LHC Signals of (MSSM) Electroweak Baryogenesis

David Morrissey

Department of Physics, University of Michigan Michigan Center for Theoretical Physics (MCTP)

With:

Csaba Balázs, Marcela Carena, Arjun Menon, Carlos Wagner

Baryons

Baryon density of the universe: [WMAP '06]

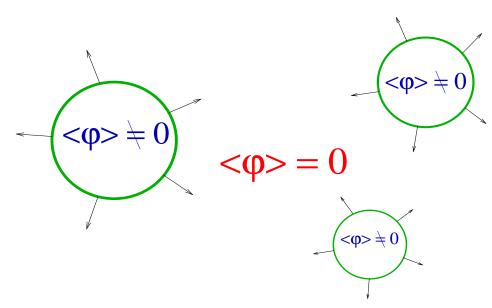
$$\eta = \frac{n_B}{n_\gamma} = (6.5 \pm 0.3) \times 10^{-10}.$$

where $n_B = (\# baryons) - (\# anti-baryons)$.

- Only baryons, not anti-baryons.
 - → Baryon Asymmetry of the Universe (BAU).
- No Standard Model (SM) explanation.

MSSM → Electroweak Baryogenesis

Baryogenesis Mechanisms



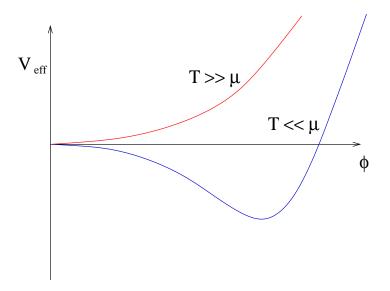
Electroweak Baryogenesis (EWBG)

→ baryon production during the electroweak phase transition.

[Kuzmin, Rubakov, Shaposhnikov '85]

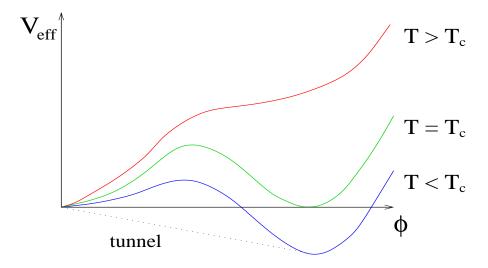
- 1. Electroweak symmetry breaking as the universe cools.
- 2. Nucleation of bubbles of broken phase.
- 3. Baryon production near the expanding bubble walls.

1. The Electroweak Phase Transition

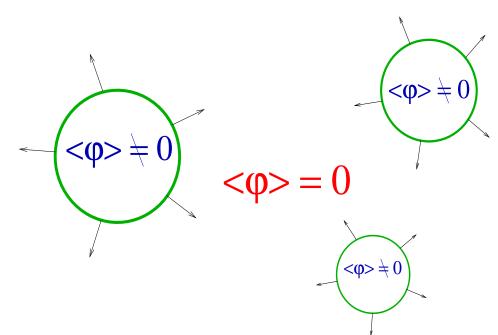

• Order parameter = Higgs VEV $\langle \phi \rangle$:

$$\langle \phi \rangle = 0 \Rightarrow SU(2)_L \times U(1)_Y$$
 is unbroken.

$$\langle \phi \rangle \neq 0 \Rightarrow SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}.$$

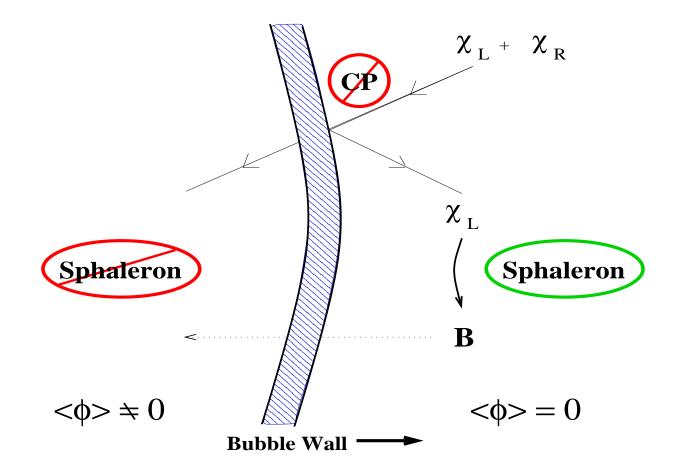

• Effective potential:

$$V_{eff} = (-\mu^2 + \alpha T^2)\phi^2 - \gamma T\phi^3 + \frac{\lambda}{4}\phi^4 + \dots$$



2. Bubble Nucleation

• First order phase transition:



ullet Bubbles of broken phase are nucleated at $T < T_c$.

3. Producing Baryons

- CP violation occurs in the bubble wall.
- Sphaleron transitions create baryons outside the bubbles.
- These baryons are swept up into the bubbles.

Aside: Sphalerons

- B + L is $SU(2)_L$ anomalous in the SM (and MSSM).
- ullet Transitions between topologically distinct $SU(2)_L$ vacua:

$$\Delta B = \Delta L = n_g = \# \ generations.$$
 ['t Hooft '76]

• $T = 0 \Rightarrow$ tunnelling (instantons).

$$\Gamma_{inst} \propto e^{-16\pi^2/g_2^2} \simeq 10^{-320}$$

• $T \neq 0 \Rightarrow$ thermal fluctuations (sphalerons).[Klinkhamer+Manton '84]

$$\Gamma_{sp} \sim \begin{cases} T^4 \ e^{-4\pi \langle \phi \rangle/g \, T} & \langle \phi \rangle \neq 0 \quad \text{[Arnold+McLerran '87]} \\ \kappa \ \alpha_w^4 \ T^4 & \langle \phi \rangle = 0 \quad \text{[Bodeker,Moore,Rummukainen '99]}. \end{cases}$$

EWBG in the Standard Model

It doesn't work for two reasons:

1. The electroweak phase transition is first-order only if the Higgs boson is very light, [Kajantie et al. '98]

$$m_h \lesssim$$
 70 GeV.

LEP II experimental mass bound:

$$m_h > 114.4 \,\text{GeV}$$
 (95% c.l.).

2. There isn't enough CP violation in the SM. [Gavela et al. '94]

EWBG in the MSSM

- SM Problem #1: No First-Order Phase Transition
 - MSSM superpartners modify the Higgs potential.
- SM Problem #2: Not Enough CP Violation
 - Soft SUSY breaking (and μ) introduces new CPV phases:

$$Arg(\mu M_a), Arg(\mu A_i), \dots$$

- EWBG can work in the MSSM!
- These requirements fix much of the MSSM spectrum.

Requirement #1: A Strong First-Order EWPT

•
$$V_{eff} = (-\mu^2 + \alpha T^2)\phi^2 - \gamma T\phi^3 + \frac{\lambda}{4}\phi^4 + \dots$$

Quantitative Condition: [Shaposhnikov '88]

$$rac{\langle \phi(T_c)
angle}{T_c} \simeq rac{\gamma}{\lambda} > 1.$$

- $\gamma \neq 0$ is generated by *bosonic* loops.
- The dominant MSSM contribution comes
 from a light mostly right-handed stop. [Carena, Quirós, Wagner '95]

•
$$m_h \simeq \sqrt{\lambda} v$$

$$V_{eff} = (-\mu^2 + \alpha T^2)\phi^2 - \gamma T\phi^3 + \frac{\lambda}{4}\phi^4 + \dots$$

$$\mathcal{M}_{\tilde{t}}^{2} = \begin{pmatrix} m_{Q_{3}}^{2} + m_{t}^{2} + D_{L} & m_{t} X_{t} \\ m_{t} X_{t} & m_{U_{3}}^{2} + m_{t}^{2} + D_{R} \end{pmatrix}$$

MSSM "cubic term":

$$\gamma T \phi^3 \simeq \frac{T}{4\pi} \left[m_{\tilde{t}_1}^2(\phi, T) \right]^{3/2}$$

where

$$m_{\tilde{t}_1}^2(\phi, T) \simeq y_t^2 \phi^2 \left(1 - \frac{|X_t|^2}{m_{Q_3}^2} \right) + \underbrace{m_{U_3}^2 + \xi T^2}_{\delta m^2}.$$

• $\delta m^2 \to 0$ maximizes the "cubic term".

Implications

A light right-handed stop:

$$-(100 \, {\rm GeV})^2 \lesssim m_{U_3}^2 \lesssim 0, \quad |X_t|/m_{Q_3} \lesssim 0.5$$

$$\Rightarrow$$
 120 GeV $\lesssim m_{\tilde{t}_1} \lesssim$ 170 GeV $\leq m_t$.

A heavy left-handed stop:

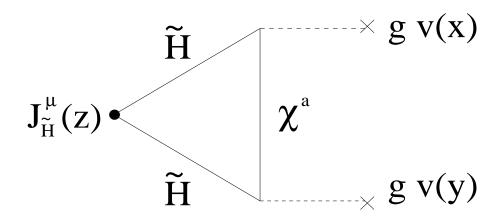
$$m_{Q_3} \gtrsim 2 \, {\rm TeV}.$$

• A light SM-like Higgs:

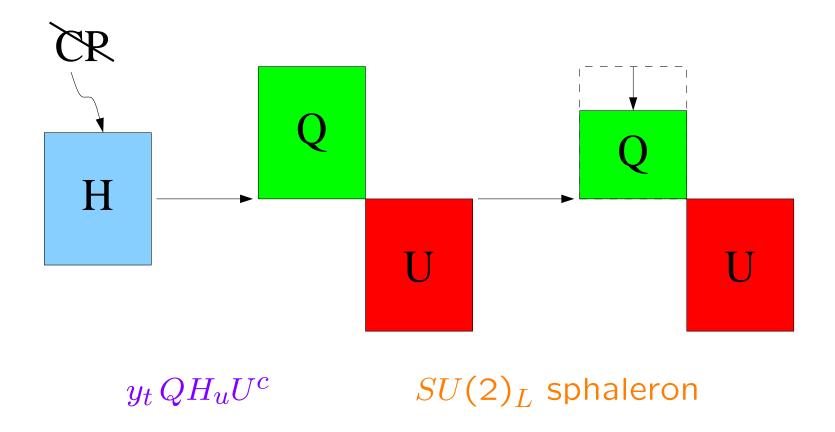
$$M_a \gtrsim 200 \, \text{GeV}, \quad 5 < \tan \beta < 10.$$

$$\Rightarrow m_{higgs} \lesssim 120 \text{ GeV}.$$

Requirement #2: New CP Violation


• Main source: Higgsinos.

e.g.


$$\mathcal{M}_{\tilde{\chi}^{\pm}} \sim \left(egin{array}{cc} |M_2| & g_2 \, v_u(z) \ g_2 \, v_d(z) & e^{i\phi} \, |\mu| \end{array}
ight), \quad ext{with } \phi = Arg(\mu \, M_2).$$

CPV source:

$$\langle J_{\tilde{H}}^{0}(z)\rangle = \langle \bar{\tilde{H}}\gamma^{0}\tilde{H}\rangle \propto Im(\mu M_{2}) \partial_{z}f(v_{u}(z), v_{d}(z))$$

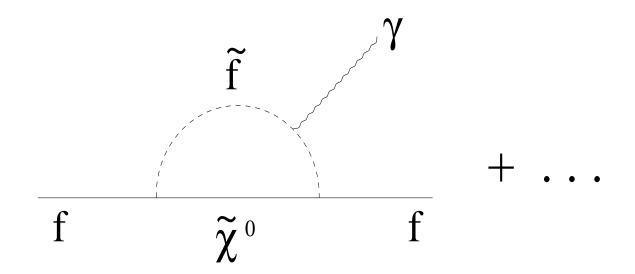
• B formation cartoon:

• $\mathcal{O}_{sphal} \propto \prod_i (Q_i Q_i L_i)$ is sourced by the Q asymmetry.

Implications

• This is enough to generate the baryon asymmetry if:

[Carena, Quirós, Seco, Wagner '02; Lee, Cirigliano, Ramsey-Musolf '04]


$$Arg(\mu M_{1,2}) \gtrsim 10^{-2}$$
 $\mu,~M_{1,2} \lesssim 400\, ext{GeV}$

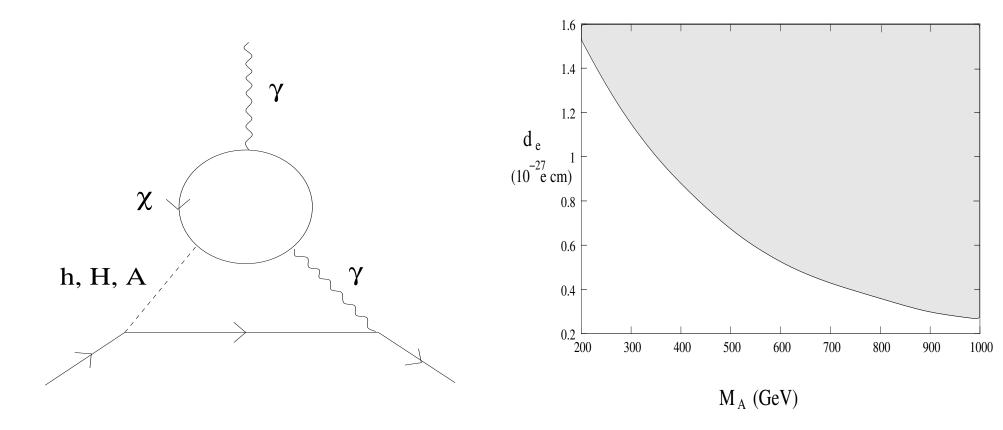
- New CP violation → electric dipole moments (EDM)
- Strict constraints:

$$|d_e| < 1.6 imes 10^{-27} ext{ e cm}$$
 [Regan et al '02] $|d_n| < 2.9 imes 10^{-26} ext{ e cm}$ [Baker et al '06] $|d_{Hg}| < 2.1 imes 10^{-28} ext{ e cm}$ [Romalis et al '01]

\bullet e.g. Electron EDM d_e

One-loop contribution: [Ibrahim+Nath '98]

Consistency with EWBG and EDM constraints requires


$$m_{\tilde{f}_{1,2}} \gtrsim 5\!-\!10\, ext{TeV}.$$

 \Rightarrow decouple first and second generation sfermions.

• e.g. Electron EDM d_e (contd...)

Irreducible two-loop contribution ($\propto Im(\mu M_2)$):

[Chang, Chang, Keung '02; Pilaftsis '02]

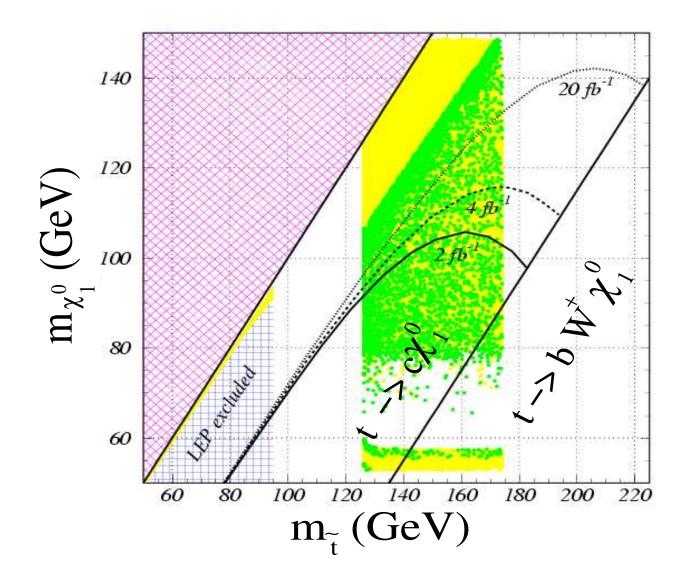
Upcoming experiments will probe the EWBG region.

[Balázs, Carena, Menon, DM, Wagner '04, Lee, Cirigliano, Ramsey-Musolf '04]

Spectrum Summary

- Light mostly right-handed stop: $m_{\tilde{t}_1} < m_t$.
- Heavy mostly left-handed stop: $m_{\tilde{t}_2} > 2 \, \text{TeV}$.
- Light SM-like Higgs boson: $m_h \lesssim 120 \, \text{GeV}$.
- ullet Very heavy 1st and 2nd gen. sfermions: $m_{\tilde{f}_{1,2}} \gtrsim$ 5 TeV.
- Light charginos and neutralinos: $M_{1,2}$, $\mu \lesssim 400 \, \text{GeV}$.

Baryogenesis Mechanisms



MSSM EWBG at the LHC

MSSM EWBG at the Tevatron?

ullet A visible light stop since $m_{\tilde{t}_1} < m_t$?

[Balázs, Carena, Wagner '04]

Light Stop Decay Modes

•
$$\tilde{t}_1 \to c \, \tilde{\chi}_1^0$$

$$(m_{\tilde{t}_1} - m_{\chi_1^0}) < 30 \, {\rm GeV} \Rightarrow {\rm soft \, charm}$$

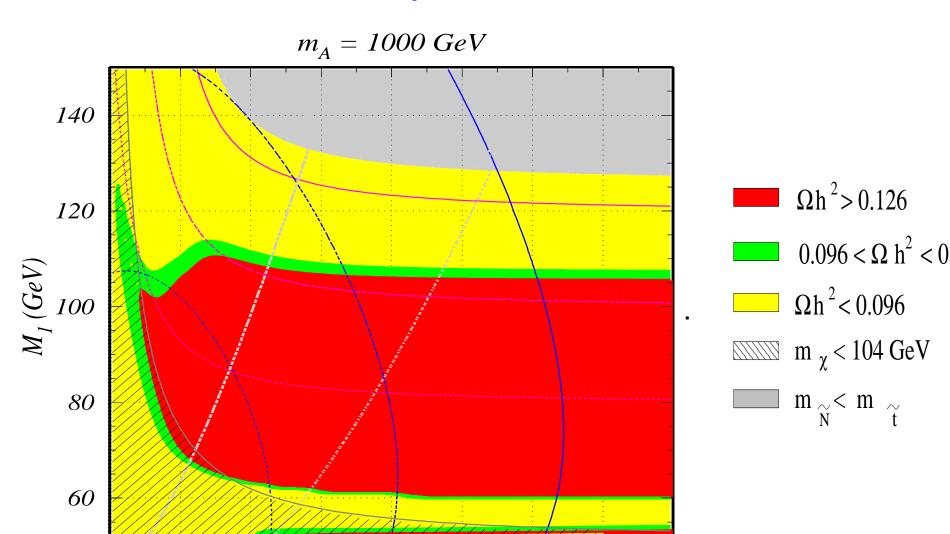
•
$$\tilde{t}_1 \rightarrow b W^+ \chi_1^0$$
, $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$

Often kinematically impossible.

Swamped by background for $m_{\chi_1^0} >$ 35 GeV. (4 fb^{-1})

[Demina, Lykken, Matchev, Nomerotski '99]

ullet Metastable $ilde{t}_1$ (o gravitino)


Tevatron CHAMP searches imply $m_{\tilde{t}_1} > 220 \, \mathrm{GeV}$.

[CDF '06; Diaz-Cruz, Ellis, Olive, Santoso '07]

$\tilde{t}_1 \to c \, \chi_1^0$ and Dark Matter

Stop coannihilation with a Bino LSP:

[Balázs, Carena, Menon, DM, Wagner '04]

LHC Picture $(\tilde{t}_1 \rightarrow c\chi_1^0)$

A bit glum ...

- $\tilde{t}_1 \to c \, \chi_1^0$ is difficult to trigger on.
- ullet Other scalars are very heavy. $(\tilde{b}_R,\, au_R$?)
- $\tilde{g} \rightarrow \bar{t} \; \tilde{t}_1, \; t \; \tilde{t}_1^*$ dominates.
- Challenging electroweak-ino decays: [Carena+Freitas '06]

$$\chi_{1,2}^{\pm} \rightarrow \tilde{t}_1 b$$
 (if possible) $\chi_{(i>1)}^0 \rightarrow Z \chi^0, \ h \chi^0, \ W^{\pm} \chi^{\mp}$

Same Sign Stops

[Kraml+Raklev '05,'06]

• $\tilde{g} \, \tilde{g} \to t \, t \, \tilde{t}_1^* \, \tilde{t}_1^* \to b \, b \, \ell^+ \ell^+ + (jets) + \not\!\!E_T$ \Rightarrow same sign tops \to same-sign leptons

• Discovery of light stops with 30 fb^{-1} for $m_{\tilde{g}} < 1000 \, {\rm GeV}$.

• Parameter determination is difficult.

• No *c*-tags. . .

Stoponium

[Drees+Nojiri '97; Martin '08]

- $\eta_{\tilde{t}_1} = \tilde{t}_1^* \tilde{t}_1^*$ bound state.
- $\underbrace{\Gamma_{\tilde{t}_1 \to c\chi_1^0}}_{\sim \text{eV}} \ll \underbrace{\eta_{\tilde{t}_1} \text{ binding energy}}_{\sim \text{GeV}}.$
- $\eta_{\widetilde t_1} o \gamma \gamma$ may be observable at the LHC with $< 100\,fb^{-1}$ for $m_{\eta_{\widetilde t_1}} < 250\,{
 m GeV}.$ [Martin '08]
- Very good *absolute* mass measurement of $\tilde{t}_1!$

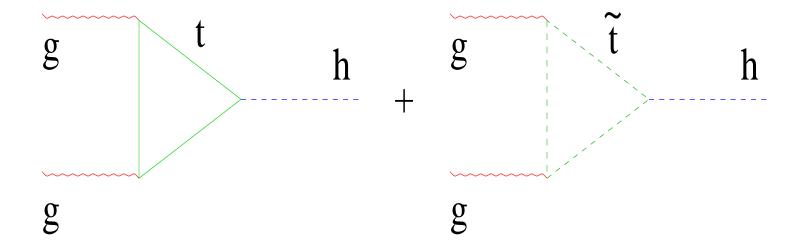
Indirect Higgs Signals

[in progress with Arjun Menon]

A light stop can modify Higgs production and decay.

[Kane, Kribs, Martin, Wells '95; Dawson, Djouadi, Spira '96; Djouadi '98; Dermisek + Low '07

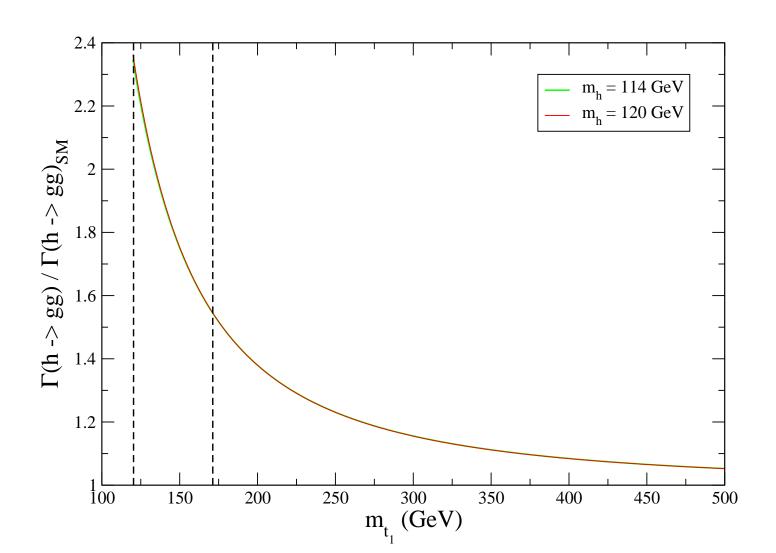
• Effective (EWBG) $h \tilde{t}_1 \tilde{t}_1^*$ coupling:


$$g_{h\tilde{t}_1\,\tilde{t}_1} \simeq m_t^2 \left(1 - \frac{|X_t|^2}{m_{\tilde{Q}_3}^2} \right).$$

⇒ same combination as in the EWBG phase transition...

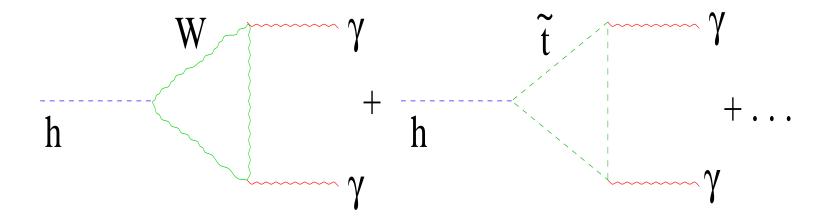
Gluon Fusion: $gg \rightarrow h$

• $\sigma(gg \to h) \propto \Gamma(h \to gg)$


• Loops:

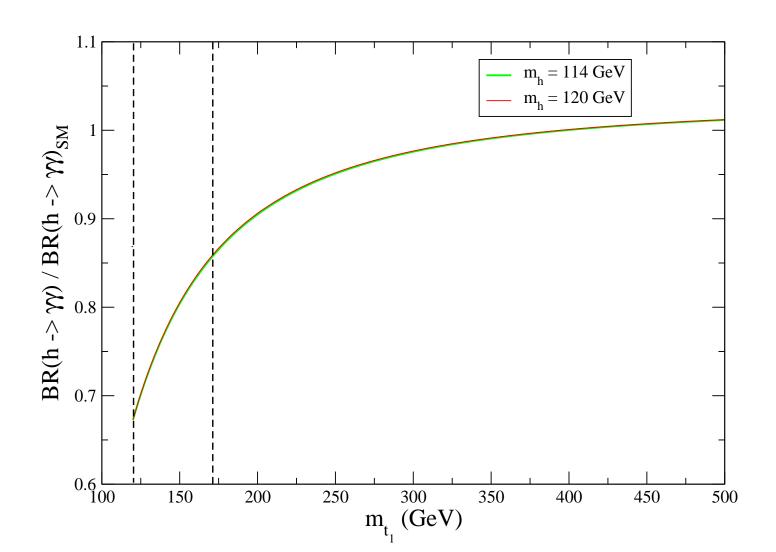
• Constructive . . .

• $|X_t| \simeq 0$, $\tan \beta = 10$, $M_a = \text{large}$


• $M_1 = 120 \, \text{GeV}$, $|\mu| = M_2 = 200 \, \text{GeV}$

Diphotons: $h \rightarrow \gamma \gamma$

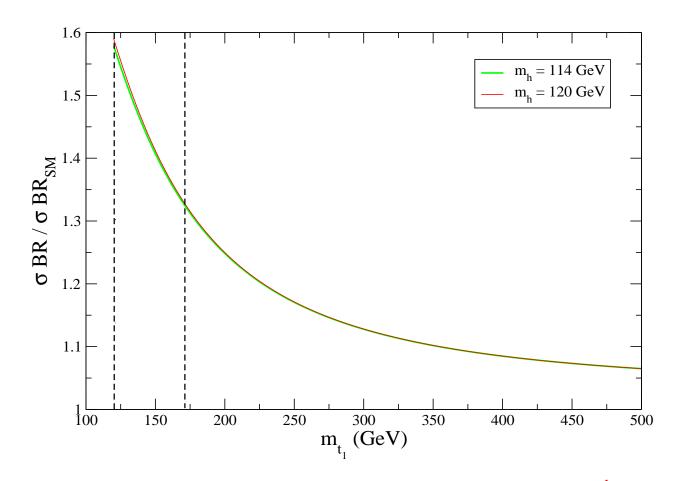
• Important search channel for a light Higgs.


Loops:

• Destructive . . .

• $|X_t| \simeq 0$, $\tan \beta = 10$, $M_a = \text{large}$

• $M_1 = 120 \, \text{GeV}$, $|\mu| = M_2 = 200 \, \text{GeV}$


LHC Light SM Higgs ($m_h < 120 \, {\rm GeV}$) Searches

[ATLAS TDR '99; CMS TDR '07]

- $(gg \rightarrow) h \rightarrow \gamma \gamma$ 5σ with about $10\,fb^{-1}$ $\Delta m_h/m_h < 0.2\%$.
- ullet VBF
 ightarrow h
 ightarrow au au 4.0σ with $30\,fb^{-1}$, 5.5σ with $60\,fb^{-1}$
- $VBF \rightarrow h \rightarrow \gamma \gamma$ 3.1 σ with 60 fb^{-1}
- $Wh, Zh \rightarrow \gamma\gamma$ 4.0 σ with 100 fb^{-1} (high \mathcal{L})
- $(gg \rightarrow) \ h \rightarrow ZZ^*$ 3.0 σ with 30 fb^{-1} $(m_h=120\,{\rm GeV})$

$$gg \rightarrow h \rightarrow \gamma \gamma$$

• Total Rate $\propto \Gamma(h \to gg) BR(h \to \gamma\gamma)$

• 10-20% uncertainty on the rate with $300\,fb^{-1}$ [Zeppenfeld '02]

Summary

- On top of everything else, the MSSM can account for the dark matter and the baryon asymmetry.
- Baryon production → electroweak baryogenesis.
- EWBG requires a light stop, light -inos, heavy scalars.
- This scenario can be challenging at the LHC.
- Higgs boson production and decay gives an indirect probe.
- Connection between colliders and cosmology!?

MSSM EWBG at the LHC

Extra Slides

Sphalerons

- ullet B+L is a symmetry of the classical SM and MSSM Lagrangians. This symmetry is broken by quantum effects.
- The only processes that violate B+L are transitions between topologically inequivalent $SU(2)_L$ gauge vacua.
- Each transition produces $\Delta B = \Delta L = n_q = \#generations$.
- At T=0, these transitions proceed by tunnelling (instantons).

$$\Gamma \propto e^{-16\pi^2/g^2} \sim 10^{-160}$$
.

- At $T \neq 0$, these can go via thermal fluctuations.
 - \Rightarrow sphaleron transitions.

The transition rate (per unit volume) is [Arnold+McLerran '87]

$$\Gamma_{sp} \sim \begin{cases} T^4 e^{-4\pi\langle\phi\rangle/gT} & \langle\phi\rangle \neq 0\\ \alpha_w^4 T^4 & \langle\phi\rangle = 0. \end{cases}$$

• The net rate of B violation due to the sphalerons is

$$\frac{dn_B}{dt} = -\frac{\Gamma_{sp}}{T^3} \left[A \sum_{i=1}^{n_g} (3 n_{q_L^i} + n_{l_L^i}) + B n_B \right],$$

for positive dimensionless constants \mathcal{A} and \mathcal{B} .

- The first term corresponds to the chiral fermion charge: e.g. $n_{q_L}=$ (# left-handed quarks) (# right-handed antiquarks).
- In the absence of this asymmetry, baryon number relaxes to zero as $n_B(t) = n_B(0) e^{-\mathcal{B}(\Gamma_{sp}/T^3)t}$.
- When non-zero, the chiral charge acts as a source for baryon production.

Beyond the MSSM

Why?

The minimal SUSY SM faces a few difficulties:

ullet The tree-level mass of the lightest CP-even Higgs is bounded by M_Z :

$$m_h^2 \le M_Z^2 \cos^2 2\beta,$$

but LEP II finds $m_h \gtrsim 114$ GeV.

 On the other hand, a strongly first-order electroweak phase transition, needed for EWBG, is only obtained for

$$m_h \lesssim 120 \text{ GeV}.$$

• μ problem:

The dimensionful superpotential coupling $\mu\,H_1\cdot H_2$, with $\mu\sim\mathcal{O}(\text{TeV})$, is needed to break the electroweak symmetry. Why is $\mu\ll M_{GUT}$ or M_{Pl} ? (However, see [Giudice+Masiero '88].)

Adding a gauge singlet S helps:

- $\mu H_1 \cdot H_2 \rightarrow \lambda S H_1 \cdot H_2$ solves the μ problem; S gets a VEV at a scale set by the soft terms.
- The upper bound on the lightest CP-even Higgs mass becomes

$$m_h^2 \le M_Z^2 \left(\cos^2 2\beta + \frac{2\lambda^2}{\bar{g}^2} \sin^2 2\beta \right).$$

• A new $SH_1 \cdot H_2$ trilinear soft term makes the electroweak phase transition more strongly first-order.

[Pietroni '92, Davies et al '96, Schmidt+Huber '00, Kang et al '04.]

But ...

- The singlet must be charged under some additional symmetry to forbid new dimensionful (d < 4) couplings.
- The most popular choice is a \mathbb{Z}_3 symmetry, which yields the superpotential

$$W = \lambda S H_1 \cdot H_2 + \kappa S^3 + (MSSM terms).$$

This model is called the NMSSM, the Next-to-Minimal Supersymmetric Standard Model.

- When S gets a VEV, the \mathbb{Z}_3 symmetry is broken producing cosmologically unacceptable domain walls.
- ullet The domain wall problem can be avoided by including non-renormalizable operators that break \mathbb{Z}_3 . However, these generate a large singlet VEV which destabilizes the hierarchy.

[Abel,Sarkar,+White '95]

A way out: the nMSSM

- Both problems can be avoided by imposing discrete
 R-symmetries on both the superpotential and the Kähler potential.
 - [Pangiotakopoulos+Tamvakis '98/'99, Pangiotakopoulos+Pilaftsis '00, Dedes et al '00]
- The resulting model is the nMSSM, the not-quite MSSM.
 - Superpotential:

$$W = \frac{m_{12}^2}{\lambda^2} S + \lambda S H_1 \cdot H_2 + (MSSM \text{ matter terms}),$$

— Soft-breaking potential:

$$V_{soft} = t_s(S + h.c.) + m_s^2 |S|^2 + a_{\lambda}(S H_1 \cdot H_2 + h.c.) + (MSSM terms).$$

 The same superpotential and soft-breaking terms also arise in the low-energy limit of the Fat Higgs model.
 [Harnik et.al. '03]

EWBG in the nMSSM

• In the SM and MSSM, the effective potential has the form:

$$V_{eff} \simeq (-\mu^2 + \alpha T^2)\phi^2 - \gamma T \phi^3 + \frac{\lambda}{4} \phi^4 + \dots$$

- γ drives the transition to be first order.
- $\gamma = 0$ at tree-level in the SM and MSSM.
- SM: the PT isn't strong enough.
- MSSM: one-loop corrections to V_{eff} from a light stop can make the PT strong enough, but only for $m_h \lesssim 120$ GeV. [Carena et al '96, Laine '96, Losada '97, Laine+Rummukainen '00]
- nMSSM: the trilinear soft term $SH_1 \cdot H_2$ contributes to γ at tree level making the PT first-order, even without a light stop, and for $m_h > 120$ GeV.

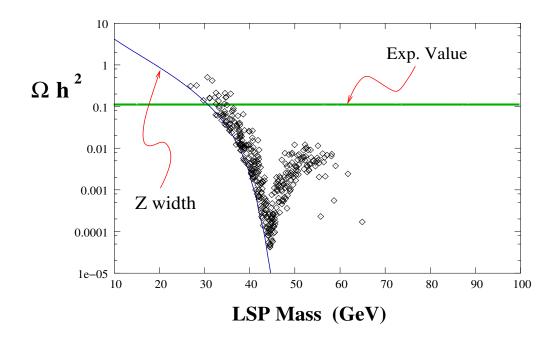
Charginos, Neutralinos, and Dark Matter

- ullet The chargino mass matrix is identical to the MSSM, but with $\mu o -\lambda \, v_s$.
- The fermion component of S, the singlino, produces a fifth neutralino state.

$$\mathcal{M}_{ ilde{N}} = \left(egin{array}{ccccc} M_1 & \cdot & \cdot & \cdot & \cdot & \cdot \ 0 & M_2 & \cdot & \cdot & \cdot & \cdot \ -c_{eta} s_w M_Z & c_{eta} c_w M_Z & 0 & \cdot & \cdot & \cdot \ s_{eta} s_w M_Z & -s_{eta} c_w M_Z & \lambda v_s & 0 & \cdot & \cdot \ 0 & 0 & \lambda v_2 & \lambda v_1 & 0 \end{array}
ight)$$

ullet We relate M_1 to M_2 by universality and allow for a common phase;

$$M_2 = |M_2| e^{i\phi} \simeq \frac{\alpha_2}{\alpha_1} M_1.$$


- $\lambda(M_Z) \lesssim 0.8$ for perturbative unification.
- ullet There is always a light neutralino: $m_{\tilde{N}_1} \lesssim 60$ GeV.

e.g.
$$m_{\tilde{N}_1} \simeq \frac{2 \lambda v_1 v_2 v_s}{v_1^2 + v_2^2 + v_s^2},$$

for M_1 , $M_2 \to \infty$, and $\tan \beta \gg 1$ or $v_s \gg v$.

EWBG and DM Results

Neutralino relic densities consistent with EWBG:

- Dots = parameter sets consistent with EWBG.
- Green line = WMAP result:

$$\Omega_{DM} h^2 = 0.113^{+0.016}_{-0.018}$$

• Blue line = LEP Z-width constraint:

$$\Gamma(Z o ilde{N}_1 ilde{N}_1) < 2.0$$
 MeV.

Higgs Bosons

- Physical states: 3 CP-even, 2 CP-odd, 1 charged.
- For $M_a^2 \to \infty$, the charged state, one CP-even state, and one CP-odd state decouple.
- The remaining CP-odd state is pure singlet with mass $m_P^2 = m_s^2 + \lambda^2 v^2.$
- The remaining CP-even states have mass matrix

$$M_S^2 = \begin{pmatrix} M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta & \cdot \\ v(a_\lambda \sin 2\beta + 2\lambda^2 v_s) & m_s^2 + \lambda^2 v^2 \end{pmatrix}.$$

This is in the basis (S_1, S_2) , where S_1 is SM-like, and S_2 is a singlet.

- EWBG $\Rightarrow \sqrt{m_s^2 + \lambda^2 v^2} \lesssim 250$ GeV.
- If so, there are two light CP-even and one light CP-odd Higgs bosons.
- The lightest CP-even and CP-odd states usually decay invisibly into pairs of the neutralino LSP.
- The CP-even states can still be detected at the LHC through vector boson fusion channels. Define

$$\eta = BR(h \to inv) \frac{\sigma(VBF)}{\sigma(VBF)_{SM}}.$$

- The luminosity needed for a 5σ discovery is then [Eboli+Zeppenfeld '00] $\mathcal{L}_{5\sigma} \simeq 8 \mathrm{fb}^{-1}/\eta^2$.
 - $-\eta \simeq 0.5-0.9$ for the SM-like state.
 - $-\eta \simeq 0.0-0.3$ for the mostly singlet state .