From partons to new physics

Connections between the Standard Model and LHC discoveries

Pavel Nadolsky

Michigan State University

February 13, 2008

Perturbative QCD computations

A partial picture

Perturbative QCD computations

Global interconnections can be as important as (N)NLO perturbative contributions; are different at the Tevatron and LHC

Perturbative QCD computations

Global interconnections can be as important as (N)NLO perturbative contributions; are different at the Tevatron and LHC

Why QCD at LHC is special

- dominance of sea parton scattering
- small typical momentum fractions
 x in several key searches
 (Higgs, lighter superpartners, ...)
- large QCD backgrounds
- complicated event signatures; reliance on differential distributions
- different low-energy dynamics (underlying event, multiple interactions...)

Examples of global connections

 Correlations between collider cross sections through shared parton distribution functions

based on

Implications of CTEQ6.6 global analysis for collider observables

by P. N., Q.-H. Cao, J. Huston, H.-L. Lai, J. Pumplin, D. Stump, W.-K. Tung, C.-P. Yuan; arXiv:0802.0007

- Standard model effects on electroweak precision measurements
 - W boson mass at the Tevatron and LHC

PDF-induced correlations in hadron scattering

- Dependence on the PDF's is strongly correlated for some pairs of cross sections and anti-correlated for other pairs
 - ⇒ implications for the monitoring of parton and collider luminosities, determination of new physics parameters
- I will discuss the origin of the correlations, especially for $W, Z, t\bar{t}$ cross sections

Correlation angle φ

Determines the parametric form of the X - Y correlation ellipse

$$X = X_0 + \Delta X \cos \theta$$

$$Y = Y_0 + \Delta Y \cos(\theta + \varphi)$$

 X_0 , Y_0 : best-fit values

 ΔX , ΔY : PDF errors

 $\cos \varphi \approx \pm 1$: $\cos \varphi \approx 0$:

Measurement of X imposes

ligni loose

constraints on Y

"Standard candle" processes: $W, Z, t\bar{t}$ production

- Cross sections for $pp \to W^\pm X$, $pp \to Z^0 X$ at the LHC can be measured with accuracy $\delta \sigma/\sigma \sim 1\%$ (tens of millions of events even at low luminosity)
- These measurements will be employed to tightly constrain PDF's and monitor the LHC luminosity \(\mathcal{L} \) in real time (Dittmar, Pauss,

Zurcher; Khoze, Martin, Orava, Ryskin; Giele, Keller';...)

- other methods will initially give $\delta \mathcal{L} = 10 20\%$
- $t\bar{t}$ cross section can be potentially measured with accuracy $\approx 5\%$

Theoretical uncertainties on $\sigma_W, \sigma_Z, \sigma_{t\bar{t}}$

$\sigma_{W,Z}$

NNLO PQCD: (Hamberg et al; Harlander, Kilgore;

Anastasiou et al.):
$$\sigma_{NNLO}-\sigma_{NLO}=-2\%$$

▶ PDF dependence: $\gtrsim 3\%$ at $\approx 90\%$ c.l.

$\sigma_{t\bar{t}}$

- ►NLO scale dependence: 11% (to be reduced at NNLO soon)
- ► m_t dependence: 2 3% for $m_t = 172 \pm 1$ GeV
- ► PDF dependence: 3%

9.5 20. 20.5 21 $\sigma_{tot}(pp \rightarrow (W^{\pm} \rightarrow \ell \nu)X)$ (nb)

Cross section ratios

- LHC collaborations will normalize many cross sections σ to the "standard candle" cross sections σ_{sc} (i.e., measure $r = \sigma/\sigma_{sc}$)
 - ightharpoonup dependence on $\mathcal L$ and other systematics may cancel in r
 - ▶ PDF uncertainties cancel in r for strongly correlated cross sections; add up in anticorrelated cross sections
- Similar cancellations may occur in S/\sqrt{B} , asymmetries, etc.

It helps to find a correlated "standard candle" cross section for each interesting LHC cross section

For example, it is better to normalize σ_{Higgs} to σ_{Z} ($\sigma_{t\bar{t}}$) if σ_{Higgs} is correlated (anticorrelated) with σ_{Z}

A mini-poll: Z production at the LHC

Choose all that apply and select the x range The PDF uncertainty in σ_Z is mostly due to...

- **1.** u, d, \bar{u} , \bar{d} PDF's at $x < 10^{-2}$ ($x > 10^{-2}$)
- **2.** gluon PDF's at $x < 10^{-2}$ ($x > 10^{-2}$)
- 3. s, c, b PDF's at $x < 10^{-2}$ ($x > 10^{-2}$)

An inefficient application of the error analysis

© Compute σ_W for 40 (now 44) extreme PDF eigensets

© Find eigenparameter(s) producing largest variation(s), such as #9, 10, 30

 Θ Check that the same eigenparameters produce largest variations in σ_7

 \bigcirc It is not obvious how to relate abstract eigenparameters to physical PDF's u(x), d(x), etc.

CTEQ6.6 theoretical framework

(W.-K. Tung and collaborators)

- A full NLO analysis (NNLO is nearly completed)
- 2700 data points from 35 experiments on DIS, Drell-Yan process, jet production
- Recent improvements in treatment of heavy quark masses in DIS, etc. (CTEQ6.5), with important impact on W, Z cross sections
 - ightharpoonup a general-mass factorization scheme with full dependence on $m_{c,b}$
 - free parametrization for strange quarks (constrained by CCFR, NuTeV charged-current DIS data)

General-mass CTEQ6.6 PDF's vs. zero-mass CTEQ6.1 PDF's

Dashes: CTEQ6.1M

- CTEQ6.6 *u*, *d* are above CTEQ6.1 by 2-3% at $x \sim 10^{-3}$; ... $\sigma_{W.7}$ at the LHC larger by 5-6%
- very different strange PDF's: $s(x) + \bar{s}(x) \neq \bar{u}(x) + \bar{d}(x)$ at low μ

- Minimization of a likelihood function (χ²) with respect to ~ 30 theoretical (mostly PDF) parameters {a_i} and > 100 experimental systematical parameters
 - partly analytical and partly numerical

■ Establish a confidence region for $\{a_i\}$ for a given tolerated increase in χ^2

Pitfalls to avoid

- "Landscape"
 - disagreements between the experiments

The actual χ^2 function shows

- a well pronounced global minimum χ_0^2
- weak tensions between data sets in the vicinity of χ_0^2 (mini-landscape)
- some dependence on assumptions about flat directions

The actual χ^2 function shows

- a well pronounced global minimum χ_0^2
- weak tensions between data sets in the vicinity of χ_0^2 (mini-landscape)
- some dependence on assumptions about flat directions

The actual χ^2 function shows

- lacksquare a well pronounced global minimum χ_0^2
- weak tensions between data sets in the vicinity of χ_0^2 (mini-landscape)
- some dependence on assumptions about flat directions

The likelihood is approximately described by a quadratic χ^2 with a revised tolerance condition $\Delta \chi^2 < T^2$

The actual χ^2 function shows

- a well pronounced global minimum χ_0^2
- weak tensions between data sets in the vicinity of χ_0^2 (mini-landscape)
- some dependence on assumptions about flat directions

The likelihood is approximately described by a quadratic χ^2 with a revised tolerance condition $\Delta \chi^2 \leq T^2$

The actual χ^2 function shows

- a well pronounced global minimum χ_0^2
- weak tensions between data sets in the vicinity of χ_0^2 (mini-landscape)
- some dependence on assumptions about flat directions

The likelihood is approximately described by a quadratic χ^2 with a revised tolerance condition $\Delta \chi^2 < T^2$

Tolerance hypersphere in the PDF space

A hyperellipse $\Delta \chi^2 \leq T^2$ in space of N physical PDF parameters $\{a_i\}$ is mapped onto a hypersphere of radius T in space of N orthonormal PDF parameters $\{z_i\}$

Tolerance hypersphere in the PDF space

2-dim (i,j) rendition of N-dim (22) PDF parameter space

PDF error for a physical observable X is given by

$$\Delta X = \vec{\nabla} X \cdot \vec{z}_m = \left| \vec{\nabla} X \right| = \frac{1}{2} \sqrt{\sum_{i=1}^{N} \left(X_i^{(+)} - X_i^{(-)} \right)^2}$$

Tolerance hypersphere in the PDF space

2-dim (i,j) rendition of N-dim (22) PDF parameter space

Correlation cosine for observables X and Y:

$$\cos\varphi = \frac{\vec{\nabla}X\cdot\vec{\nabla}Y}{\Delta X\Delta Y} = \frac{1}{4\Delta X\Delta Y}\sum_{i=1}^{N}\left(X_{i}^{(+)}-X_{i}^{(-)}\right)\left(Y_{i}^{(+)}-Y_{i}^{(-)}\right)$$

Correlation angle φ

Determines the parametric form of the X - Y correlation ellipse

$$X = X_0 + \Delta X \cos \theta$$

$$Y = Y_0 + \Delta Y \cos(\theta + \varphi)$$

 X_0 , Y_0 : best-fit values

 ΔX , ΔY : PDF errors

 $\cos \varphi \approx \pm 1$: $\cos \varphi \approx 0$:

Measurement of X imposes

loose

constraints on Y

Types of correlations

X and Y can be

- two PDFs $f_1(x_1, Q_1)$ and $f_2(x_2, Q_2)$ (plotted as $\cos \varphi$ vs $x_1 \& x_2$)
- a physical cross section σ and PDF f(x, Q) (plotted as $\cos \varphi$ vs x)
- \blacksquare two cross sections σ_1 and σ_2

Correlations between $f_1(x_1, Q)$ and $f_2(x_2, Q)$ at Q = 85 GeV

Figures from http://hep.pa.msu.edu/cteq/public/6.6/pdfcorrs/

Correlations between $f(x_1, Q)$ and $f(x_2, Q)$ at Q = 85 GeV

Can you guess which PDF's these are?

Correlation patterns look similar for g, c, b PDF's (no intrinsic charm here!)

x in f1at Q=85 GeV

x in g at Q-85. GeV

Correlations between $f_1(x_1, Q)$ and $f_2(x_2, Q)$ at Q = 85 GeV

Sometimes there is a clear physics reason behind the correlation (e.g., sum rules or assumed Regge-like behavior); sometimes not

-0.5

Correlations between $g(x_1, 2 \text{ GeV})$ and $g(x_2, 85 \text{ GeV})$

Gluons at Q = 85 GeV are correlated with gluons at Q = 2 GeV and larger x because of DGLAP evolution

Correlations between W, Z cross sections and PDF's

A surprising discovery

LHC Z, W cross sections are strongly correlated with g(x), c(x), b(x) at $x \sim 0.005$

... they are strongly anticorrelated with processes sensitive to g(x) at $x \sim 0.1$ ($t\bar{t}$, $gg \rightarrow H$ for $M_H > 300$ GeV)

Correlations between $\sigma(gg \to H^0)$, σ_Z , $\sigma_{t\bar{t}}$

$\cos \varphi$ for various NLO Higgs production cross sections in SM and MSSM

An example of a small correlation with the gluon

Single-top production (NLO)

- typical $x \sim 0.01$
- mostly correlated with u, d PDF's

PDF uncertainties in W, Z total cross sections are irrelevant for some quark scattering processes (single-top, Z', ...)

Precision tests of electroweak symmetry breaking

Higgs sector in SM and MSSM

SM: 1 Higgs doublet, one boson ${\cal H}$

- Direct search: $m_H > 114$ GeV at 95% c.l.
- indirect: $M_H = 80^{+39}_{-28}$ GeV at 68% c.l.

MSSM: 2 Higgs doublets; h^0, H^0 , A^0, H^\pm

 $m_h \le m_Z |\cos 2\beta| + \text{rad. corr.} \lesssim 135 \text{ GeV}$

- In these models, expect one or more Higgs bosons with mass below 140 GeV
- Many other possibilities for EW symmetry breaking exist!

Green band: $114 < M_H < 1000 \, \text{GeV}$

Higgs sector in SM and MSSM

SM band: $114 \le M_H \le 400$ GeV SUSY band: random scan

- the goal of direct and indirect measurements is to over-constrain SM, greatly constrain SUSY
- indirect constraints strongly depend on M_W, m_t values, hence require accurate QCD predictions for W and t production

For example, in SM

$$\begin{aligned} M_W &= 80.3827 - 0.0579 \ln \left(\frac{M_H}{100 \text{ GeV}} \right) - 0.008 \ln^2 \left(\frac{M_H}{100 \text{ GeV}} \right) \\ &+ 0.543 \left(\left(\frac{m_t}{175 \text{ GeV}} \right)^2 - 1 \right) - 0.517 \left(\frac{\Delta \alpha_{hod}^{(5)}(M_Z)}{0.0280} - 1 \right) - 0.085 \left(\frac{\alpha_s(M_Z)}{0.118} - 1 \right) \end{aligned}$$

M_W measurement at hadron colliders

- The Tevatron (LHC) collaborations intend to measure M_W with accuracy 15 MeV (5 MeV)
- Several theoretical factors contribute at this level of accuracy
 - NNLO QCD+NLO EW perturbative contributions
 - ▶ PDF dependence
 - ightharpoonup small- p_T resummation
 - ▶ small-x effects
 - ▶ dependence on m_{c,b}

Measurement of M_W and resummation

The largest QCD uncertainties on M_W arise from

- the model for W boson's recoil in the transverse plane
- parton distributions

 $d\sigma/dQ_T$ for W & Z bosons is predicted by the resummation formalism, which evaluates $\sum_{n,m} \alpha_s^n \ln^m(Q_T^2/Q^2)$ at $Q_T \to 0$ to all orders of α_s

(Collins, Soper, Sterman, 1985)

CDF analysis for 207 pb^{-1} :

uncertainty in nonperturbative resummed parameters currently translates into $\delta M_W \approx 3$ MeV (9 MeV) in the $M_\tau^{\ell\nu}$ (p_τ^e) method

QCD factorization at $Q_T \rightarrow 0$

(ResBos: C. Balazs, G. Ladinsky, P. N., C.-P. Yuan)

■ At NNLL accuracy, we include perturbative coefficients up to orders

A⁽³⁾ (from Moch, Vermaseren, Vogt, 2004);

B⁽²⁾: and C⁽¹⁾

$$\frac{d\sigma_{AB\to VX}}{dQ^2dydQ_1^2}\bigg|_{Q_1^2\ll Q^2} = \sum_{\substack{a,b=a,U,d\\U,d}} \int \frac{d^2b}{(2\pi)^2} e^{-i\vec{q}_T\cdot\vec{b}}\widetilde{W}_{ab}(b,Q,x_A,x_B)$$

$$\widetilde{W}_{ab}(b, Q, X_A, X_B) = |\mathcal{H}_{ab}|^2 e^{-\mathcal{S}(b,Q)} \overline{\mathcal{P}}_a(X_A, b) \overline{\mathcal{P}}_b(X_B, b)$$

Universal nonperturbative contributions

A. Konychev, P. N., PLB 633, 710 (2006)

- Q_T factorization: initial-state nonperturbative contributions ($a \sim$ "intrinsic" $\langle k_T^2 \rangle / 4$) follow a universal quasi-linear dependence on $\ln Q$; this expectation is confirmed by the global analysis of Drell-Yan and Z boson data at $X \ge 0.01$
- the observed In Q dependence agrees with the renormalon/lattice estimate (Tafat)
- **a**t $Q \sim M_Z$, soft NP corrections dominate over collinear NP corrections
- the model is sufficient to predict many Drell-Yan-like resummed cross sections

Combined analysis of PDF's and resummed nonperturbative function

(Lai, P.N., Pumplin, Tung, Yuan, in progress)

- The common origin of collinear PDF's $f_{\alpha}(x,\mu)$ and $\mathcal{F}_{NP}(b,Q)$ from k_T -dependent PDF's indicates importance of their simultaneous analysis
 - ▶ The best-fit $\mathcal{F}_{NP}(b, Q)$ is correlated with $f_{\alpha}(x, \mu) \Rightarrow$ consequences for EW precision measurements
 - ▶ P_T data constrains poorly known degrees of freedom in $f_{\sigma}(x,\mu)$
- The technical challenge of including a slow Fourier-Bessel transform into a global fit has been resolved
- The first combined PDF+ Q_T fit has been recently finished

Impact on lepton p_T distributions in W boson production

Revised $d\sigma/dp_I^e$ correspond to somewhat larger M_W values extracted from experimental data

Conclusions

- It is exciting to explore rich global connections between the LHC cross sections
 - to calibrate the LHC detectors, monitor LHC luminosity
 - to explore new forms of QCD factorization (resummations) and merge them with important EW contributions
 - to precisely test the Standard Model, understand the EWSB mechanism
 - to impose limits on new physics parameters using hadron collider data

Conclusions (continued)

- Ongoing progress in (N)NLO PQCD global analysis of hadron cross sections
- Correlation analysis in the PDF parameter space is an efficient technique that relates PDF uncertainties in physical cross sections to PDF's for specific parton flavors at known (x, μ)
- This technique is essential for revealing poorly constrained combinations of PDF's, such as those associated with heavy quarks
 - consequences for standard candle and other cross sections at the LHC
 - useful guidance for future LHC measurements aimed at constraining the PDF uncertainties

Backup slides