Effective Field Theory of
Forward Scattering anad
~actorization Violation

Ira
Rothsteln
(CMU)

In collaboration with lain Stewart

Stress Testing the Standard Model
KITP May 2016



Working definition of
factorization:

A given observable is said to factorize when it can be written as a product of
matrix elements that are either calculable in perturbation theory or for which
have some reasonable chance of extracting from the data.
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Factorization proofs lie at the heart of the
science program for any hadronic machine. Yet
for a significant number of observables
complete proofs do not exist.

Strategy for Proofs

 Determine whats " "'modes” (regions of momentum space) are
responsible for the non-analytic structure.

¢ (CSS: Use Ward identities to show decoupling of modes.
Contour deformations to eliminate modes.

 EFT (SCET) Write down an action representing each mode with
a field. As long as the leading Hamiltonian (including external
currents) can be written down as a sum over sectors, then

factorization follows. T, = 17,



As a conseguence of tensor product nature of
Hiloert space tactorization follows

(Weths | OsOc | heths) = (e | Oc | ¥e){Ws | Os | ¥s)

In general there will be convolution In some number
of variables depending upon the choice of
observables



Canonical Modes
* SOft ()‘7>‘7)‘) ()\27)‘27)‘2) A~ E/Q
e Collinear (A%, 1,)\) (1,)2% )

e Hard  (1,1,1) (Integrate out)

Soft emissions off of collinear lines either throw them off-shell and
matching can be done to all orders, or can be eliminated by a field
redefinition. In both cases the net effect is to generate a set of
Wilson lines, which can be factored out of collinear matrix

elements.
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Symmetries underlie t
these modes. In SC

ne factorization of
~ | there exists

distinct gauge symmetries for soft and
collinear modes which facilitate
factorization.

However, there exists another mode in the theory, for which symmetry
plavs no role, that arise for exceptional external momentum

(near forward)

The Glauber mode @

Pl ~ (A%, 0%, )



The Glauber gluon contribute at leading order in near forward
scattering and builds up a coherent shock wave solution.
Leading order Glauber contributions threaten factorization.,
Primary challenge to factorization theorems

=~ ~>~*7% couples n-collinear,

Y . — .
o R n-collinear, and
v .

A N soft modes

To prove factorization must either show that they're
contributions are subsumed by other modes which
factorize, or if not, that they cancel in the
observable of interest.




Goal: Write down an EFT which incorporates Glauber
interactions into high energy scattering that will allow for a
general analysis on their effects on observables

This will abet:

1) Generalize/Simplify factorization proofs.

2) Determine when and at what level
Glaubers contribute

3) Calculate systematically when Glaubers
do Indeed contribute.



Construction: A1 large Q
will do calculations with back-to-back collinear particles for simplicity

mode fields p" momentum scaling physical objects type

n-collinear En, AP (n-p,n-p,pr)~ QN 1,)) n-collinear “jet” onshell

n-collinear &y, AL (n-p,n-p,pL)~ QN1 n-collinear “jet” onshell

soft s, Ag Pt~ QN A N) soft virtual/real radiation onshell

Glauber — P~ QAN N), a+b>2 forward scattering potential offshell
(here {a,b} = {2,2},{2,1}, {1,2})

hard — p? > Q? hard scattering offshell

Integrate out
Need 3-types of Glauber momenta:
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n-n : P~ QA2 02, 0)

fwd. scattering
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Tn,__)-_—?-——)-—/ﬁ- o 5 Otentials
n-$ P P QAN RP
fwd. rin 5
wd. scattering - 4 S ® instantaneous in z7, 2~ (¢ and 2)

n-S A S ,
fwd. scattering < P~ QA AT A)




N-S fwd. scattering
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. 3\ OZB_O]nB o
determine  O(X’): Z nop2 s (2 rapidity sectors)
,J0=4,9 —
. . )\2 )\—2 )\3
with bilinear octet operators Yl = Sl
2\ . B — Bﬂ 3\ . nB __ m B%n
o) : 0 =x, T80 xa. ON): 0B =sma, (d517Ly3),
038 = SFPOPBLL, 5 - (PPIBLY

09 = sra, (5 fPPBY, 5 - (P+PHBI")

Operators manifestly gauge invariant in all
Sectors



: 1. iB
m|ght O()\Q) : Z O%BE O%B same Onc
gUesS b= + analogous O,

actually O(A\?): Z OB 12 OBC 12 0iC same  OiF
- P41 P -
(3 rapidity sectors)  ©i=%9 analogous O%C

)\2)\2)\2)\2)\2

must allow for soft emission from between the rapidity sectors:

BC 2 ¢BC n->—e—>--n
OBC = 8ra,P? 6 -
o



Soft O°“ Operator OFC =8ra, )y C;0F°

basis of O(\?) operators allowed by symmetries:

O1 = P'SLSP.,, Oy = PHSES, P,
O3 = P1-(gB% )(SLSn)+(SESn) (gBE)-Pr, O =Py (gB% ) (SES,)+(SES,)(gB%, )Py,

Os = Pr(STSp) (gBY ) +(gBH)(STSH)PE, O = PH(SLS,) (gBH )+ (9B ) (SESa)PiL,

Or = (9B5/1)S Sn(9B5 1), Os = (9Bg1)S7 Sn(9B51,,),
Oy = S} nyuny (igGE ) S, O10 = Sy numy (igGE” ) S,
™~ octet Wilson line ™~ octet reps

Restricted by:  Hermiticity O] ..-=0; , oneS,, one Sy

operator identities: eg. [PI(5:Sx)] = —9B4| (SiSn) + (51 Sa)9B!

ree level matching at two gluons fixes all coefficients



Two Soft Gluons

EFT
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OBC

Co=0y4=0C5=0C5=03 =C19=0],

1
01:—03:—07:+1, 09:—5

_ 8ra, {Pﬁsgsnm — PLGBY SIS, — STSugBM PL — gBY STS,gBL

nMnV

BC
STigGH S5 } .

Form is unique to all loops since there are no hard O/
corrections to this matching (more later)



Full Leading Power Glauber Lagrangian:

g 1 1 g 1
Eg(O):S: S: O”BPLOBCPLOJC S: S: ORBPL@JTL

n,n 1,5=4q,9g n 1,5=4q,9
T (3 rapidity sectors) T (2 rapidity sectors)
sum pairwise sum.on all
collinears

on all collinears

® Interactions with more sectors is given by T-products

® No Wilson coefficient ie. no new structures at loop level. [more later]

This EFT has multiple uses, e.g. for small x physics. For

the purpose of understanding factorization, here we will

use it to determine the role of the Glauber mode in hard
scattering processes.



Note: At loop level ZB subtraction crucial for matching, insure
no double counting. This is despite the fact that the matching
IS exact.

eg. 1-loop SCET graphs:

S=5—5
N

naive soft graph glauber limit of soft graph

C, =C, —CW¥ — &) L 0lGS)

n n

/ N\

naive collinear graph glauber limit of collinear grapt



When do expect Glaubersto play a
central role” Forward Scattering

—)—0:——)-—?—)-- /ddk 1 1 1 1
hrahi Rt (bt + Az(kr) (b— + Ag(kr) kT (K +q)7

Rapidity divergences necessitate the introduction
of an additional requlator beyond dim. req.

/ d42k kO dk® k7|72 (1v/2)2
IGbOX — - - _ ‘ .
(B2) (kL +q1)? (/@L—Al(/ﬂ)—l—z()) (—k— —AQ(M)H())

_ / a2k kK772 (v/2)
(k2) (kL +q1)2(-2k* — A+i0)

—1 d_d_QkJ_ |: 9 : . c A\ —2
=1 | T o (v/2)“" (—2im) csc(2mn) sin(7wn) (2A) ”]
4 / (k3)(kL+q0) Effectively

_ (;_7:) /(Eﬂwl‘CL [—m+0(n)] Eikonal

Yk +q)2 L




Furthermore cross box vanishes

—)-—o— > —o— )—
o B / d9-2k, dk° dk* k7|72 (v/2)2"
(F2) (R +0)2 (k=D (k1)+i0) (k== Aa (k1) +i0)

]Gcbox —

=0
kY poles on same side

We can resum the full series In
Impact parameter space

b1 [mevE
2

p(br) =CFr QQ(M)/q

Glar) = (2n)28%(qu) + [ dPby e TP (@i900) 1)

ez’(ﬁ-l_)l = —2CF a(p) In (

/

= (2m)%0°(q1) +

idrCras(p) T'(1 —iCras(p)) ( —1 )iCFas(u)
(—1t) ['(1+4iCras(u))

i4rCras(p) 10 (t,cxs) |
(—%)

m262’YE

= (2m)%0%(q1) +

O(t,as) = Cras(p) In (mQ) + QZ - i2l;+1 Cro S(M))2k+1.

his result holds even if we place insert in greens
functions, as long as additional loop does not neec
rapidity regularization, will use this property later on.




What about NA-Corrections?

Soft graphs dress Glauber kernel lead to running of coupling

Therefore at least part of collinear must also
exponentiate, but could be a remainder.



Role of Glaubers in Hard
Matching

Empirically Glaubers are not needed in hard
matching (active only), but from the point of
view of EFT (formally), they should be
included as they are part of the theory.

Jr = (éan)SfLFSﬁ(Wfkﬁ) 113

BUT: If we include Glaubers we must make sure to
subtract the Zero Bin from soft contribution



Once we include Glaubers, the direction
of the soft Wilson line (in or out to
infinity) becomes irrelevant. Glaubers
measure whether FF Is space like or

timelike
a) M
= =)
S5 o Cpag[—2h(e, p?/m?) 12 1 (2 1 1, ,pu* x?
S S =& 27 [ n +1n—1/2—i0<e+1nm2>+62 2ln m2 12
N

| Cra | 2 Wilson lines direction is
G-zerobin 59 = S [(m)(_ﬂn_)]' iINnherited from §

€ m?

Glauber vanishes for space-like, S — SG) — Real
direction of soft Wilson line flips



Alternatively, we can albsorb this
Glauber contribution into the soft Wilson
ine |[F we choose the direction properly

G- S =0

Does this correspondence hold for the most
general set of matrix elements?



Persistance of Glauber/Soft Zero Bin
Correspondence

Allow for Soft radiation

General form of two loop soft current
for three different kinematic situations

(bp,ep,e+e-)
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Considering all possible subtractions of soft
lines leads to the same conclusion

Gi Gass Gaps Gg Grp | SPY sPP i3 s sibe? si) s sy

Cal: agel =1 0 0 4+t 41l 41 L0 0o 0o 0 0 0
a?l 0 0 0 43 0| 43 0 0 0 0 0 0 0

a? -+ 0 0 O 0| 0 —: 0 0 0 0 0 0

CpI: bl 0 =5 0 0 0| 0 0 -2 43 -3 -3 +3 0
b1 0 0 0O 0 O 0 0 0 0 —1* 0 +iF 0

Pl 0 -5 0 0 0 0 0 —1 +1 0 -1 0 0
Cal®: cc/+2 =L 0 0 o +r 0o -1 4L -1 0 0+
Pl o0 0 0 0| +3 0 0 0 — 1 0 0 41
AP+ -5 0 0 0| O 0 -3 +3 0 0 0 0




We may also consider two loop virtuals which now will include effects
of Liptov vertex

Abelian naive soft
51+ 52 +5G + G =51+ 52,4 graph
.e. soft '\‘\T
subtractions= subtractead
Glaubers
non-Abelian éé % %
GSy) GS,) GS3) SLy) SLo)
<1>,n 2) s ’ (2) 7 ,n
/ (1) 7 5 . 1
\ ?%%O% (3\ X(S%)\?i':()
®) ~_ (4) ‘nrﬁ/
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1) oM n % n
2
A TR o ﬁ%
s S S
S5 —>
(3) 5 3) S h S
n (4) ™7 n
GS:) GSs) GSs) SLy) SLs)
L. 7 N N n N
. 4 S J 2
25% oA s et e
S & S & S%e Wm
N ) . )
\ \ (3)\ . (3) . (3) .
8) N _ 3 Ny _ Ne = e - & —
(4)> N “N “N (4) 0)

As before we find that the
Glaubers sit inside the softs

So+ 84+ S+ 85 +GS,+GSy +GS3+ LSy + LSy =83+ S, + 55+ Sg.

Subtracted softs Naive softs



So it seems that Glaubers are absorbable into
Wilson line when we consider partonic scattering,

what about hadronic?
AT (p1—P) in- (P —p2)

P>_ . P> =S _
=~ (P—m)? (P—p
BV o[ 1 1] [n-pi-(P—p1)n-pen- (P—po)
n 7 T S -9 —9 _ —
//f A P Dy n-P n-P
P T T T IS

=S5STE(P11,p21),

only difference fror previous calculation B'that Tine is not longer

on shell. Just shifts /A which we know from Glauber loop
computation does not effect result.

So again Glauber absorbable into S Wilson line
Moreover, the entire series can be summed to generate a phase

—a————— ——
* n
:*?4'7/ .
Z Pl B = SYE(p1L,p2y) € ?0/2,
F#rungs /;/fr n n,



What About Active Spectator?

a) b) c) d)
— > — — ——— —eg P— ——— —— x> —e e ————>—
T g n T~ ﬁ N ¥q n 1N
- x_ &N ‘v A
— (15&/\/\ — 7 — E//w — 7 —
7}7’ n 7;L v 7 //f: n n » T
— —— — —— —— —L —— ——— ——— —L — —— — — —«— —L — —€—
Glauber subtraction of collinear
P —D2 GU(k.) |n- k|~
C\%)(Fig.35b) = 257 /d*fk
(Fig.350) = P—py)? —kt — Ay +40][kT — A} +40]

P — o /Jdk GO (k1 )|2k*|7wm
k_

Fig.35 —25’7
15900 P—py)? Ao +i0][—k+ —Aq +i0][k T — A, +i0]’

Rapidity regulator makes differences irrelevant

Glauber Effect absorbed into Collinear Wilson line.

These Glaubers are also benign



Spectator-Spectator
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a) b) . . ©)
Note: no corresponding soft diagrams. Also
fermions don’t eikonalize ., Sum over all

SHEL) (1) boxes
V4 — L) AT
5 / T [k — A 440][—k+ — A +i0] [k~ — Ay +40][—k— — AL +i0]
_ S /dd—z,ﬂ Glky) E(pyy +ky.par — k1) Exponentiates in
e /dd_QbL B 1, L) €00 impact parameter
space

ql = (—pu —pu) Ap = (pu — pu)/Q



When does this phase cancel?

a2 8p. [ Ass(dp1.a0)] (337)
=87 / ' *Ap, / 172, @42 AP Bl(p g )BT q ) €000
= ISP [ a2 |E b )
As long as we integrate over full range of Ap |

e.g. Beam thrust (Gaunt, Zeng),
factorization violated at ~ O(a*)

However, given our working definition of factorable,
one would say that this rate is still factorable since
one can still make a prediction in terms of PDF's.



1/N dN/d Ty [GeV]

MC /Data
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However, there is more going on, data
disagrees with these predictions by an
amount of order one.
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Conclusions

Set up systematic EFT to address the question of
Glauber Gluons (Completes SCET)

* |In purely active parton interactions the Glauber is
responsible for the direction of Wilson lines
(relevant for possible non-universality of matrix

elements.

* |n spectator interactions, there are no
corresponding soft graphs. Glaubers have their
own life, burden of proof on user. Sufficient criteria
for NON-cancellation is integration over transverse

momentum difference.




Other uses not discussed

e Systematics of Reggeization

 Small x physics, BFKL resummations



