within the 16 experimental errors,
where both NLO and NNLO results show a slight shape difference. Similar small
discrepancies are seen when comparing CMS data to POWHEG and MADGRAPH.
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The Pt of the Reconstructed Z

RB, Liu, Petriello 1602.05612

7TeV ATLAS Z

[<] NLO

do/

theory/data

e Good agreement between the measured prz by ATLAS and the NNLO QCD
predictions over the entire range, with a slight undershoot consistent with the

offset observed 1n the fiducial cross section.

. /
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The Pt of the Reconstructed Z

RB, Liu, Petriello 1602.05612
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NNLO predictions provide a significant improvement
over NLO results 1n describing the W/Z+jet data.

Good agreement with almost all the distributions.
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W+13: CMS 13 TeV comparison
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e Both NNLO and MG5 aMC+PY8/MG5+PY 6 describe data within uncertainties

e Uncertainties associated with merging and shower prescriptions lead to differences
between merged predictions. NNLO does not have these ambiguities.
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Z+17: CMS 13 TeV comparison

Fengwangdong Zhang @ DIS16
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» Good agreement with multileg NLO and NNLO calculations
> The pr , n, Hr of jet for inclusive jet multiplicities up to 3 jets have also been measured

O Hr is the scalar sum of the p+ of jets N . _ I
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NNLO predictions provide as good

(or better) agreement as merged +
matched parton shower predictions
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Conclusions

e We have entered the era of percent-level jet phenomenology

e The N-jettiness subtraction scheme 1s a powerful method 1n
predicting NNLO cross sections for jet production processes

e NNLO QCD corrections to V+jet are at the percent level;
comparing these results with 7 and 13 TeV LHC data shows an
overall good agreement over several orders of magnitude 1n cross
section and energy. Electroweak corrections should also be
accounted for in the future.

e For some observables, such as the Ht distribution, the NNLO
QCD corrections are essential for resolving existing
discrepancies between various theory predictions and data.
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