Extended electroweak precision fits and their implications

Laura Reina (FSU)

Stress-testing the Standard Model at the LHC

KITP, UC-Santa Barbara, May, 26th 2016

Electroweak precision physics in the LHC era

- LHC, Run II: after the Higgs-boson discovery
 - $\hookrightarrow M_H$ becomes a precision electroweak (EW) parameter;
 - \hookrightarrow precision fits now probe consistency of the Standard Model (SM) and can provide indirect evidence of new physics;
 - \hookrightarrow fits can be extended to include Higgs-boson results: rates and distributions;
 - \hookrightarrow actual sensitivity depends on experimental precision and theoretical accuracy.
- HEPfit: a global fit of existing electroweak precision data (EWPD) and Higgs-boson observables
 - $\rightarrow\,$ General framework, new features
 - $\rightarrow\,$ Results of EWPD fit, constraints on new physics
- Main results for Higgs-boson couplings and effective interactions
 - \rightarrow In terms of κ_i rescaling factors.
 - \rightarrow In terms of C_i coefficients of EFT operators.
- Outlook

LHC Run I has discovered the Higgs, measured its mass and spin . . .

ATLAS+CMS, Phys. Rev. Lett. 114, 191803

 M_H is now among the EW precision observables!

Effects of New Physics can now be more clearly disentangled in both EW observables and Higgs-boson couplings

Moreover, from decays $(H \to VV \text{ and } H \to ff)$

- \rightarrow Spin: highly constrained to be s = 0
- \rightarrow Parity: scalar vs pseudoscalar, exploring the tensor structure of decay amplitudes 3

Fits of electroweak precision data

 \hookrightarrow see A. Freitas's talk

- Set of input parameters
 - \rightarrow fixed: G_F , α (best measured)
 - \rightarrow floating: $M_Z, M_H, m_t, \alpha_s(M_Z), \Delta \alpha_{had}^{(5)}$
- Compute EW precision observables (EWPO), including all known higher-order corrections (in a given renormalization scheme): M_W, Γ_W (LEP2/Tevatron), Z-pole observables: Γ_Z, A_f, ... (LEP/SLD)
- **Perform best fit** and compare with experimental measurement: tension might signal new physics.
- Parametrize new physics effects (ex: S, T, U parameters) and constrain deviations in terms of chosen parameters.
- Several groups:
 - \rightarrow GAPP [Erler]
 - $\rightarrow~{\rm ZFITTER:}$ [Akhundov, Arbuzov, S.Riemann & T.Riemann]
 - $\rightarrow\,$ Gfitter: [Baak, Cúth, Haller, Hoecker, Kogler, Mönig, Schott, Stelzer]
 - → Now also part of $| \frac{\text{HEPfit}}{\text{HEPfit}} | \longrightarrow \text{HEPfit}$ Collaboration. For this study: [de Blas, Ciuchini, Franco, Mishima, Pierini, L.R., Silvestrini]

HEPfit developer repository: https://github.com/silvest/HEPfit HEPfit webpage: http://hepfit.roma1.infn.it

In this talk: EW precision physics and Higgs-boson physics [de Blas, Ciuchini, Franco, Mishima, Pierini, L.R., Silvestrini] arXiv:1410.4204, arXiv:1410.6940, update soo⁵ to appear ... arXiv:1606.xxxx

The fitting procedure $\rightarrow \texttt{HEPfit}$

- Both electroweak and Higgs observables are calculated as a SM core plus corrections:
 - \hookrightarrow the SM cores include all existing higher order corrections [\rightarrow see A. Freitas]
 - \hookrightarrow the NP corrections are at the lowest order in all SM couplings.
- Experimental results are taken from the most recent published analyses
- The fit procedure uses BAT (Bayesan Analysis Toolkit) with flat priors for all input parameters, and posteriors calculated using a Markov Chain Monte Carlo.

(Caldwell, Kollar, Kröninger, arXiv:0808.2552+ Beaujean, Greenwald, Schulz)

- Stand-alone or library mode to compute observables in a given model:
 - \hookrightarrow Implemented models:
 - \hookrightarrow SM,
 - \hookrightarrow Oblique parameters (S,T,U), ε_i parameters, Modified $Zb\bar{b}$ couplings,
 - \hookrightarrow Modified Higgs couplings (κ_i), SMEFT (d=6),
 - \hookrightarrow 2HDM.
 - \hookrightarrow Implemented observables: EWPO, Flavor ($\Delta F = 2$, UT, B-decays).

Results of SM fit to EW precision data

	Measurement	Result	Prediction	1D Pull	nD Pull
α_{M_Z}	0.11850 ± 0.00050	0.11850 ± 0.00049	0.1186 ± 0.0028	0.1	
$\delta lpha_5^{ m had}$	0.02750 ± 0.00033	0.02747 ± 0.00025	0.02743 ± 0.00038	-0.2	
$M_Z [{ m GeV}]$	91.1875 ± 0.0021	91.1879 ± 0.0021	91.198 ± 0.011	-0.9	
$m_t [{ m GeV}]$	173.34 ± 0.76	173.61 ± 0.73	176.7 ± 2.5	1.1	
$m_H \; [\text{GeV}]$	125.09 ± 0.24	125.09 ± 0.24	102.4 ± 26.4	-0.6	
$M_W [{\rm GeV}]$	80.385 ± 0.015	80.3641 ± 0.0060	80.3601 ± 0.0066	-1.7	
$\Gamma_W [{ m GeV}]$	2.085 ± 0.042	2.08893 ± 0.00051	2.08893 ± 0.00051	0.0	
$\sin^2 heta_{ m eff}^{ m lept}$	0.2324 ± 0.0012	0.231466 ± 0.000086	0.231437 ± 0.000090	-0.8	
$P_{\tau}^{\rm pol} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.14746 ± 0.00068	0.14751 ± 0.00069	0.1	
$\Gamma_Z [\text{GeV}]$	2.4952 ± 0.0023	2.49445 ± 0.00040	2.49439 ± 0.00041	0.4	
$\sigma_h^0 [{ m nb}]$	41.540 ± 0.037	41.4878 ± 0.0031	41.4880 ± 0.0032	1.3	0.7
R^0_ℓ	20.767 ± 0.025	20.7516 ± 0.0034	20.7513 ± 0.0035	0.6	0.7
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01631 ± 0.00015	0.01627 ± 0.00015	0.9	
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14746 ± 0.00068	0.14762 ± 0.00076	1.7	
\mathcal{A}_{c}	0.670 ± 0.027	0.66809 ± 0.00030	0.66816 ± 0.00033	0.03	
\mathcal{A}_b	0.923 ± 0.020	0.934648 ± 0.000058	0.934661 ± 0.000064	-0.4	
$A^{0,c}_{ m FB}$	0.0707 ± 0.0035	0.07389 ± 0.00037	0.07398 ± 0.00042	-0.9	1.5
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	0.10337 ± 0.00048	0.10348 ± 0.00054	-2.5	
$R_c^{ ilde{0}}$	0.1721 ± 0.0030	0.172238 ± 0.000013	0.172239 ± 0.000013	-0.1	
$R_b^{ar{0}}$	0.21629 ± 0.00066	0.215784 ± 0.000025	0.215783 ± 0.000026	0.8	

(indirect: determined without using the corresponding exp. information)

 \rightarrow Very good agreement with both ZFITTER and Gfitter.

Good agreement between direct and indirect determination of the values of the input parameters

EW precision, example of future projections

Present

Observable	Exp. Error	Theor. Error
$M_W [{ m MeV}]$	15	4
$\sin^2 \theta_{\rm eff}^l \ [10^{-5}]$	16	4.5
$\Gamma_Z[{ m MeV}]$	2.3	0.5
$R_b \ [10^{-5}]$	66	15

Future

Observable	ILC	FCC-ee	CEPC	Theor. Error
$M_W [{ m MeV}]$	3-4	1	3	1
$\sin^2 \theta_{\rm eff}^l \ [10^{-5}]$	1	0.6	2.3	1.5
$\Gamma_Z[{ m MeV}]$	0.8	0.1	0.5	0.2
$R_b \ [10^{-5}]$	14	6	17	5-10

[A. Freitas, arXiv:1604.00406]

 $\left(\delta m_t = 50 \text{ MeV}, \, \delta \alpha_s = 0.001, \, \delta M_Z = 2.1 \text{ MeV}, \, \delta(\Delta \alpha) \simeq 5 \cdot 10^{-5}\right)$

ILC $[e^+e^-, \sqrt{s}=90-500 \text{ GeV}] \rightarrow \text{hep-ph/0106315}, \text{arXiv:1306.6352}$ FCC-ee $[e^+e^-, \sqrt{s}=90-400 \text{ GeV}] \rightarrow \text{arXiv:1308.6176}$ CEPC $[e^-p, \sqrt{s}=90-250 \text{ GeV}] \rightarrow \text{IHEP-CEPC-DR-2015-01}$

 \rightarrow Theoretical errors may become leading source of error

Limits on beyond SM physics from EW precision data and Higgs-boson data

Parametrizing indirect evidence of new physics beyond the SM (BSM) in a **model-independent** way via

- Oblique corrections (ex.: S,T,U parameters)
- Non-standard $Zb\bar{b}$ couplings
- Non-standard Higgs couplings
- SM effective field theory (SMEFT)

Oblique parameters, S, T, U [Peskin and Takeuchi, Phys. Rev. D46 (1992) 381]

Dominant effects of NP in gauge-boson vacuum polarization corrections,

$$\alpha S = 4e^2 \left[\Pi_{33}^{NP'}(0) - \Pi_{3Q}^{NP'}(0) \right]$$
$$\alpha T = \frac{e^2}{s_W^2 c_W^2 M_Z^2} \left[\Pi_{11}^{NP}(0) - \Pi_{33}^{NP}(0) \right]$$
$$\alpha U = 4e^2 \left[\Pi_{11}^{NP'}(0) - \Pi_{33}^{NP'}(0) \right]$$

NP contributions to given EWPO (linearized in terms of S, T, U)

$$O = O_{\rm SM} + O_{\rm NP}(S, T, U)$$

 $U \to \text{NP}$ contributions to M_W and Γ_W $U \ll S, T$ in many NP models (linearly realized EWSB) $\to U = 0$

Equivalently: use $\varepsilon_{1,2,3,b}$ parameters [Altarelli, Barbieri, Phys. Lett. B253 (1991) 161]

blue shaded areas $\rightarrow 68\%, 95\%, 99\%$

blue shaded areas $\rightarrow 68\%$, 95%

Preliminary:

FCCee: several projected runs

	Z pole	WW threshold	HZ threshold	$t\bar{t}$ threshold	above $t\bar{t}$ threshold
$\sqrt{s} [\text{GeV}]$	90	160	240	350	> 350
$\mathcal{L} [ab^{-1}/yr]$	86	15	3.5	1.0	1.0
Years of run	0.3/2.5	1	3	0.5	3
Events	$10^{12}/10^{13}$	6×10^7	2×10^6	2×10^5	$7.5 imes 10^4$

Non-standard $Zb\bar{b}$ couplings

Tension in $A_{\rm FB}^{0,b}$ (pull of EWPO fit $\rightarrow 2.8\sigma$)

$$A_{\rm FB}^{0,b} = \frac{3}{4} A_e A_b \ , \ A_f = \frac{2 \operatorname{Re} \frac{g_V^f}{g_A^f}}{1 + (\operatorname{Re} \frac{g_V^f}{g_A^f})^2} \longrightarrow g_i^b = g_{i,\rm SM}^b + \delta g_i^b \ {}_{(i=\rm V,A,L,R)}$$

 $\delta A_{\rm FB}^{0,b}, \delta A_b \propto g_{L,\rm SM}^b \delta g_R^b - g_{R,\rm SM}^b \delta g_L^b$ $\delta R_b \propto g_{R,\rm SM}^b \delta g_R^b + g_{L,\rm SM}^b \delta g_L^b$

			L
	Fit result	correla	ations
δg_R^b	0.016 ± 0.006	1.00	
δg^b_L	0.003 ± 0.001	0.90	1.00
δg_V^b	0.018 ± 0.007	1.00	
δg^b_A	-0.013 ± 0.005	-0.98	1.00

 $\begin{array}{l} \text{all} \\ \text{R}_{\text{b}}^{0} \\ \text{A}_{\text{FB}}^{0,\text{b}} \end{array}$

 A_b

0.06

 δg^{b}_{L}

Higgs couplings analysis

ATLAS: arXiv:1507.04548

- $\mu = \sum_{i} w_i r_i$ where $w_i = \frac{[\sigma \times \mathrm{Br}]_i}{[\sigma_{\mathrm{SM}} \times \mathrm{Br}_{\mathrm{SM}}]_i}$ $r_i = \frac{\epsilon_i [\sigma_{\rm SM} \times Br_{\rm SM}]_i}{\sum_j \epsilon_j^{\rm SM} [\sigma_{\rm SM} \times Br_{\rm SM}]_j}$ $\sigma_i = \sigma_i^{\rm SM} + \delta \sigma_i$ $\Gamma_j = \Gamma_j^{\rm SM} + \delta \Gamma_j$
- $\sigma_i^{\rm SM}, \, \Gamma_i^{\rm SM} \to {\rm YR} \text{ of } {\rm HXSWG}$ $\delta \sigma_i \rightarrow \text{FR+Madgraph+Kfactors}$ $\delta \Gamma_i \rightarrow \text{eHdecay}$

 $h\gamma\gamma$: ATLAS(1408.7084), CMS(1407.0558) $h\tau\tau$: ATLAS(1501.04943), CMS(1401.5041) *hZZ*: ATLAS(1408.5191), CMS(1412.8662) hWW: ATLAS(1412.2641,1506.06641), CMS(1312.1129)hbb: ATLAS(1409.6212, 1503.05066), CMS(1310.3687, 1408.1682), CDF (1301.6668), D0 (1303.0823) 15

Non-standard Higgs-boson couplings

Minimal assumptions (inspired by strong-dynamics EWSB models):

- \hookrightarrow only one Higgs boson below the cutoff Λ ;
- \hookrightarrow custodial symmetry approximately realized;
- \hookrightarrow corrections from new physics flavor-diagonal and universal;
- \hookrightarrow no NP corrections in Hgg, $H\gamma\gamma$, $HZ\gamma$ loop-induced couplings.

Ex.: Contino, Grojean, Moretti, Piccinini, Rattazzi, JHEP 1005 (2010) 089

$$\mathcal{L}_{\text{eff}} = \frac{v^2}{4} \text{tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left(1 + 2\kappa_V \frac{h}{v} + \cdots \right) - m_i \bar{f}_L^i \left(1 + 2\kappa_f \frac{h}{v} + \cdots \right) f_R^i$$

where $\Sigma(x) = \exp i\sigma^a \chi^a(x)/v \rightarrow \text{longitudinal } W/Z \text{ polarizations.}$

Defining: $\kappa_X = g_X/g_X^{\text{SM}} \text{ (SM} \to \kappa_X = 1),$ $\kappa_V \to \text{rescaling of all } hVV \text{ couplings}$ $\kappa_f \to \text{rescaling of all } hf\bar{f} \text{ couplings}$ Considering EWPO+ κ_V only

 κ_V also affect oblique corrections:

$$\begin{split} S &= \frac{1}{12\pi} (1-\kappa_V^2) \log \frac{\Lambda^2}{M_h^2} \\ T &= -\frac{3}{16\pi c_W^2} (1-\kappa_V^2) \log \frac{\Lambda^2}{M_h^2} \end{split}$$

Considering both κ_V and κ_f

Zooming into κ_V and κ_f ...

1.00

1.00

SM Effective Field Theories

Systematic extension of the SM Lagrangian by d > 4 operators,

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d, \text{ with } \mathcal{L}_d = \sum_i C_i \mathcal{O}_i, \quad [\mathcal{O}_i] = d,$$

including **effects in NP on EWPO and SM Higgs-boson coupling**, but also **allowing for new structures**.

Consider:

- $\rightarrow~d=6$ operators only, obeying SM gauge symmetry, L and B conservation
- \rightarrow one Higgs doublet of $SU(2)_L$, linearly realized SSB
- \rightarrow assuming flavor universality: 59 operators [basis by Grzadkowski et al., JHEP 1010 (2010) 085]
- $\rightarrow\,$ CP even and with at least one Higgs: 27 operators
- $\rightarrow\,$ contributing to the observables considered: 17 operators
- \rightarrow with a specific model in mind: running $C_i(\Lambda) \rightarrow C_i(\Lambda_{\rm EW})$ more meaningful
- \rightarrow otherwise take $C_i = C_i(\Lambda_{\rm EW})$, no running included

$$\mathcal{O}_{HG} = (H^{\dagger}H) G^{A}_{\mu\nu} G^{A\mu\nu}$$

$$\mathcal{O}_{HW} = (H^{\dagger}H) W^{I}_{\mu\nu} W^{I\mu\nu}$$

$$\mathcal{O}_{HB} = (H^{\dagger}H) B_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{O}_{HWB} = (H^{\dagger}\tau^{I}H) W^{I}_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{O}_{HD} = (H^{\dagger}D^{\mu}H)^{*} (H^{\dagger}D_{\mu}H)$$

$$\mathcal{O}_{H\Box} = (H^{\dagger}H)^{*} \Box (H^{\dagger}H)$$

bosonic operators

corrections to: \rightarrow

- oblique parameters
- *hVV*
- WWZ and $WW\gamma$

$$\begin{aligned} \mathcal{O}_{HL}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{L}\gamma^{\mu}L) \\ \mathcal{O}_{HL}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{L}\tau^{I}\gamma^{\mu}L) \\ \mathcal{O}_{He} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{e}_{R}\gamma^{\mu}e_{R}) \\ \mathcal{O}_{HQ}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q) \\ \mathcal{O}_{HQ}^{(3)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{Q}\tau^{I}\gamma^{\mu}Q) \\ \mathcal{O}_{Hu} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{u}_{R}\gamma^{\mu}u_{R}) \\ \mathcal{O}_{Hd} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{d}_{R}\gamma^{\mu}d_{R}) \\ \mathcal{O}_{Hud} &= i(\widetilde{H}^{\dagger}D_{\mu}H)(\overline{u}_{R}\gamma^{\mu}d_{R}) \end{aligned}$$

single-fermionic-vector-currentoperators

- corrections to: \rightarrow
 - *hff Vff*

$$\mathcal{O}_{eH} = (H^{\dagger}H)(\bar{L}\,e_R H)$$

$$\mathcal{O}_{uH} = (H^{\dagger}H)(\bar{Q}\,u_R \tilde{H})$$

$$\mathcal{O}_{dH} = (H^{\dagger}H)(\bar{Q}\,d_R H)$$

$$\mathcal{O}_{dH} = (H^{\dagger}H)(\bar{Q}\,d_R H)$$

$$\mathcal{O}_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L)$$

<u>Notice</u>: $Vf\bar{f}$ and indirect effects (e.g. G_F) strongly constrained by EW precision observables.

Upon SSB, direct effect on Higgs-boson couplings

$$\mathcal{L}_{\text{Higgs}} = \mathcal{L}_{hVV} + \mathcal{L}_{hff} + \mathcal{L}_{hVff} + \mathcal{L}_{hTff}$$

each term contains the interactions to either vector bosons or fermions.

<u>Ex.1</u>: \mathcal{L}_{hVV} contains all the non-fermionic interactions with the SM vector bosons,

$$\mathcal{L}_{hVV} = h \left(g_{hZZ}^{(1)} Z_{\mu\nu} Z^{\mu\nu} + g_{hZZ}^{(2)} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + g_{hZZ}^{(3)} Z_{\mu} Z^{\mu} - g_{hAA} A_{\mu\nu} A^{\mu\nu} + g_{hZA}^{(1)} Z_{\mu\nu} A^{\mu\nu} + g_{hZA}^{(2)} Z_{\nu} \partial_{\mu} A^{\mu\nu} - g_{hWW}^{(1)} W_{\mu\nu}^{+} W^{-\mu\nu} + \left(g_{hWW}^{(2)} W_{\nu}^{+} D_{\mu} W^{-\mu\nu} + (g_{hWW}^{(2)})^{*} W_{\nu}^{-} D_{\mu} W^{+\mu\nu} \right) + g_{hWW}^{(3)} W_{\mu}^{+} W^{-\mu} + g_{hGG} \operatorname{Tr} \left[G_{\mu\nu} G^{\mu\nu} \right] \right)$$

where (both directly and indirectly $\rightarrow G_F$, field renormalization, ...),

$$C_{HG} \longrightarrow g_{hGG}$$

$$C_{HW} \longrightarrow g_{hWW}^{(1)}$$

$$C_{HW}, C_{HB}, C_{HWB} \longrightarrow g_{hZZ}^{(1)}, g_{hZA}^{(1)}, g_{hAA}^{(1)}$$

$$C_{HD} \longrightarrow g_{hZZ}^{(3)}$$

while Ex. 2: \mathcal{L}_{hff} contains the interactions with the fermions only:

$$\mathcal{L}_{hff} = h \sum_{f} g_{hff} \overline{f_L} f_R + \text{h.c.}$$

where,

 $\begin{array}{l} C_{eH} \longrightarrow g_{h\tau\tau} \\ C_{uH} \longrightarrow g_{hcc}, g_{htt} \\ C_{dH} \longrightarrow g_{hbb} \end{array}$

The corresponding rescaling factors $\kappa_V = \frac{g_{hVV}}{g_{hVV}^{SM}}$ and $\kappa_f = \frac{g_{hff}}{g_{hff}^{SM}}$, are

$$\kappa_{Z} = 1 + \delta_{h} + \frac{1}{2} \frac{v^{2}}{\Lambda^{2}} C_{HD} - \frac{1}{2} \delta_{G_{F}}$$

$$\kappa_{W} = 1 + \delta_{h} - \frac{1}{2} (c_{W}^{2} - s_{W}^{2}) (4s_{W}c_{W} \frac{v^{2}}{\Lambda^{2}} C_{HWB} + c_{W}^{2} \frac{v^{2}}{\Lambda^{2}} C_{HD} + \delta_{G_{F}})$$

$$\kappa_{f} = 1 + \delta_{h} - \frac{1}{2} \delta_{G_{F}} - \frac{v}{m_{f}} \frac{v^{2}}{\Lambda^{2}} \frac{C_{fH}}{\sqrt{2}}$$

where

 $\delta_h \to \text{NP}$ corrections to h wave-function renormalization $\delta_{G_F} \to \text{NP}$ corrections to G_F

95% bounds on coefficients of d=6 interactions

 \rightarrow Switching on one operator at a time

	Only EW	Only Higgs	$\mathbf{EW} + \mathbf{Higgs}$
	$C_i/\Lambda^2 [{ m TeV}^{-2}]$	$C_i/\Lambda^2 [{\rm TeV}^{-2}]$	$C_i/\Lambda^2 [{\rm TeV}^{-2}]$
Coefficient	at 95%	at 95%	at 95%
C_{HG}		[-0.0051, 0.0092]	[-0.0051, 0.0092]
C_{HW}		[-0.034, 0.014]	[-0.034,0.014]
C_{HB}		[-0.0087, 0.0040]	[-0.0087, 0.0040]
C_{HWB}	[-0.010, 0.004]	[-0.008, 0.017]	[-0.0073, 0.0053]
C_{HD}	[-0.032, 0.005]	[-1.1, 1.6]	[-0.032,0.005]
$C_{H\square}$		[-1.4, 1.3]	[-1.4, 1.3]
$C^{(1)}_{HL}$	[-0.005, 0.012]		[-0.005, 0.012]
$C^{(3)}_{HL}$	[-0.012, 0.006]	[-0.47, 0.66]	[-0.012, 0.006]
C_{He}	[-0.017, 0.005]		[-0.017, 0.005]
$C_{HQ}^{(1)}$	[-0.027, 0.041]	[-2, 11]	[-0.027, 0.041]
$C_{HQ}^{(3)}$	[-0.011, 0.013]	[-0.42,0.05]	[-0.012, 0.013]
C_{Hu}	[-0.071, 0.077]	[-4.6, 0.8]	[-0.072, 0.076]
C_{Hd}	[-0.14, 0.06]	[-2, 14]	[-0.14, 0.06]
C_{eH}		[-0.027, 0.049]	[-0.027, 0.049]
C_{uH}		[-0.62, 0.33]	[-0.62, 0.33]
C_{dH}		[-0.062,0.059]	[-0.062, 0.059]
C_{LL}	[-0.010, 0.022]	[-1.3, 0.9]]	[-0.010, 0.022]

 \hookrightarrow see also Corbett, Eboli, Gonçalves, Gonzales-Fraile, Plehn, Rauch, arXiv:1505.0551

95% bounds on scale of new physics Λ

	Only EW		Only Higgs		EW + Higgs	
	Λ [TeV]		$\Lambda \ [\text{TeV}]$		$\Lambda [\text{TeV}]$	
Coefficient	$C_i = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$
C_{HG}			14.1	10.4	14.1	10.4
C_{HW}			5.5	8.4	5.5	8.4
C_{HB}			10.7	15.7	10.7	15.7
C_{HWB}	9.8	15.1	11.3	7.7	11.7	13.7
C_{HD}	5.6	14.1	0.9	0.8	5.6	14.0
$C_{H\square}$			0.8	0.9	0.8	0.9
$C^{(1)}_{HL}$	14.1	9.3			14.1	9.3
$C_{HL}^{(3)}$	9.3	12.8	1.5	1.2	9.3	12.7
C_{He}	7.7	13.6			7.7	13.6
$C_{HQ}^{(1)}$	6.0	5.0	0.7	0.3	6.0	5.0
$C_{HQ}^{(3)}$	9.4	8.7	1.5	4.4	9.2	8.9
C_{Hu}	3.8	3.6	0.5	1.1	3.7	3.6
C_{Hd}	2.7	4.0	0.6	0.3	2.7	4.0
C_{eH}			6.0	4.5	6.0	4.5
C_{uH}			1.3	1.7	1.3	1.7
C_{dH}			4.0	4.1	4.0	4.1
C_{LL}	10.0	6.8	0.9	1.0	10.0	6.8

 \rightarrow For $|C_i| \simeq 1$ NP is beyond LHC reach, need perturbative C_i .

95% bounds on scale of new physics Λ - Present vs Future

	95% present	bound on	95% future bound on		
Coefficient	$\frac{C_i}{\Lambda^2} \; [\text{TeV}^{-2}]$	$\begin{array}{l} \Lambda \; [\text{TeV}] \\ (C_i = \pm 1) \end{array}$	$\frac{C_i}{\Lambda^2} \; [\text{TeV}^{-2}]$	$\begin{array}{l} \Lambda \ [\text{TeV}] \\ (C_i = \pm 1) \end{array}$	
$\begin{array}{c} C_{HWB} \\ C_{HD} \end{array}$	$[ext{ 0.009, 0.003}] \ [ext{ 0.027, 0.004}]$	$\begin{array}{c} 12 \\ 6.6 \end{array}$	$[0.0001, 0.0001] \\ [0.0005, 0.0005]$	$93 \\ 45$	
$C_{HL}^{(1)} \ C_{HL}^{(3)} \ C_{HL}^{(1)} \ C_{HQ}^{(1)} \ C_{HQ}^{(3)} \ C_{HQ}^{(3)} \ C_{Hu} \ C_{Hu} \ C$	$\begin{bmatrix} 0.005, 0.012 \\ 0.011, 0.005 \\ 0.015, 0.007 \end{bmatrix}$ $\begin{bmatrix} 0.027, 0.043 \\ 0.011, 0.015 \\ 0.071, 0.081 \end{bmatrix}$	$9.9 \\ 10 \\ 8.6 \\ 5.3 \\ 9.1 \\ 3.7 \\ 2.0 \\$	$\begin{bmatrix} 0.0003, 0.0003 \\ 0.0002, 0.0002 \end{bmatrix}$ $\begin{bmatrix} 0.0003, 0.0003 \\ 0.0018, 0.0018 \end{bmatrix}$ $\begin{bmatrix} 0.0018, 0.0018 \\ 0.0005, 0.0005 \end{bmatrix}$ $\begin{bmatrix} 0.0035, 0.0035 \\ 0.0046, 0.0046 \end{bmatrix}$	$56 \\ 70 \\ 58 \\ 24 \\ 44 \\ 17 \\ 15$	
C_{Hd} C_{LL}	[0.14, 0.070] [0.0096, 0.023]	2.9 7.3	[0.0040, 0.0040] [0.0003, 0.0003]	61	

 \rightarrow Precision (×10) \longrightarrow reach $\Lambda \simeq 100~{\rm TeV}$

Outlook

- The SM offers a incredibly solid theoretical framework that we can use to extract indications of new physics.
- Indirect evidence of new physics from Higgs-boson and EW precision measurements can come from the synergy between
 - $\rightarrow\,$ accurate theoretical prediction,
 - \rightarrow a systematic approach to the study of new effective interactions,
 - \rightarrow the intuition and experience of many years of Beyond SM searches!
- Increasing the precision of input parameters could allow to test higher scales of new physics: a factor of 10 in precision could give access to scales as high as 100 TeV.
- **Direct evidence of new physics can boost this process**, as the discovery of a Higgs-boson has prompted and guided us in this new era of LHC physics.