Next-to-eikonal/soft corrections in QCD

Stress-testing the Standard Model at the LHC, KITP, Santa Barbara, May 2016

Eric Laenen

in collaboration with

Domenico Bonocore, Lorenzo Magnea, Stacey Melville,
Leonardo Vernazza, Chris White
[arXiv 1410.6406, arXiv:1503.05156]

The eikonal approximation in QED

Consider a charged particle emitting a soft photon

- Propagator: expand numerator \& denominator in soft momentum, keep lowest order
- Vertex: expand in soft momentum, keep lowest order

Eikonal QED

Exact: $\quad \frac{1}{\left(p+K_{1}\right)^{2}}\left(2 p+K_{2}+K_{1}\right)^{\mu_{1}} \cdots \frac{1}{\left(p+K_{n}\right)^{2}}\left(2 p+K_{n}\right)^{\mu_{n}}, \quad K_{i}=\sum_{m=i}^{n} k_{m}$.

Approx: $\quad \frac{1}{2 p K_{1}} 2 p^{\mu_{1}} \cdots \frac{1}{2 p K_{n}} 2 p^{\mu_{n}}$
Eikonal $\quad \frac{1}{p \cdot\left(k_{1}+k_{2}\right) p \cdot k_{2}}+\frac{1}{p \cdot\left(k_{1}+k_{2}\right) p \cdot k_{1}}=\frac{1}{p \cdot k_{1} p \cdot k_{2}}$
$\begin{aligned} & \text { Sum over } \\ & \text { all perm's: }\end{aligned} \prod_{i} \frac{p^{\mu_{i}}}{p \cdot k_{i}}$.
Independent, uncorrelated emissions, Poisson process

Eikonal approximation: no dependence on emitter spin

+ Emitter spin becomes irrelevant in eikonal approximation
- Fermion

- Approximate, and use Dirac equation $\quad \not p u(p)=0 \quad$ Result same as scalar case

$$
g(M u(p)) \times \frac{p^{\mu}}{p \cdot k}
$$

No sign of emitter spin anymore
Coupling of photon proportional to p^{μ}

Eikonal exponentiation

* In the eikonal approximation, interesting patterns emerge

One loop vertex correction, in eikonal approximation

$$
\mathcal{A}_{0} \int d^{n} k \frac{1}{k^{2}} \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)}
$$

Two loop vertex correction, in eikonal approximation

$$
\mathcal{A}_{0} \frac{1}{2}\left(\int d^{n} k \frac{1}{k^{2}} \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)}\right)^{2}
$$

Exponential series!

Yennie, Frautschi, Suura

Exponentiation in QED from path integral

Textbook result

$$
\text { Sum of all diagrams } \left.=\exp (\text { Connected diagrams }) \quad f=e^{i \int d t\left(\frac{1}{2} \dot{x}^{2}+p \cdot A+. .\right.}\right)
$$

Can write scattering amplitude as nested path integral

$$
M\left(p_{1}, p_{2},\{k\}\right)=\int \mathcal{D} A_{s} \mathcal{D} x(t) H[x] f_{1}\left[A_{s}, x(t)\right] f_{2}\left[A_{s}, x(t)\right] e^{i S\left[A_{s}\right]}
$$

Eikonal vertices: sources for gauge bosons living on lines
$x(t)$: path of charged particle

Disconnected

Connected

Exponentiation in QCD from path integral

EL, Stavenga, White

+ Not immediately obvious how this could work:
- Source terms have non-abelian charges
- External line factors are path-ordered exponentials
+ Exponentation still works

- Proof uses replica trick from statistical physics

More than eikonal: resummation for quark form factor

+ Consider all corrections to the quark form factor

- a diagrammatic analysis shows that the sum factorizes into a product of functions:
\checkmark A soft function "S" (only IR/eikonal modes of loop momenta)
- 2 jets functions "J" (collinear modes)
- A hard functions "H" (off-shell, hard modes)
* These are also all the virtual diagrams for the Drell-Yan process
+ Factorization implies resummation

Factorization and resummation for Drell-Yan

$$
\sigma(N)=\Delta\left(N, \mu, \xi_{1}\right) \Delta\left(N, \mu, \xi_{2}\right) S\left(N, \mu, \xi_{1}, \xi_{2}\right) H(\mu)
$$

* Now with Mellin moment " N " dependence (i.e., with radiation)
+ Demand independence of
- renormalization scale μ
- gauge dependence parameters $\xi_{1,2}$

$$
0=\mu \frac{d}{d \mu} \sigma(N)=\xi_{1} \frac{d}{d \xi_{1}} \sigma(N)=\xi_{2} \frac{d}{d \xi_{2}} \sigma(N)
$$

- result: double logarithms in exponent

$$
\Delta=\exp \left[\int \frac{d \mu}{\mu} \int \frac{d \xi}{\xi} . .\right]
$$

Contopanagos, EL, Sterman Forte, Ridolfi

+ This can also be done through SCET

Generic large x (threshold) behavior

+ For Drell-Yan, DIS, Higgs, singular behavior in perturbation theory when $x \rightarrow 1$

$$
\delta(1-x) \quad\left[\frac{\ln ^{i}(1-x)}{1-x}\right]_{+} \quad \ln ^{i}(1-x)
$$

- plus distributions have been organized to all orders (="resummation"), also possible for $\ln (1-x)$?
+ After Mellin transform Constants $\quad \ln ^{i}(N) \quad \frac{\ln ^{k}(N)}{N}$
"Zurich" method of threshold expansion allows computation (for NNNLO Higgs production)
at least to $p=37$

$$
(1-x)^{p} \ln ^{q}(1-x)
$$

Anasthasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger

+ Leading NLP logs resum

$$
\exp \left[\int_{0}^{1} d z\left(z^{N-1}-1\right) \frac{1+z^{2}}{1-z} \int_{\mu_{F}}^{Q(1-z)} \cdots\right]
$$

Kraemer, EL, Spira; Catani, De Florian, Grazzini; Kilgore, Harlander

Extended Drell-Yan threshold resummation

Ansatz: modified resummed expression

$$
\begin{gathered}
\ln [\sigma(N)]=\mathcal{F}_{\mathrm{DY}}\left(\alpha_{s}\left(Q^{2}\right)\right)+\int_{0}^{1} d z z^{N-1}\left\{\frac{1}{1-z} D\left[\alpha_{s}\left(\frac{(1-z)^{2} Q^{2}}{z}\right)\right]\right. \\
\left.+2 \int_{Q^{2}}^{(1-z)^{2} Q^{2} / z} \frac{d q^{2}}{q^{2}} P_{s}\left[z, \alpha_{s}\left(q^{2}\right)\right]\right\}_{+} \\
P_{s}^{(n)}(z)=\frac{z}{1-z} A^{(n)}+C_{\gamma}^{(n)} \ln (1-z)+\bar{D}_{\gamma}^{(n)}
\end{gathered}
$$

where

$$
\sigma(N)=\sum_{n=0}^{\infty}\left(g^{2}\right)^{n}\left[\sum_{m=0}^{2 n} a_{n m} \ln ^{m} N+\sum_{m=0}^{2 n-1} b_{n m} \frac{\ln ^{m} N}{N}\right]+\mathcal{O}\left(N^{-2}\right)
$$

	C_{F}^{2}		$C_{A} C_{F}$		$n_{f} C_{F}$	
b_{23}	4	4	0	0	0	0
b_{22}	$\frac{7}{2}$	4	$\frac{11}{6}$	$\frac{11}{6}$	$-\frac{1}{3}$	$-\frac{1}{3}$
b_{21}	$8 \zeta_{2}-\frac{43}{4}$	$8 \zeta_{2}-11$	$-\zeta_{2}-\frac{239}{36}$	$-\zeta_{2}+\frac{133}{18}$	$-\frac{11}{9}$	$-\frac{11}{9}$
b_{20}	$-\frac{1}{2} \zeta_{2}-\frac{3}{4}$	$4 \zeta_{2}$	$-\frac{7}{4} \zeta_{3}+\frac{75}{216}$	$\frac{7}{4} \zeta_{3}+\frac{11}{3} \zeta_{2}-\frac{101}{54}$	$-\frac{19}{27}$	$-\frac{2}{3} \zeta_{2}+\frac{7}{27}$

Upshot: close, but no cigar..

Back to basics: next-to-eikonal expansion

* Keep 1 term more in k expansion beyond eikonal approximation

$$
\begin{aligned}
& \text { scalar : } \frac{2 p^{\mu}+k^{\mu}}{2 p \cdot k+k^{2}} \longrightarrow \frac{2 p^{\mu}}{2 p \cdot k}+\frac{k^{\mu}}{2 p \cdot k}-k^{2} \frac{2 p^{\mu}}{(2 p \cdot k)^{2}} \\
& \text { fermion : } \frac{\not p+\not k}{2 p \cdot k+k^{2}} \gamma^{\mu} u(p) \longrightarrow\left[\frac{2 p^{\mu}}{2 p \cdot k}+\frac{\not k \gamma^{\mu}}{2 p \cdot k}-k^{2} \frac{2 p^{\mu}}{(2 p \cdot k)^{2}}\right] u(p)
\end{aligned}
$$

- Now emitter-spin dependent, and has recoil, decorrelation not obvious
- Can we still make systematic statements (exponentiation, factorization) about next-toeikonal/soft corrections?

Inspiration: Low's theorem

- Eikonal: only emission from external lines. At next-to-eikonal/soft order, also 1 "internal" emission contributes

* Low's theorem (for scalars, generalization to spinors by Burnett-Kroll, to massless particles by Del Duca \rightarrow LBKD theorem)
\checkmark Work to order k, and use Ward identity

$$
\Gamma^{\mu}=\left[\frac{\left(2 p_{1}-k\right)^{\mu}}{-2 p_{1} \cdot k}+\frac{\left(2 p_{2}+k\right)}{2 p_{2} \cdot k}\right] \Gamma+\left[\frac{p_{1}^{\mu}\left(k \cdot p_{2}-k \cdot p_{1}\right)}{p_{1} \cdot k}+\frac{p_{2}^{\mu}\left(k \cdot p_{1}-k \cdot p_{2}\right)}{p_{2} \cdot k} \frac{\partial \Gamma}{\partial p_{1} \cdot p_{2}}\right.
$$

+ Non-emitting amplitude still determines the emission to NE accuracy,
- with a derivative
- no detailed knowledge of internals needed

Next-to-eikonal exponentiation via path integral

+ Fluctuations around classical path are NE corrections
- All NE corrections from external lines exponentiate

Keep track via scaling variable $\lambda \quad p^{\mu}=\lambda n^{\mu}$

$$
\begin{aligned}
& f(\infty)=\int_{x(0)=0} \mathcal{D} x \exp \left[i \int _ { 0 } ^ { \infty } d t \left(\frac{\lambda}{2} \dot{x}^{2}+(n+\dot{x}) \cdot A\left(x_{i}+n t+x\right)\right.\right. \\
+ & \left.\left.\frac{i}{2 \lambda} \partial \cdot A\left(x_{i}+p_{f} t+x\right)\right)\right]
\end{aligned}
$$

Use ID field theory to (re)derive NE Feynman rules

$$
\frac{k^{\mu}}{2 p \cdot k}-k^{2} \frac{p^{\mu}}{2(p \cdot k)^{2}}
$$

$$
+\frac{\eta^{\mu \nu}}{p \cdot(k+l)}
$$

$$
-\frac{l^{\mu} p^{\nu} p \cdot k+k^{\nu} p^{\mu} p \cdot l}{p \cdot(k+l) p \cdot k p \cdot l}
$$

Exponentiation for NE webs

- Result from 1D path integral is NE Wilson line

$$
\begin{aligned}
& \tilde{F}(\beta)=\exp \left[\int \frac{d^{d} k}{\left(2 \pi d^{d}\right.} \tilde{A}_{\mu}(k)\left(-\frac{\beta^{\mu}}{\beta \cdot k}+\frac{k^{\mu}}{2 \beta \cdot k}-k^{2} \frac{\beta^{\mu}}{2(\beta \cdot k)^{2}}-\frac{i k_{\nu} \Sigma^{\nu \mu}}{p \cdot k}\right)\right. \\
& \quad+\int \frac{d^{d} k}{(2 \pi)^{d}} \int \frac{d^{d} l}{(2 \pi)^{d}} \tilde{A}_{\mu}(k) \tilde{A}_{\nu}(l)\left(\frac{\eta^{\mu \nu}}{2 \beta \cdot(k+l)}-\frac{\beta^{\nu} l^{\mu} \beta \cdot k+\beta^{\mu} k^{\nu} \beta \cdot l}{2(\beta \cdot l)(\beta \cdot k)[\beta \cdot(k+l)]}\right. \\
& \left.\left.+\frac{(k \cdot l) \beta^{\mu} \beta^{\nu}}{2(\beta \cdot l)(\beta \cdot k)[\beta \cdot(k+l)]}-\frac{\Sigma^{\mu \nu}}{2 p \cdot k}\right)\right]
\end{aligned}
$$

+ Exponentation then in terms of NE Webs

$$
\sum C(D) \mathcal{F}(D)=\exp \left[\bar{C}(D) W_{\mathrm{E}}(D)+\bar{C}^{\prime}(D) W_{\mathrm{NE}}(D)\right]
$$

Next-to-eikonal webs

EL, Magnea, Stavenga, White

+ Similar to eikonal webs, with next-to-eikonal vertices
- Now spin-sensitive
- New 2-gluon correlations between eikonal webs
- But (NE) webs are not the only source of next-to-soft corrections. Also need corrections from
hard function
collinear loop momenta

Next-to-eikonal logarithms

Vernazza, Bonocore, EL, Magnea, Melville, White

+ Approach: understand NE corrections at amplitude level, then construct cross section
+ Use NNLO Drell-Yan as stressor to predict NE (=NLP) logs
- Leading power: known

$$
\log ^{3}(1-z)
$$

, Next-to-leading powers?

$$
\log ^{i}(1-z), \quad i=2,1,0
$$

Occur in double real emission, and one-real + one-virtual

NE logs in Drell-Yan : double real

Check NE Feynman rules for NNLO Drell-Yan RR emission ($\mathrm{CF}^{2}{ }^{2}$ only)

Result at NE level agrees with exact result

$$
\begin{aligned}
K_{\mathrm{NE}}^{(2)}(z)= & \left(\frac{\alpha_{s}}{4 \pi} C_{F}\right)^{2}\left[-\frac{32}{\epsilon^{3}} \mathcal{D}_{0}(z)+\frac{128}{\epsilon^{2}} \mathcal{D}_{1}(z)-\frac{128}{\epsilon^{2}} \log (1-z) \quad \mathcal{D}_{i}=\left[\frac{\log ^{i}(1-z)}{1-z}\right]_{+}\right. \\
& -\frac{256}{\epsilon} \mathcal{D}_{2}(z)+\frac{256}{\epsilon} \log ^{2}(1-z)-\frac{320}{\epsilon} \log (1-z) \\
& \left.+\frac{1024}{3} \mathcal{D}_{3}(z)-\frac{1024}{3} \log ^{3}(1-z)+640 \log ^{2}(1-z)\right]
\end{aligned}
$$

- Special 2-gluon correlation vertex gives zero

$$
R^{\mu \nu}\left(p ; k_{1}, k_{2}\right)=-\frac{\left(p \cdot k_{2}\right) p^{\mu} k_{1}^{\nu}+\left(p \cdot k_{1}\right) k_{2}^{\mu} p^{\nu}-\left(p \cdot k_{1}\right)\left(p \cdot k_{2}\right) g^{\mu \nu}-\left(k_{1} \cdot k_{2}\right) p^{\mu} p^{\nu}}{p \cdot\left(k_{1}+k_{2}\right)}
$$

(a)

(b)

NE logs in Drell-Yan: one real - one virtual

* We must also consider also 1-real plus 1 -virtual contributions

- More subtle: virtual momenta are not always (next-to)-soft. We follow two approaches:
- method of regions
- factorization

1 Real plus1Virtual, exact

+ Redid exact calculation, keeping only C^{2} terms
- only the full result was known in the literature
- result, up to constants (dropped higher powers of 1-z)

$$
\begin{gather*}
K_{1 \mathrm{r}, 1 \mathrm{v}}^{(1)}=\frac{32 \mathcal{D}_{0}-32}{\epsilon^{3}}+\frac{-64 \mathcal{D}_{1}+48 \mathcal{D}_{0}+64 L_{1}-96}{\epsilon^{2}}+\frac{64 \mathcal{D}_{2}-96 \mathcal{D}_{1}+128 \mathcal{D}_{0}-196-64 L_{1}^{2}+208 L_{1}}{\epsilon} \\
-\frac{128}{3} \mathcal{D}_{3}+96 \mathcal{D}_{2}-256 \mathcal{D}_{1}+256 \mathcal{D}_{0}+\frac{128}{3} L_{1}^{3}-232 L_{1}^{2}+412 L_{1}-408, \tag{4.12}\\
\mathcal{D}_{i}=\left[\frac{\log ^{i}(1-z)}{1-z}\right]_{+} L_{1}=\log (1-z)
\end{gather*}
$$

- "bare" results, no renormalization or factorization counterterms

Method of regions

* Method of region approach, extended to next power
- Should allow treatment of (next-to-)soft and (next-to-)collinear on equal footing
+ Instructions:
Beneke, Smirnov; Jantzen
- Divide up k_{1} (=loop-momentum) integral into hard, 2 collinear and a soft region, by appropiate scaling

Hard : $\quad k_{1} \sim \sqrt{\hat{s}}(1,1,1) ; \quad$ Soft $: \quad k_{1} \sim \sqrt{\hat{s}}\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$;
Collinear : $\quad k_{1} \sim \sqrt{\hat{s}}\left(1, \lambda, \lambda^{2}\right) ; \quad$ Anticollinear : $\quad k_{1} \sim \sqrt{\hat{s}}\left(\lambda^{2}, \lambda, 1\right)$.

- expand integrand in λ, to leading and next-to-leading order in each region
- but then integrate over all k_{1} anyway
- Treat emitted momentum as soft and incoming momenta as hard

$$
k_{2}^{\mu}=\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) \quad p^{\mu}=\frac{1}{2} \sqrt{s} n_{+}^{\mu} \quad \bar{p}^{\mu}=\frac{1}{2} \sqrt{s} n_{-}^{\mu}
$$

Collinear(+anti-collinear) region

+ Note: terms after loop integral

$$
\frac{\left(-2 p \cdot k_{2}\right)^{-\epsilon}}{\epsilon}, \quad \frac{\left(-2 \bar{p} \cdot k_{2}\right)^{-\epsilon}}{\epsilon}
$$

- When integrated over k_{2}, give the right $\log (1-\mathrm{z})$ terms
- expand in ϵ before expanding in k_{2} !
- illustrates again breakdown of original LBK theorem

Method of regions upshot

+ We find
- Hard region (expansion in λ^{2})
\checkmark reproduces already all plus-distributions, and some NLP logarithms
- Soft region (expansion in λ^{2})
\checkmark all integrals are scale-less, hence all zero in dimensional regularization
- (anti-)collinear regions (expansion in λ)
- only give NLP logarithms, once all diagrams in set are summed
+ Nice:
- the full $\left.K^{(1)}\right)_{1 r, 1 v}$ is reproduced, including constants $\rightarrow 4$ powers of NLP logs
+ Note: MoR diagnoses, but has no predictive power
+ For this, we need a factorization approach

Next-to-soft in SCET

+ Early SCET results beyond leading power in heavy-to-light currents
- need for multi-pole expansions for appropiate scaling
+ Analysis of LBKD theorem at one-loop level in SCET
- very general approach, has collinear splitting and collinear fusion terms

A factorization approach to next-to-soft logarithms

+ Can we predict the $\log (1-z) \log$ arithms?
- For both we need to factorize the cross section, as earlier
$\checkmark ~ H: ~ b o t h ~ t h e ~ h a r d ~ a n d ~ t h e ~ s o f t ~ f u n c t i o n ~$
- J: incoming jet functions
+ Now, let every blob radiate!
- Compute each new "blob + radiation", and put together

Del Duca, 1991

Factorization approach

+ Work at amplitude level ($\mathrm{C}_{\mathrm{F}}{ }^{2}$ terms)
- Emission can occur from either H or J's

$$
\mathcal{A}_{\mu} \epsilon^{\mu}(k)=\mathcal{A}_{\mu}^{J} \epsilon^{\mu}(k)+\mathcal{A}_{\mu}^{H} \epsilon^{\mu}(k)
$$

For emission from jet function, define radiative jet function

$$
J_{\mu}\left(p, n, k_{2}\right) u(p)=\langle 0| \int d^{d} y e^{-i\left(p+k_{2}\right) \cdot y} \Phi_{n}(y, \infty) \psi(y) j_{\mu}(0)|p\rangle
$$

Ward identities

* For emission from H , use Ward identity

$$
k^{\mu} \mathcal{A}_{\mu}=0 \quad k^{\mu} \mathcal{A}_{\mu}^{H}=-k^{\mu} \mathcal{A}_{\mu}^{J}
$$

* For the radiative jet function there is the separate Ward identity

$$
k^{\mu} J_{\mu}(\ldots, k, \epsilon)=q J(\ldots, \epsilon), \quad q= \pm 1
$$

- Then hard function emission current via derivative

$$
\mathcal{A}_{\mu}^{H}\left(p_{i}, k\right)=\sum_{i=1}^{2} q_{i}\left(\frac{\partial}{\partial p_{i}^{\mu}} H\left(p_{i} ; p_{j}, n_{j}\right)\right) \prod_{j=1}^{2} J\left(p_{j}, n_{j}\right)
$$

+ Split polarization sum of emitted gluon/photon using "K" (leading) and "G" (subleading) projectors

$$
\eta^{\mu \nu}=G^{\mu \nu}+K^{\mu \nu}, \quad K^{\mu \nu}(p ; k)=\frac{(2 p-k)^{\nu}}{2 p \cdot k-k^{2}} k^{\mu}
$$

Factorization, main formula

+ Upshot: a factorization formula for the emission amplitude ($\mathrm{C}_{\mathrm{F}}{ }^{2}$ terms)

$$
\begin{aligned}
\mathcal{A}^{\mu}\left(p_{j}, k\right) & =\sum_{i=1}^{2}\left[q_{i}\left(\frac{\left(2 p_{i}-k\right)^{\mu}}{2 p_{i} \cdot k-k^{2}}+G_{i}^{\nu \mu} \frac{\partial}{\partial p_{i}^{\nu}}\right) \mathcal{A}\left(p_{i} ; p_{j}\right)\right. \\
& \left.+\mathcal{H}\left(p_{j}, n_{j}\right) \overline{\mathcal{S}}\left(\beta_{j}, n_{j}\right) G_{i}^{\nu \mu}\left(J_{\nu}\left(p_{i}, k, n_{i}\right)-q_{i} \frac{\partial}{\partial p_{i}^{\nu}} J\left(p_{i}, n_{i}\right)\right) \prod_{j \neq i} J\left(p_{j}, n_{j}\right)\right]
\end{aligned}
$$

+ Remarks
- only process dependent terms are H and A
- J_{μ} is needed at one-loop level

+ We choose $n^{\mu}=p^{\mu}$, so $n^{2}=0$. In dimensional regularization we have then

$$
J\left(p_{i}, n_{i}\right)=1
$$

+ Simplification:

$$
\mathcal{A}^{\mu}\left(p_{j}, k\right)=\sum_{i=1}^{2}\left(q_{i} \frac{\left(2 p_{i}-k\right)^{\mu}}{2 p_{i} \cdot k-k^{2}}+q_{i} G_{i}^{\nu \mu} \frac{\partial}{\partial p_{i}^{\nu}}+G_{i}^{\nu \mu} J_{\nu}\left(p_{i}, k\right)\right) \mathcal{A}\left(p_{i} ; p_{j}\right)
$$

External and derivative contributions

- External: straightforward

$$
\begin{align*}
K_{\text {ext }}^{(2)}(z)=\left(\frac{\alpha_{s}}{4 \pi} C_{F}\right)^{2} & \left\{\frac{32}{\varepsilon^{3}}\left[\mathcal{D}_{0}(z)-1\right]+\frac{8}{\varepsilon^{2}}\left[-8 \mathcal{D}_{1}(z)+6 \mathcal{D}_{0}(z)+8 L(z)-14\right]\right. \\
& +\frac{16}{\varepsilon}\left[4 \mathcal{D}_{2}(z)-6 \mathcal{D}_{1}(z)+8 \mathcal{D}_{0}(z)-4 L^{2}(z)+14 L(z)-14\right] \\
& -\frac{128}{3} \mathcal{D}_{3}(z)+96 \mathcal{D}_{2}(z)-256 \mathcal{D}_{1}(z)+256 \mathcal{D}_{0}(z) \\
& \left.+\frac{128}{3} L^{3}(z)-224 L^{2}(z)+448 L(z)-512\right\} . \tag{5.62}
\end{align*}
$$

- Reproduces all LP logs (plus-distributions)
- Agrees with factorization of eikonal radiation, and NE Feynman rules
+ Not through effective Feynman rules, straightforward

$$
K_{\partial \mathcal{A}}^{(2)}(z)=\left(\frac{\alpha_{s}}{4 \pi} C_{F}\right)^{2}\left\{\frac{32}{\varepsilon^{2}}+\frac{16}{\varepsilon}[-4 L(z)+3]+64 L^{2}(z)-96 L(z)+128\right\} .
$$

+ Sum corresponds precisely to MoR hard region

Radiative jet function contribution

+ Formal definition

$$
J_{\mu}\left(p, n, k_{2}\right) u(p)=\langle 0| \int d^{d} y e^{-i\left(p+k_{2}\right) \cdot y} \Phi_{n}(y, \infty) \psi(y) j_{\mu}(0)|p\rangle
$$

+ Diagrams:

(a)

(b)

(c)

(d)

(e)

(f)

Radiative jet function contribution

+ At one-loop

$$
\begin{array}{r}
J^{\nu(1)}(p, n, k ; \epsilon)=(2 p \cdot k)^{-\epsilon}\left[\left(\frac{2}{\epsilon}+4+8 \epsilon\right)\left(\frac{n \cdot k}{p \cdot k} \frac{p^{\nu}}{p \cdot n}-\frac{n^{\nu}}{p \cdot n}\right)-(1+2 \epsilon) \frac{\mathrm{i} k_{\alpha} \Sigma^{\alpha \nu}}{p \cdot k}\right. \\
\left.+\left(\frac{1}{\epsilon}-\frac{1}{2}-3 \epsilon\right) \frac{k^{\nu}}{p \cdot k}+(1+3 \epsilon)\left(\frac{\gamma^{\nu} \not x}{p \cdot n}-\frac{p^{\nu} k \cdot h}{p \cdot k p \cdot n}\right)\right]+\ldots
\end{array}
$$

+ Occurs with G-tensor: filters spin-dependent part. At lowest order Jv(0):

$$
G^{\nu \mu}\left(-\frac{p_{\nu}}{p \cdot k_{2}}+\frac{k / 2 \gamma_{\nu}}{2 p \cdot k_{2}}\right)=\frac{k_{2 \nu}\left[\gamma^{\nu}, \gamma^{\mu}\right]}{4 p \cdot k_{2}}
$$

+ One-loop terms breaks next-to-soft theorem. Interestingly it is an eigenstate of G ${ }^{\text {Iv }}$

$$
G^{\nu \mu} J_{\nu}^{(1)}(p, n, k)=J_{\nu}^{(1)}(p, n, k)
$$

+ Find after phase space $\left(k_{2}\right)$ integral (chosing $n=p$)

$$
K_{\mathrm{radJ}}^{(2)}=\left(\frac{\alpha_{s} C_{F}}{4 \pi}\right)^{2}\left[\frac{-16}{\epsilon^{2}}-\frac{20}{\epsilon}+60 \log (1-z)+\frac{48}{\epsilon} \log (1-z)-72 \log ^{2}(1-z)-24\right]
$$

- Precise correspondence with collinear region

Upshot

* Again: perfect agreement with exact NLP result (and of course MoR result), for

$$
\log ^{3}(1-z), \quad \log ^{2}(1-z), \quad \log ^{1}(1-z), \quad \log ^{0}(1-z)
$$

* So there is strong predictive power for such (threshold) logarithms

Non- abelian terms (prelim)

* New features appear. Diagram
contributes to all regions
- non-abelian jet contributions when virtual gluon is hard and (anti)-collinear. Scales

$$
(2 p \cdot k)^{-\varepsilon}, \quad(2 \bar{p} \cdot k)^{-\varepsilon}
$$

- (next-to-soft) contribution when soft. Scale

$$
\left(\frac{s \mu^{2}}{2 p \cdot k 2 \bar{p} \cdot k}\right)^{\varepsilon}
$$

- which suggests using NE webs. Need also extra soft subtractions to avoid double counting. Factorization formula

$$
\begin{aligned}
& \mathcal{A}^{\mu a}\left(p_{j}, k\right) \epsilon_{\mu}(k)=\epsilon_{\mu}(k) \sum_{i=1}^{2}\left\{\left(\frac{1}{2} \overline{\mathcal{S}}^{\mu a}+\mathbf{T}_{i}^{a} G_{i}^{\nu \mu} \frac{\partial}{\partial p_{i}^{\nu}}\right) \mathcal{A}\left(\left\{p_{i}\right\}\right)\right. \\
& +\left(J^{\mu a}\left(p_{i}, k, n_{i}\right)-\tilde{\mathcal{J}}^{\mu a}\left(\beta_{i}, k, n_{i}\right)-\mathbf{T}_{i}^{a} G_{i}^{\nu \mu} \frac{\partial}{\partial p_{i}^{\nu}} \frac{J\left(p_{i}, n_{i}\right)}{\tilde{\mathcal{J}}\left(\beta_{i}, n_{i}\right)}\right) \\
& \left.\times \tilde{\mathcal{H}}\left(p_{j}, n_{j}\right) \tilde{\mathcal{S}}\left(\beta_{j}, n_{j}\right) \prod_{j \neq i} \frac{J\left(p_{j}, n_{j}\right)}{\tilde{\mathcal{J}}\left(\beta_{j}, n_{j}\right)}\right\},
\end{aligned}
$$

+ Again, four powers of logarithms agree

Summary

+ Analyzed next-to-soft corrections in Drell-Yan
+ Governed by LBKD theorem; collinear loop momenta important
- understood through method of regions
- predictive power through factorization
* Good progress recently, also in SCET approaches (recent workshop in Edinburgh)
+ Non-abelian extension soon; resummation: next-to-soon?

