Implications of charm mixing for New Physics

Alexey A. Petrov
WSU \& MCTP

Table of Contents:

- Introduction
- Experimental constraints and SM expectations
- New Physics contributions to charm mixing
- $\Delta c=1$ operators
- $\Delta c=2$ operators
- Conclusions and outlook

Introduction: identifying New Physics

"Inverse
LHC problem"
The LHC ring is 27 km in circumference
How can KEK or other older machines help with New Physics searches?

Introduction: charm and New Physics

Charm transitions serve as excellent probes of New Physics
Unique access to up-quark sector

1. Processes forbidden in the Standard Model to all orders

Examples: $\quad D^{0} \rightarrow p^{+} \pi^{-} \nu$
2. Processes forbidden in the Standard Model at tree level

Examples: $\quad D^{0}-\bar{D}^{0}, D^{0} \rightarrow X \gamma, D \rightarrow X \nu \bar{\nu}$
3. Processes allowed in the Standard Model Examples: relations, valid in the SM, but not necessarily in general

CKM triangle relations

Introduction: charm and New Physics

Charm transitions serve as excellent probes of New Physics
Unique access to up-quark sector

1. Processes forbidden in the Standard Model to all orders

$$
\text { Examples: } \quad D^{0} \rightarrow p^{+} \pi^{-} \nu
$$

2. Processes forbidden in the Standard Model at tree level

Examples: $D^{0}-\bar{D}^{0}, D^{0} \rightarrow X \gamma, D \rightarrow X \nu \bar{\nu}$
3. Processes allowed in the Standard Model Examples: relations, valid in the SM, but not necessarily in general

CKM triangle relations

Introduction: mixing

Coupled oscillators
$\Delta \mathrm{Q}=2$: only at one loop in the Standard Model: possible new physics particles in the loop
$\Delta \mathrm{Q}=2$ interaction couples dynamics of D^{0} and D^{0}

$$
|D(t)\rangle=\binom{a(t)}{b(t)}=a(t)\left|D^{0}\right\rangle+b(t)\left|\bar{D}^{0}\right\rangle
$$

$>$ Time-dependence: coupled Schrödinger equations

$$
i \frac{\partial}{\partial t}|D(t)\rangle=\left(M-\frac{i}{2} \Gamma\right)|D(t)\rangle=\left[\begin{array}{cc}
A & p^{2} \\
q^{2} & A
\end{array}\right]|D(t)\rangle
$$

$>$ Diagonalize: mass eigenstates \neq flavor eigenstates

$$
\left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\overline{D^{0}}\right\rangle
$$

$$
\text { Mass and lifetime differences of mass eigenstates: } \quad x=\frac{M_{2}-M_{1}}{\Gamma}, y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma}
$$

Introduction: mixing

Coupled oscillators
$\Delta \mathrm{Q}=2$: only at one loop in the Standard Model: possible new physics particles in the loop
$\Delta \mathrm{Q}=2$ interaction couples dynamics of D^{0} and D^{0}

$$
|D(t)\rangle=\binom{a(t)}{b(t)}=a(t)\left|D^{0}\right\rangle+b(t)\left|\bar{D}^{0}\right\rangle
$$

$>$ Time-dependence: coupled Schrödinger equations

$$
i \frac{\partial}{\partial t}|D(t)\rangle=\left(M-\frac{i}{2} \Gamma\right)|D(t)\rangle=\left[\begin{array}{cc}
A & p^{2} \\
q^{2} & A
\end{array}\right]|D(t)\rangle
$$

$>$ Diagonalize: mass eigenstates \neq flavor eigenstates

Mass and lifetime differences of mass eigenstates: $\quad x=\frac{M_{2}-M_{1}}{\Gamma}, y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma}$

Introduction: mixing

Coupled oscillators
$\Delta \mathrm{Q}=2$: only at one loop in the Standard Model: possible new physics particles in the loop
$\Delta \mathrm{Q}=2$ interaction couples dynamics of D^{0} and D^{0}

$$
|D(t)\rangle=\binom{a(t)}{b(t)}=a(t)\left|D^{0}\right\rangle+b(t)\left|\bar{D}^{0}\right\rangle
$$

$>$ Time-dependence: coupled Schrödinger equations

$$
i \frac{\partial}{\partial t}|D(t)\rangle=\left(M-\frac{i}{2} \Gamma\right)|D(t)\rangle=\left[\begin{array}{cc}
A & p^{2} \\
q^{2} & A
\end{array}\right]|D(t)\rangle
$$

$>$ Diagonalize: mass eigenstates \neq flavor eigenstates

$$
\text { No CPV: }\left|D_{1,2}\right\rangle \Rightarrow\left|D_{C P \pm}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|D^{0}\right\rangle \pm\left|\overline{D^{0}}\right\rangle\right]
$$

Mass and lifetime differences of mass eigenstates: $\quad x=\frac{M_{2}-M_{1}}{\Gamma}, y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma}$

Introduction: why do we care?

(*) up to matrix elements of 4-quark operators

Experimental constraints on mixing

Idea: look for a wrong-sign final state

1. Time-dependent or time-integrated semileptonic analysis

$$
\text { rate } \propto x^{2}+y^{2}
$$

Quadratic in x,y: not so sensitive
2. Time-dependent $D^{0} \rightarrow K^{+} K^{-}$analysis (lifetime difference)

$$
y_{C P}=\frac{\tau\left(D \rightarrow \pi^{+} K^{-}\right)}{\tau\left(D \rightarrow K^{+} K^{-}\right)}-1=y \cos \phi-x \sin \phi \frac{1-R_{m}}{2}
$$

3. Time-dependent $D^{0}(t) \rightarrow K^{+} \pi^{-}$analysis

$$
\begin{aligned}
\Gamma\left[D^{0}(t) \rightarrow K^{+} \pi^{-}\right] & =e^{-\Gamma t}\left|A_{K^{+} \pi^{-}}\right|^{2}\left[R+\sqrt{R} R_{m}\left(y^{\prime} \cos \phi-x^{\prime} \sin \phi\right) \Gamma t+\right. \\
R_{m}^{2} & =\left|\frac{q}{p}\right|^{2}, x^{\prime}=x \cos \delta+y \sin \delta, y^{\prime}=y \cos \delta-x \sin \delta
\end{aligned}
$$

$$
\mathrm{x}^{\prime}(\%)
$$

Recent results from BaBar

- Time-dependent $D \rightarrow K \pi$ analysis
$\Gamma_{\mathrm{ws}}(t)=e^{-\mathrm{rt}}\left(R_{D}+y^{\prime} \sqrt{R_{D}}(\Gamma t)+\left(\frac{x^{\prime 2}+y^{\prime 2}}{4}\right)(\Gamma t)^{2}\right)$
- No evidence for CPviolation
- Accounting for systematic errors, the no-mixing point is at 3.9sigma contour

Evidence for $\bar{D} \bar{D}$ mixing !

$$
\begin{aligned}
& R_{D}:(3.03 \pm 0.16 \pm 0.10) \times 10^{-3} \\
& x^{\prime 2}:(-0.22 \pm 0.30 \pm 0.21) \times 10^{-3} \\
& y^{\prime}:(9.7 \pm 4.4 \pm 3.1) \times 10^{-3}
\end{aligned}
$$

Recent results from Belle

- Time-dependent $D \rightarrow K K / \pi \pi$ analysis

$$
\begin{aligned}
& y_{C P} \equiv \frac{\tau\left(K^{-} \pi^{+}\right)}{\tau\left(K^{-} K^{+}\right)}-1 \underset{n o C P V}{=} y=\frac{\Delta \Gamma}{2 \Gamma} \\
& C P V: A_{\Gamma}=\frac{\Gamma\left(D^{0} \rightarrow K^{-} K^{+}\right)-\Gamma\left(\bar{D}^{0} \rightarrow K^{-} K^{+}\right)}{\Gamma\left(D^{0} \rightarrow K^{-} K^{+}\right)+\Gamma\left(\bar{D}^{0} \rightarrow K^{-} K^{+}\right)}
\end{aligned}
$$

	$y_{C P}(\%)$	$A_{\Gamma}(\%)$
$K K$	$1.25 \pm 0.39 \pm 0.28$	$0.15 \pm 0.34 \pm 0.16$
$\pi \pi$	$1.44 \pm 0.57 \pm 0.42$	$-0.28 \pm 0.52 \pm 0.30$
$K K+\pi \pi$	$1.31 \pm 0.32 \pm 0.25$	$0.01 \pm 0.30 \pm 0.15$

$$
y_{C P}=1.31 \pm 0.32 \pm 0.25 \%
$$

- No evidence for CP-violation

Evidence for $\bar{D} \bar{D}$ mixing !

(courtesy of A. Rahimi)

Recent experimental results

- BaBar, Belle and CDF results

$$
\begin{align*}
& y_{\mathrm{D}}^{\prime}=(0.97 \pm 0.44 \pm 0.31) \cdot 10^{-2} \\
& y_{\mathrm{D}}^{(\mathrm{CP})}=(1.31 \pm 0.32 \pm 0.25) \cdot 10^{-2} \\
& y_{D}^{\prime}=(0.85 \pm 0.76) \cdot 10^{-2} \tag{CDF}
\end{align*}(\text { BaBar }), ~(\mathrm{CDF}), ~ l
$$

- Belle Dalitz plot result $\left(D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}\right)$

$$
\begin{aligned}
& x_{\mathrm{D}}=(0.80 \pm 0.29 \pm 0.17) \cdot 10^{-2} \\
& y_{\mathrm{D}}=(0.33 \pm 0.24 \pm 0.15) \cdot 10^{-2}
\end{aligned}
$$

- Preliminary HFAG numbers

$$
\begin{aligned}
& x_{\mathrm{D}}=8.5_{-3.1}^{+3.2} \cdot 10^{-3}, \\
& y_{\mathrm{D}}=7.1_{-2.1}^{+2.0} \cdot 10^{-3} \quad\left(\cos \delta_{K \pi}=1.09 \pm 0.66\right)
\end{aligned}
$$

What about theoretical predictions?

Theoretical estimates I

A. Short distance gives a tiny contribution
m_{c} IS large !!!

\longrightarrow

$$
z=\frac{m_{s}^{2}}{m_{c}^{2}}
$$

... as can be seen from a "straiahtforward computation"...

$$
\begin{aligned}
& \Rightarrow y_{\mathrm{LO}}^{\left(z^{3}\right)}= \frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi \Gamma_{D}} \xi_{s}^{2} z^{3}\left(C_{2}^{2}-2 C_{1} C_{2}-3 C_{1}^{2}\right)\left[B_{\mathrm{D}}-\frac{5}{2} \bar{B}_{\mathrm{D}}^{(S)}\right] \propto m_{s}^{6} \Lambda^{-6} \\
& x_{\mathrm{LO}}^{\left(z^{2}\right)}= \frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi^{2} \Gamma_{D}} \xi_{s}^{2} z^{2}\left[C_{2}^{2} B_{\mathrm{D}}-\frac{5}{4}\left(C_{2}^{2}-2 C_{1} C_{2}-3 C_{1}^{2}\right) \bar{B}_{\mathrm{D}}^{(S)}\right] \propto m_{s}^{4} \Lambda^{-4} \ldots \times_{\mathrm{LO}}^{\gg} y_{\mathrm{LO}}!!!! \\
& \text { with }\left\langle D^{0}\right| \bar{u} \Gamma_{\mu} c \bar{u} \Gamma^{\mu} c\left|D^{0}\right\rangle=\frac{1+N_{C}}{N_{C}} \frac{4 F_{D}^{2} m_{D}^{2}}{2 m_{D}} B_{D}, \text { etc. }
\end{aligned}
$$

Notice, however, that at NLO in QCD $\left(x_{N L O}, y_{N L O}\right) \gg\left(x_{L O}, y_{L O}\right)$:

(c)

Example of NLO contribution

$$
\begin{array}{r}
y_{\mathrm{NLO}}^{(2)}=\frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi \Gamma_{D}} \xi_{s}^{2} \frac{\alpha_{s}}{4 \pi} z^{2}\left(B_{\mathrm{D}}\left[-\left(\frac{77}{6}-\frac{8 \pi^{2}}{9}\right) C_{2}^{2}+14 C_{1} C_{2}+8 C_{1}^{2}\right]\right. \\
\left.-\frac{5}{2} \bar{B}_{\mathrm{D}}^{(S)}\left[\left(\frac{8 \pi^{2}}{9}-\frac{25}{3}\right) C_{2}^{2}+20 C_{1} C_{2}+32 C_{1}^{2}\right]\right), \mathrm{X}_{\mathrm{NLO}} \sim \mathrm{Y}_{\mathrm{NLO}}! \\
\text { Similar for } \times \text { (trust me!) } \\
\text { E. Golowich and A.A.P. } \\
\text { Phys. Lett. B625 (2005) } 53
\end{array}
$$

Theoretical estimates I

A. Short distance gives a tiny contribution
m_{c} IS large !!!

$$
z=\frac{m_{s}^{2}}{m_{c}^{2}}
$$

... as can be seen from a "straiahtforward computation"...

$$
\begin{aligned}
\Rightarrow y_{\mathrm{LO}}^{\left(z^{3}\right)} & \left.=\frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi \Gamma_{D}} \xi_{s}^{2} z^{3}\right)\left(C_{2}^{2}-2 C_{1} C_{2}-3 C_{1}^{2}\right)\left[B_{\mathrm{D}}-\frac{5}{2} \bar{B}_{\mathrm{D}}^{(S)}\right] \propto m_{s}^{6} \Lambda^{-6} \\
x_{\mathrm{LO}}^{\left(z^{2}\right)}= & \frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi^{2} \Gamma_{D}} \xi_{s}^{2} z^{2}\left[C_{2}^{2} B_{\mathrm{D}}-\frac{5}{4}\left(C_{2}^{2}-2 C_{1} C_{2}-3 C_{1}^{2}\right) \bar{B}_{\mathrm{D}}^{(S)}\right] \propto m_{s}^{4} \Lambda^{-4} \ldots \times_{\mathrm{LO}}^{\gg} Y_{\mathrm{LO}}!!!
\end{aligned} \quad \begin{array}{r}
\text { with }\left\langle D^{0}\right| \bar{u} \Gamma_{\mu} c \bar{u} \Gamma^{\mu} c\left|D^{0}\right\rangle=\frac{1+N_{C}}{N_{C}} \frac{4 F_{D}^{2} m_{D}^{2}}{2 m_{D}} B_{D}, \text { etc. }
\end{array}
$$

Notice, however, that at NLO in QCD $\left(x_{N L O}, y_{N L O}\right) \gg\left(x_{L O}, y_{L O}\right)$:

(c)

Example of NLO contribution

$$
\begin{array}{r}
y_{\mathrm{NLO}}^{(2)}=\frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi \Gamma_{D}} \xi_{s}^{2} \frac{\alpha_{s}}{4 \pi} z^{2}\left(B_{\mathrm{D}}\left[-\left(\frac{77}{6}-\frac{8 \pi^{2}}{9}\right) C_{2}^{2}+14 C_{1} C_{2}+8 C_{1}^{2}\right]\right. \\
\left.-\frac{5}{2} \bar{B}_{\mathrm{D}}^{(S)}\left[\left(\frac{8 \pi^{2}}{9}-\frac{25}{3}\right) C_{2}^{2}+20 C_{1} C_{2}+32 C_{1}^{2}\right]\right), \mathrm{X}_{\mathrm{NLO}} \sim \mathrm{Y}_{\mathrm{NLO}}! \\
\text { Similar for } \times \text { (trust me!) } \\
\text { E. Golowich and A.A.P. } \\
\text { Phys. Lett. B625 (2005) } 53
\end{array}
$$

Theoretical estimates I

A. Short distance gives a tiny contribution
m_{c} IS large !!!

$$
z=\frac{m_{s}^{2}}{m_{c}^{2}}
$$

... as can be seen from a "straiahtforward computation"...

$$
\begin{aligned}
& \Rightarrow y_{\mathrm{LO}}^{\left(z^{3}\right)}=\left.\frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi \Gamma_{D}} \xi_{s}^{2} z^{3}\right)\left(C_{2}^{2}-2 C_{1} C_{2}-3 C_{1}^{2}\right)\left[B_{\mathrm{D}}-\frac{5}{2} \bar{B}_{\mathrm{D}}^{(S)}\right] \propto m_{s}^{6} \Lambda^{-6} \\
& x_{\mathrm{LO}}^{\left(z^{2}\right)}= \frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi^{2} \Gamma_{D}} \xi_{s}^{2} \overparen{z^{2}}\left[C_{2}^{2} B_{\mathrm{D}}-\frac{5}{4}\left(C_{2}^{2}-2 C_{1} C_{2}-3 C_{1}^{2}\right) \bar{B}_{\mathrm{D}}^{(S)}\right] \propto m_{s}^{4} \Lambda^{-4} \ldots \times_{\mathrm{LO}}^{\gg} y_{\mathrm{LO}}!!!! \\
& \text { with }\left\langle D^{0}\right| \bar{u} \Gamma_{\mu} c \bar{u} \Gamma^{\mu} c\left|D^{0}\right\rangle=\frac{1+N_{C}}{N_{C}} \frac{4 F_{D}^{2} m_{D}^{2}}{2 m_{D}} B_{D}, \text { etc. }
\end{aligned}
$$

Notice, however, that at NLO in QCD $\left(x_{N L O}, y_{N L O}\right) \gg\left(x_{L O}, y_{L O}\right)$:

(c)

Example of NLO contribution

$$
\begin{array}{r}
y_{\mathrm{NLO}}^{(2)}=\frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi \Gamma_{D}} \xi_{s}^{2} \frac{\alpha_{s}}{4 \pi} z^{2}\left(B_{\mathrm{D}}\left[-\left(\frac{77}{6}-\frac{8 \pi^{2}}{9}\right) C_{2}^{2}+14 C_{1} C_{2}+8 C_{1}^{2}\right]\right. \\
\left.-\frac{5}{2} \bar{B}_{\mathrm{D}}^{(S)}\left[\left(\frac{8 \pi^{2}}{9}-\frac{25}{3}\right) C_{2}^{2}+20 C_{1} C_{2}+32 C_{1}^{2}\right]\right), \mathrm{X}_{\mathrm{NLO}} \sim \mathrm{Y}_{\mathrm{NLO}}! \\
\text { Similar for } \times \text { (trust me!) } \\
\text { E. Golowich and A.A.P. } \\
\text { Phys. Lett. B625 (2005) } 53
\end{array}
$$

Theoretical estimates I

A. Short distance gives a tiny contribution
m_{c} IS large !!!

$$
z=\frac{m_{s}^{2}}{m_{c}^{2}}
$$

... as can be seen from a "straiahtforward computation"...

$$
\begin{aligned}
& \Rightarrow y_{\mathrm{LO}}^{\left(z^{3}\right)}=\left.\frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi \Gamma_{D}} \xi_{s}^{2} z^{3}\right)\left(C_{2}^{2}-2 C_{1} C_{2}-3 C_{1}^{2}\right)\left[B_{\mathrm{D}}-\frac{5}{2} \bar{B}_{\mathrm{D}}^{(S)}\right] \propto m_{s}^{6} \Lambda^{-6} \\
& x_{\mathrm{LO}}^{\left(z^{2}\right)}= \frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi^{2} \Gamma_{D}} \xi_{s}^{2} \overparen{z^{2}}\left[C_{2}^{2} B_{\mathrm{D}}-\frac{5}{4}\left(C_{2}^{2}-2 C_{1} C_{2}-3 C_{1}^{2}\right) \bar{B}_{\mathrm{D}}^{(S)}\right] \propto m_{s}^{4} \Lambda^{-4} \ldots \times_{\mathrm{LO}}^{\gg} y_{\mathrm{LO}}!!!! \\
& \text { with }\left\langle D^{0}\right| \bar{u} \Gamma_{\mu} c \bar{u} \Gamma^{\mu} c\left|D^{0}\right\rangle=\frac{1+N_{C}}{N_{C}} \frac{4 F_{D}^{2} m_{D}^{2}}{2 m_{D}} B_{D}, \text { etc. }
\end{aligned}
$$

Notice, however, that at NLO in QCD $\left(x_{N L O}, y_{N L O}\right) \gg\left(x_{L O}, y_{L O}\right)$:

(c)

Example of NLO contribution

$$
\begin{array}{r}
y_{\mathrm{NLO}}^{(2)}=\frac{G_{F}^{2} m_{c}^{2} f_{D}^{2} M_{D}}{3 \pi \Gamma_{D}} \xi_{s}^{2} \frac{\alpha_{s}}{4 \pi}\left(z ^ { 2 } \left(B_{\mathrm{D}}\left[-\left(\frac{77}{6}-\frac{8 \pi^{2}}{9}\right) C_{2}^{2}+14 C_{1} C_{2}+8 C_{1}^{2}\right]\right.\right. \\
\left.-\frac{5}{2} \bar{B}_{\mathrm{D}}^{(S)}\left[\left(\frac{8 \pi^{2}}{9}-\frac{25}{3}\right) C_{2}^{2}+20 C_{1} C_{2}+32 C_{1}^{2}\right]\right), \mathrm{X}_{\mathrm{NLO}} \sim \mathrm{Y}_{\mathrm{NLO}}! \\
\text { Similar for } \times \text { (trust me!) } \\
\text { E. Golowich and A.A.P. } \\
\text { Phys. Lett. B625 (2005) } 53
\end{array}
$$

Theoretical estimates I

A. Short distance + "subleading corrections" (in $\left\{m_{s}, 1 / m_{c}\right\}$ expansion):

$$
\begin{aligned}
& y_{s d}^{(6)} \propto \frac{\left(m_{s}^{2}-m_{d}^{2}\right)^{2}}{m_{c}^{2}} \frac{m_{s}^{2}+m_{d}^{2}}{m_{c}^{2}} \mu_{h a d}^{-2} \propto m_{s}^{6} \Lambda^{-6} \\
& x_{s d}^{(6)} \propto \frac{\left(m_{s}^{2}-m_{d}^{2}\right)^{2}}{m_{c}^{2}} \mu_{h a d}^{-2} \propto m_{s}^{4} \Lambda^{-4}
\end{aligned}
$$

4 unknown matrix elements
...subleading effects?

$$
\begin{array}{llll}
\hline y_{s d}^{(9)} & \propto & m_{s}^{3} & \Lambda^{-3} \\
x_{s d}^{(9)} \propto & m_{s}^{3} & \Lambda^{-3} \\
\hline
\end{array}
$$

| $y_{s d}^{(12)} \propto$ | $\beta_{0} \alpha_{s}^{2}(\mu) m_{s}^{2} \Lambda^{-2}$ |
| :--- | :--- | :--- |
| $x_{s d}^{(12)} \propto$ | $\alpha_{S}(\mu) m_{s}^{2} \Lambda^{-2}$ |

\measuredangle Leading contribution!!!

$$
d=9
$$

Twenty-something unknown

Guestimate: $\quad \mathrm{x} \sim \mathrm{y} \sim 10^{-3}$?
15 unknown matrix elements
H. Georgi, ...
I. Bigi, N. Uraltsev

matrix elements

Resume: model-independent computation with model-dependent result \dagger

Theoretical estimates II

B. Long distance physics dominates the dynamics...

$$
y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left[\left\langle D^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|\bar{D}^{0}\right\rangle+\left\langle\bar{D}^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|D^{0}\right\rangle\right]
$$

... with n being all states to which D^{0} and \bar{D}^{0} can decay. Consider $\pi \pi, \pi K, K K$ intermediate states as an example...

$$
\begin{aligned}
y_{2} & =\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)+B r\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& -2 \cos \delta \sqrt{\operatorname{Br}\left(D^{0} \rightarrow K^{+} \pi^{-}\right) B r\left(D^{0} \rightarrow \pi^{+} K^{-}\right)}
\end{aligned}
$$

If every Br is known up to $O(1 \%) \quad \boldsymbol{\Delta}$ the result is expected to be $O(1 \%)$!

The result here is a series of large numbers with alternating signs, SU(3) forces 0 x = ? Extremely hard...

\rightarrowNeed to "repackage" the analysis: look at the complete multiplet contribution

Theoretical estimates II

B. Long distance physics dominates the dynamics...

$$
y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left[\left\langle D^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta} C=1\left|\bar{D}^{0}\right\rangle+\left\langle\bar{D}^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|D^{0}\right\rangle\right]
$$

... with n being all states to which D^{0} and \bar{D}^{0} can decay. Consider $\pi \pi, \pi K$, KK intermediate states as an example...

$$
\begin{aligned}
y_{2} & =\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)+\operatorname{Br}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& -2 \cos \delta \sqrt{\operatorname{Br}\left(D^{0} \rightarrow K^{+} \pi^{-}\right) \operatorname{Br}\left(D^{0} \rightarrow \pi^{+} K^{-}\right)}
\end{aligned}
$$

$$
\text { If every } \mathrm{Br} \text { is known up to } O(1 \%) \quad \boldsymbol{\Delta} \text { the result is expected to be } O(1 \%) \text { ! }
$$

The result here is a series of large numbers with alternating signs, SU(3) forces 0
x = ? Extremely hard...

Need to "repackage" the analysis: look at the complete multiplet contribution

SU(3) and phase space

- "Repackage" the analysis: look at the complete multiplet contribution

- Does it help? If only phase space is taken into account: no (mild) model dependence

$$
\begin{aligned}
y_{F, R} & =\frac{\sum_{n \in F_{R}}\left\langle\bar{D}^{0}\right| H_{W}|n\rangle \rho_{n}\langle n| H_{W}\left|D^{0}\right\rangle}{\sum_{n \in F_{R}} \Gamma\left(D^{0} \rightarrow n\right)} \\
& =\frac{\sum_{n \in F_{R}}\left\langle\bar{D}^{0}\right| H_{W}|n\rangle \rho_{n}\langle n| H_{W}\left|D^{0}\right\rangle}{\sum_{n \in F_{R}}\left\langle D^{0}\right| H_{W}|n\rangle \rho_{n}\langle n| H_{W}\left|D^{0}\right\rangle}
\end{aligned}
$$

Example: PP intermediate states

- $n=P P$ transforms as $(8 \times 8) s=27+8+1$, take 8 as an example:

Numerator:

$$
\begin{aligned}
A_{N, 8} & =\left|A_{0}\right|^{2} s_{1}^{2}\left[\frac{1}{2} \Phi(\eta, \eta)+\frac{1}{2} \Phi\left(\pi^{0}, \pi^{0}\right)+\frac{1}{3} \Phi\left(\eta, \pi^{0}\right)+\Phi\left(\pi^{+}, \pi^{-}\right)-\Phi\left(K^{0}, \pi^{0}\right)\right. \\
& \left.+\Phi\left(K^{+}, K^{-}\right)-\frac{1}{6} \Phi\left(\eta, K^{0}\right)-\frac{1}{6} \Phi\left(\eta, \bar{K}^{0}\right)-\Phi\left(K^{+}, \pi^{-}\right)-\Phi\left(K^{-}, \pi^{+}\right)\right]
\end{aligned}
$$

Denominator:

$$
A_{D, 8}=\left|A_{0}\right|^{2}\left[\frac{1}{6} \Phi\left(\mathrm{n}, K^{0}\right)+\Phi\left(K^{+}, \pi^{-}\right)+\frac{1}{2} \Phi\left(K^{0}, \pi^{0}\right)+O\left(s_{1}^{2}\right)\right]
$$

- This gives a calculable effect!

$$
y_{2,8}=\frac{A_{N, 8}}{A_{D, 8}}=-0.038 s_{1}^{2}=-1.8 \times 10^{-4} \quad \begin{aligned}
& 1 . \\
& \begin{array}{l}
\text { Repeat for other states } \\
\text { 2. } \\
\text { Multiply by } \mathrm{Br}_{\mathrm{Fr}} \text { to get } \mathrm{y}
\end{array}
\end{aligned}
$$

Results

Final state representation	$y_{F, R} / s_{1}^{2}$	$y_{F, R}(\%)$	
$P P$	8	-0.0038	-0.018
	27	-0.00071	-0.0034
$P V$	$8 s$	0.031	0.15
	$8 A$	0.032	0.15
	10	0.020	0.10
	10	0.016	0.08
	27	0.040	0.19
$(V V)_{S \text {-wave }}$	8	-0.081	-0.39
	27	-0.061	-0.30
$(V V)_{p \text { pwave }}$	8	-0.10	-0.48
	27	-0.14	-0.70
$(V V)_{d}$-wave	8	0.51	2.5
	27	0.57	2.8

Final state representation	$y_{P, R} / s_{1}^{2}$	$y_{P, A}(\%)$	
$(3 P)_{s \text {-wave }}$	8	-0.48	-2.3
	27	-0.11	-0.54
$(3 P)_{p \text {-wave }}$	8	-1.13	-5.5
	27	-0.07	-0.36
$(3 P)_{\text {form-factor }}$	8	-0.44	-2.1
	27	-0.13	-0.64
$4 P$	8	3.3	16
	27	2.2	9.2
	27^{\prime}	1.9	11

- Product is naturally $\mathrm{O}(1 \%)$
- No (symmetry-enforced) cancellations
- Disp relation: compute \times (model-dependence)
naturally implies that $x, y \sim 1 \%$ is expected in the Standard Model

Final state	fraction
$P P$	5%
$P V$	10%
$(V V)_{s}$-wave	5%
$(V V)_{d}$-wave	5%
$3 P$	5%
$4 P$	10%

A.F., Y.G., Z.L., Y.N. and A.A.P. Phys.Rev. D69, 114021, 2004
E.Golowich and A.A.P.

Phys.Lett. B427, 172, 1998

Resume: a contribution to x and y of the order of 1% is natural in the SM

How New Physics affects x and y

$>$ Local $\Delta c=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma \dot{j}_{i j}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{T} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}\right.
$$

$>$ Double insertion of $\Delta C=1$ affects x and y :
Amplitude $A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}$

$$
\text { Suppose } \left.\quad\left|A_{n}^{N P}\right| /\left|A_{n}^{S M}\right|: O \text { (exp. uncertainty }\right) \leq 10 \%
$$

Example: $y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M}+\bar{A}_{n}^{N P}\right)\left(A_{n}^{S M}+A_{n}^{N P}\right) \approx \frac{1}{2 \Gamma} \sum_{n} \rho_{n} \bar{A}_{n}^{S M} A_{n}^{S M}+\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M} A_{n}^{N P}+\bar{A}_{n}^{N P} A_{n}^{S M}\right)$
phase space

How New Physics affects x and y

\rightarrow Local $\Delta c=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma \frac{)}{j_{i j}}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{T} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}\right.
$$

$>$ Double insertion of $\Delta C=1$ affects x and y :
Amplitude $A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}$

$$
\text { Suppose } \left.\quad\left|A_{n}^{N P}\right| /\left|A_{n}^{S M}\right|: O \text { (exp. uncertainty }\right) \leq 10 \%
$$

Example: $y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M}+\bar{A}_{n}^{N P}\right)\left(A_{n}^{S M}+A_{n}^{N P}\right) \approx \frac{1}{2 \Gamma} \sum_{n} \rho_{n} \bar{A}_{n}^{S M} A_{n}^{S M}+\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M} A_{n}^{N P}+\bar{A}_{n}^{N P} A_{n}^{S M}\right)$
phase space

How New Physics affects x and y

$>$ Local $\Delta c=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma\right)_{i j}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{I} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}
$$

$>$ Double insertion of $\Delta C=1$ affects x and y :
Amplitude $A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}$

$$
\text { Suppose } \left.\quad\left|A_{n}^{N P}\right| /\left|A_{n}^{S M}\right|: O \text { (exp. uncertainty }\right) \leq 10 \%
$$

Example: $y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M}+\bar{A}_{n}^{N P}\right)\left(A_{n}^{S M}+A_{n}^{N P}\right) \approx \frac{1}{2 \Gamma} \sum_{n} \rho_{n} \bar{A}_{n}^{S M} A_{n}^{S M}+\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M} A_{n}^{N P}+\bar{A}_{n}^{N P} A_{n}^{S M}\right)$
phase space

How New Physics affects x and y

$>$ Local $\Delta c=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma \dot{j}_{i j}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{T} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}\right.
$$

> Double insertion of $\Delta C=1$ affects x and y :
Amplitude $A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}$

$$
\text { Suppose }\left|A_{n}^{N P}\right| /\left|A_{n}^{S M}\right|: O(\text { exp. uncertainty }) \leq 10 \%
$$

Example: $\left.\quad y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M}+\bar{A}_{n}^{N P}\right)\left(A_{n}^{S M}+A_{n}^{N P}\right)=\frac{1}{2 \Gamma} \sum_{n} \rho_{n} \bar{A}_{n}^{S M} A_{n}^{S N X}\right)+\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M} A_{n}^{N P}+\bar{A}_{n}^{N P} A_{n}^{S M}\right)$
phase space

Zero in the SU(3) limit
Falk, Grossman, Ligeti, and A.A.P.
Phys.Rev. D65, 054034, 2002
$2^{\text {nd }}$ order effect!!!

How New Physics affects x and y

$>$ Local $\Delta c=2$ piece of the mass matrix affects x :

$$
\left(M-\frac{i}{2} \Gamma\right)_{i j}=m_{D}^{(0)} \delta_{i j}+\frac{1}{2 m_{D}}\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=2}\left|D_{j}^{0}\right\rangle+\frac{1}{2 m_{D}} \sum_{T} \frac{\left\langle D_{i}^{0}\right| H_{W}^{\Delta C=1}|I\rangle\langle I| H_{W}^{\Delta C=1}\left|D_{j}^{0}\right\rangle}{m_{D}^{2}-m_{I}^{2}+i \varepsilon}
$$

\rightarrow Double insertion of $\Delta c=1$ affects x and y :
Amplitude $A_{n}=\left\langle D^{0}\right|\left(H_{S M}^{\Delta C=1}+H_{N P}^{\Delta C=1}\right)|n\rangle \equiv A_{n}^{S M}+A_{n}^{N P}$

$$
\text { Suppose }\left|A_{n}^{N P}\right| /\left|A_{n}^{S M}\right|: O(\text { exp. uncertainty }) \leq 10 \%
$$

Example: $y=\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M}+\bar{A}_{n}^{N P}\right)\left(A_{n}^{S M}+A_{n}^{N P}\right)=\frac{1}{2 \Gamma} \sum_{n} \rho_{n} \bar{A}_{n}^{S M} A_{n}^{S M}-\frac{1}{2 \Gamma} \sum_{n} \rho_{n}\left(\bar{A}_{n}^{S M} A_{n}^{N P}+\bar{A}_{n}^{N P} A_{n}^{S M}\right)$

Can be significant!!!
Falk, Grossman, Ligeti, and A.A.P.
Phys.Rev. D65, 054034, 2002
$2^{\text {nd }}$ order effect!!!

Global Analysis of New Physics: $\Delta C=1$

Let's write the most general $\Delta c=1$ Hamiltonian

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{NP}}^{\Delta C=-1}=\sum_{q, q^{\prime}} D_{q q^{\prime}}\left[\overline{\mathcal{C}}_{1}(\mu) Q_{1}+\overline{\mathcal{C}}_{2}(\mu) Q_{2}\right], \\
& Q_{1}=\bar{u}_{i} \bar{\Gamma}_{1} q_{j}^{\prime} \bar{q}_{j} \bar{\Gamma}_{2} c_{i}, \quad Q_{2}=\bar{u}_{i} \bar{\Gamma}_{1} q_{i}^{\prime} \bar{q}_{j} \bar{\Gamma}_{2} c_{j},
\end{aligned}
$$

Only light on-shell (propagating) quarks affect $\Delta \Gamma$:

$$
\begin{aligned}
y= & -\frac{4 \sqrt{2} G_{F}}{M_{D} \Gamma_{D}} \sum_{q, q^{\prime}} \mathbf{V}_{c q^{\prime}}^{*} \mathbf{V}_{u q} D_{q q^{\prime}}\left(K_{1} \delta_{i k} \delta_{j \ell}+K_{2} \delta_{i \ell} \delta_{j k}\right) \\
& \times \sum_{\alpha=1}^{5} I_{\alpha}\left(x, x^{\prime}\right)\left\langle\bar{D}^{0}\right| \mathcal{O}_{\alpha}^{i j k \ell}\left|D^{0}\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}_{1}^{i j k \ell} & =\bar{u}_{k} \Gamma_{\mu} \gamma_{\nu} \bar{\Gamma}_{2} c_{j} \bar{u}_{\ell} \bar{\Gamma}_{1} \gamma^{\nu} \Gamma^{\mu} c_{i} \\
\mathcal{O}_{2}^{i j k \ell} & =\bar{u}_{k} \Gamma_{\mu} \boldsymbol{\phi}_{c} \bar{\Gamma}_{2} c_{j} \bar{u}_{\ell} \bar{\Gamma}_{1} \Gamma^{\mu} c_{i} \\
\mathcal{O}_{3}^{i j k \ell} & =\bar{u}_{k} \Gamma_{\mu} \bar{\Gamma}_{2} c_{j} \bar{u}_{\ell} \bar{\Gamma}_{1} \boldsymbol{p}_{c} \Gamma^{\mu} c_{i} \\
\mathcal{O}_{4}^{i j k \ell} & =\bar{u}_{k} \Gamma_{\mu} \not{ }_{j} \bar{\Gamma}_{2} c_{j} \bar{u}_{\ell} \bar{\Gamma}_{1} \Gamma^{\mu} c_{i} \\
\mathcal{O}_{5}^{i j k \ell} & =\bar{u}_{k} \Gamma_{\mu} \bar{\Gamma}_{2} c_{j} \bar{u}_{\ell} \bar{\Gamma}_{1} \Gamma^{\mu} c_{i},
\end{aligned}
$$

Global Analysis of New Physics: $\Delta C=1$

$>$ Some examples of New Physics contributions

Model	$\mathbf{y}_{\mathbf{D}}$	Comment
RPV-SUSY	610^{-6}	Squark Exch.
-410^{-2}	Slepton Exch.	
Left-right	-510^{-6}	'Manifest'.
-8.810^{-5}	'Nonmanifest'.	
Multi-Higgs	210^{-10}	Charged Higgs
Extra Quarks	10^{-8}	Not Little Higgs

E. Golowich, S. Pakvasa, A.A.P. Phys. Rev. Lett. 98, 181801, 2007
A.A.P. and G. Yeghiyan Phys. Rev. D77, 034018 (2008)

For considered models, the results are smaller than observed mixing rates

Global Analysis of New Physics: $\Delta C=2$

$>$ Multitude of various models of New Physics can affect x

$\mu: 1 \mathrm{GeV}$

Global Analysis of New Physics: $\Delta C=2$

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007
Let's write the most general $\Delta c=2$ Hamiltonian

$$
\langle f| \mathcal{H}_{N P}|i\rangle=G \sum_{i=1} \mathrm{C}_{i}(\mu)\langle f| Q_{i}|i\rangle(\mu)
$$

... with the following set of 8 independent operators...
$Q_{1}=\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{u}_{L} \gamma^{\mu} c_{L}\right), \quad Q_{5}=\left(\bar{u}_{R} \sigma_{\mu \nu} c_{L}\right)\left(\bar{u}_{R} \sigma^{\mu \nu} c_{L}\right)$,
$Q_{2}=\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} c_{R}\right)$,
$Q_{6}=\left(\bar{u}_{R} \gamma_{\mu} c_{R}\right)\left(\bar{u}_{R} \gamma^{\mu} c_{R}\right)$,
$Q_{3}=\left(\bar{u}_{L} c_{R}\right)\left(\bar{u}_{R} c_{L}\right)$,
$Q_{T}=\left(\bar{u}_{L} c_{R}\right)\left(\bar{u}_{L} c_{R}\right)$,
$Q_{4}=\left(\bar{u}_{R} c_{L}\right)\left(\bar{u}_{R} c_{L}\right)$,
$Q_{8}=\left(\bar{u}_{L} \sigma_{\mu \nu} c_{R}\right)\left(\bar{u}_{L} \sigma^{\mu \nu} c_{R}\right)$

$$
\mu \leq 1 \mathrm{TeV}
$$

New Physics in x : lots of extras

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

New Physics contributions do not suffer from QCD uncertainties as much as SM contributions since they are short-distance dominated.
> Extra gauge bosons
Left-right models, horizontal symmetries, etc.
> Extra scalars
Two-Higgs doublet models, leptoquarks, Higgsless, etc.

- Extra fermions
$4^{\text {th }}$ generation, vector-like quarks, little Higgs, etc.
> Extra dimensions
Universal extra dimensions, split fermions, warped ED, etc.
- Extra symmetries

SUSY: MSSM, alignment models, split SUSY, etc.

New Physics in x : lots of extras

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

New Physics contributions do not suffer from QCD uncertainties as much as SM contributions since they are short-distance dominated.
> Extra gauge bosons
Left-right models, horizontal symmetries, etc.
> Extra scalars
Two-Higgs doublet models, leptoquarks, Higgsless, etc.

- Extra fermions
$4^{\text {th }}$ generation, vector-like quarks, little Higgs, etc.
- Extra dimensions

Universal extra dimensions, split fermions, warped ED, etc.

- Extra symmetries

SUSY: MSSM, alignment models, split SUSY, etc.

Total: 21 models considered

Dealing with New Physics-I

> Consider an example: FCNC Z ${ }^{0}$-boson
appears in models with
extra vector-like quarks
little Higgs models

1. Integrate out Z : for $\mu<M_{z}$ get

$$
\mathcal{H}_{2 / 3}=\frac{g^{2}}{8 \cos ^{2} \theta_{w} M_{Z}^{2}}\left(\lambda_{u c}\right)^{2} \bar{u}_{L} \gamma_{\mu} c_{L} \bar{u}_{L} \gamma^{\mu} c_{L}
$$

2. Perform RG running to $\mu \sim m_{c}$ (in general: operator mixing)

$$
\mathcal{H}_{2 / 3}=\frac{g^{2}}{8 \cos ^{2} \theta_{w} M_{Z}^{2}}\left(\lambda_{u c}\right)^{2} r_{1}\left(m_{c}, M_{Z}\right) Q_{1}
$$

3. Compute relevant matrix elements and x_{D}

$$
x_{\mathrm{D}}^{(2 / 3)}=\frac{2 G_{F} f_{\mathrm{D}}^{2} M_{\mathrm{D}}}{3 \sqrt{2} \Gamma_{D}} B_{D}\left(\lambda_{u c}\right)^{2} r_{1}\left(m_{c}, M_{Z}\right)
$$

4. Assume no SM - get an upper bound on NP model parameters (coupling)

Dealing with New Physics - II

> Consider another example: warped extra dimensions
FCNC couplings via KK gluons

1. Integrate out KK excitations, drop all but the lightest

$\mathcal{H}_{R S}=\frac{2 \pi k r_{c}}{3 M_{1}^{2}} g_{s}^{2}\left(C_{1}\left(M_{n}\right) Q_{1}+C_{2}\left(M_{n}\right) Q_{2}+C_{6}\left(M_{n}\right) Q_{6}\right)$
2. Perform RG running to $\mu \sim m_{c}$
$\mathcal{H}_{R S}=\frac{g_{s}^{2}}{3 M_{1}^{2}}\left(C_{1}\left(m_{c}\right) Q_{1}+C_{2}\left(m_{c}\right) Q_{2}+C_{3}\left(m_{c}\right) Q_{3}+C_{6}\left(m_{c}\right) Q_{6}\right)$
3. Compute relevant matrix elements and x_{D}
$x_{\mathrm{D}}^{(R S)}=\frac{g_{s}^{2}}{3 M_{1}^{2} \frac{f_{D}^{2}}{2} B_{D} M_{D}} \Gamma_{D}\left(\frac{2}{3}\left[C_{1}\left(m_{c}\right)+C_{6}\left(m_{c}\right)\right]-\frac{1}{6} C_{2}\left(m_{c}\right)-\frac{5}{12} C_{3}\left(m_{c}\right)\right)$

Dealing with New Physics - II

> Consider another example: warped extra dimensions
FCNC couplings via KK gluons

1. Integrate out KK excitations, drop all but the lightest

$\mathcal{H}_{R S}=\frac{2 \pi k r_{c}}{3 M_{1}^{2}} g_{s}^{2}\left(C_{1}\left(M_{n}\right) Q_{1}+C_{2}\left(M_{n}\right) Q_{2}+C_{6}\left(M_{n}\right) Q_{6}\right)$
2. Perform RG running to $\mu \sim m_{c}$
$\mathcal{H}_{R S}=\frac{g_{s}^{2}}{3 M_{1}^{2}}\left(C_{1}\left(m_{c}\right) Q_{1}+C_{2}\left(m_{c}\right) Q_{2}+C_{3}\left(m_{c}\right) Q_{3}+C_{6}\left(m_{c}\right) Q_{6}\right)$
$x_{\mathrm{D}}^{(R S)}=\frac{g_{s}^{2}}{3 M_{1}^{2}} \frac{f_{D}^{2} B_{D} M_{D}}{\Gamma_{D}}\left(\frac{2}{3}\left[C_{1}\left(m_{c}\right)+C_{6}\left(m_{c}\right)\right]-\frac{1}{6} C_{2}\left(m_{c}\right)-\frac{5}{12} C_{3}\left(m_{c}\right)\right)$

Implies: $M_{1 \mathrm{Kkg}}>3.5 \mathrm{TeV}$!

New Physics in x : extra fermions

$>$ Fourth generation

$$
x_{\mathrm{D}}^{\left(4^{t h}\right)}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2} \Gamma_{D}} f_{D}^{2} M_{D} B_{D} \lambda_{b^{\prime}}^{2} S\left(x_{b^{\prime}}, x_{b^{\prime}}\right) r_{1}\left(m_{c}, M_{W}\right)
$$

> Vector-like quarks (Q=+2/3)

$$
x_{\mathrm{D}}^{(-1 / 3)} \simeq \frac{G_{F}^{2}}{6 \pi^{2} \Gamma_{D}} f_{D}^{2} B_{D} r_{1}\left(m_{c}, M_{W}\right) M_{D} M_{W}^{2}\left(V_{c S}^{*} V_{u S}\right)^{2} f\left(x_{S}\right)
$$

> Vector-like quarks $(Q=-1 / 3)$

$$
\begin{array}{r}
x_{\mathrm{D}}^{(2 / 3)}=\frac{2 G_{F}}{3 \sqrt{2} \Gamma_{D}}\left(\lambda_{u c}\right)^{2} r_{1}\left(m_{c}, M_{Z}\right) f_{\mathrm{D}}^{2} M_{\mathrm{D}} B_{1} \\
\lambda_{u c} \equiv-\left(V_{u d}^{*} V_{c d}+V_{u s}^{*} V_{c s}+V_{u b}^{*} V_{c b}\right)
\end{array}
$$

New Physics in x : extra vector bosons

> Generic Z' models
$x_{\mathrm{D}}^{\left(\mathrm{Z}^{\prime}\right)}=\frac{f_{D}^{2} B_{D}}{2 \Gamma_{D}} \frac{M_{D}}{M_{Z^{\prime}}^{2}}\left[\frac{2}{3}\left(C_{1}\left(m_{c}\right)+C_{6}\left(m_{c}\right)\right)+C_{2}\left(m_{c}\right)\left(-\frac{1}{2}+\frac{\eta}{3}\right)+C_{3}\left(m_{c}\right)\left(\frac{1}{12}-\frac{\eta}{2}\right)\right]$
> Family symmetry
$x_{\mathrm{D}}^{(\mathrm{FS})}=\frac{2}{3 \Gamma_{D}} r_{1}\left(m_{c}, M\right)\left(\frac{f^{2}}{m_{1}^{2}}-\frac{f^{2}}{m_{2}^{2}}\right) f_{D}^{2} M_{D} B_{D}$

> Vector leptoquarks

$$
\begin{aligned}
x_{\mathrm{D}}^{(\mathrm{VLQ})} & =-\frac{1}{8 \pi^{2} m_{L Q}^{2} \Gamma_{D} M_{D}}\left[\left(\lambda_{L}\left\langle Q_{1}\right\rangle+\lambda_{R}\left\langle Q_{6}\right\rangle\right)+\frac{10}{9} \frac{m_{c}^{2}}{m_{L Q}^{2}}\left(\lambda_{L}\left\langle Q_{7}\right\rangle+\lambda_{R}\left\langle Q_{4}\right\rangle\right)\right] \\
& =-\frac{f_{D}^{2} M_{D} B_{D}}{12 \pi^{2} m_{L Q}^{2} \Gamma_{D}}\left(\lambda_{L}+\lambda_{R}\right)\left(1+\frac{5 \eta}{3} \frac{m_{c}^{2}}{m_{L Q}^{2}}\right)
\end{aligned}
$$

New Physics in x : extra scalars

> 2-Higgs doublet model

$$
\begin{aligned}
x_{\mathrm{D}}^{(2 \mathrm{ZHD})}= & \frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2} \Gamma_{D}^{2}} f_{D}^{2} M_{D} B_{D} r_{1}\left(m_{c}, M_{H^{ \pm}}\right) \\
& \times \sum_{i, j} \lambda_{i} \lambda_{j}\left[\tan ^{4} \beta A_{H H}\left(x_{i}, x_{j}, x_{H}\right)+\tan ^{2} \beta A_{W H}\left(x_{i}, x_{j}, x_{H}\right)\right]
\end{aligned}
$$

> Flavor-changing neutral Higgs
$x_{\mathrm{D}}^{(\mathrm{H})}=\frac{5 f_{D}^{2} M_{D} B_{D}}{24 \Gamma_{D} M_{H}^{2}}\left[\frac{1-6 \eta}{5} C_{3}\left(m_{c}\right)+\eta\left(C_{4}\left(m_{c}\right)+C_{7}\left(m_{c}\right)\right)-\frac{12 \eta}{5}\left(C_{5}\left(m_{c}\right)+C_{8}\left(m_{c}\right)\right)\right]$

> Higgsless models

$$
\begin{aligned}
& x_{\mathrm{D}}^{(H)}=\frac{f_{D}^{2} M_{D} B_{D}}{\Gamma_{D}}\left(c_{L}^{c} s_{L}^{c}\right)^{2} \frac{g^{2}}{M^{2}}\left[\frac{2}{3}\left(C_{1}\left(m_{c}\right)+C_{6}\left(m_{c}\right)\right)+C_{2}\left(m_{c}\right)\left(-\frac{1}{2}+\frac{\eta}{3}\right)\right. \\
&\left.+\frac{1}{12} C_{3}\left(m_{c}\right)(1-6 \eta)\right] .
\end{aligned}
$$

New Physics in x : extra dimensions

> Split fermion models
$x_{\mathrm{D}}^{(\text {split })}=\frac{2}{9 \Gamma_{D}} g_{s}^{2} R_{c}^{2} \pi^{2} \Delta y r_{1}\left(m_{c}, M\right)\left|V_{L 11}^{u} V_{L 12}^{u *}\right|^{2} f_{D}^{2} M_{D} B_{1}$

> Warped geometries
$x_{\mathrm{D}}^{(R S)}=\frac{g_{s}^{2}}{3 M_{1}^{2} \frac{f_{D}^{2} B_{D} M_{D}}{\Gamma_{D}}\left(\frac{2}{3}\left[C_{1}\left(m_{c}\right)+C_{6}\left(m_{c}\right)\right]-\frac{1}{6} C_{2}\left(m_{c}\right)-\frac{5}{12} C_{3}\left(m_{c}\right)\right), ~(1)}$

+ others...

Summary: New Physics

Model	Approximate Constraint
Fourth Generation (Fig. 2)	$\left\|V_{u b} V_{c b}\right\| \cdot m_{y}<0.5(\mathrm{GeV})$
$Q=-1 / 3$ Singlet Quark (Fig. 4)	$s_{2} \cdot m_{S}<0.27(\mathrm{GeV})$
$Q=+2 / 3$ Singlet Quark (Fig. 6)	$\left\|\lambda_{\text {uc }}\right\|<2.4 \cdot 10^{-4}$
Little Higgs	Tree: See entry for $Q=-1 / 3$ Singlet Quark
	Box: Region of parameter space can reach observed x_{D}
Generic Z^{\prime} (Fig. 7)	$M_{Z^{\prime}} / C>2.2 \cdot 10^{3} \mathrm{TeV}$
Family Symmetries (Fig. 8)	$m_{1} / f>1.2 \cdot 10^{3} \mathrm{TeV}$ (with $\left.m_{1} / m_{2}=0.5\right)$
Left-Right Symmetric (Fig. 9)	No constraint
Alternate Left-Right Symmetric (Fig. 10)	$M_{R}>1.2 \mathrm{TeV}\left(m_{D_{1}}=0.5 \mathrm{TeV}\right)$
	$\left(\Delta m / m_{D_{1}}\right) / M_{R}>0.4 \mathrm{TeV}^{-1}$
Vector Leptoquark Bosons (Fig. 11)	$M_{V L Q}>55\left(\lambda_{P P} / 0.1\right) \mathrm{TeV}$
Flavor Conserving Two-Higgs-Doublet (Fig. 13)	No constraint
Flavor Changing Neutral Higgs (Fig. 15)	$m_{H} / C>2.4 \cdot 10^{3} \mathrm{TeV}$
FC Neutral Higgs (Cheng-Sher ansatz) (Fig. 16)	$m_{H} /\left\|\Delta_{\mathrm{uc}}\right\|>600 \mathrm{GeV}$
Scalar Leptoquark Bosons	See entry for RPV SUSY
Higgsless (Fig. 17)	$M>100 \mathrm{TeV}$
Universal Extra Dimensions	No constraint
Split Fermion (Fig. 19)	$M /\|\Delta y\|>\left(6 \cdot 10^{2} \mathrm{GeV}\right)$
Warped Geometries (Fig. 21)	$M_{1}>3.5 \mathrm{TeV}$
Minimal Supersymmetric Standard (Fig. 23)	$\left\|\left(\delta_{12}^{u}\right)_{\text {LR,RLI }}\right\|<3.5 \cdot 10^{-2}$ for $\tilde{m} \sim 1 \mathrm{TeV}$
	$\left\|\left(\delta_{12}^{u}\right) \mathrm{LLL}, \mathrm{RR}\right\|<.25$ for $\tilde{m} \sim 1 \mathrm{TeV}$
Supersymmetric Alignment	$\bar{m}>2 \mathrm{TeV}$
Supersymmetry with RPV (Fig. 27)	$\lambda_{12 k}^{\prime} \lambda_{11 k}^{\prime} / m_{\bar{d}_{M, k}}<1.8 \cdot 10^{-3} / 100 \mathrm{GeV}$
Split Supersymmetry	No constraint

\checkmark Considered 21 wellestablished models

\checkmark Only 4 models yielded no useful constraints

\checkmark Consult paper for explicit constraints

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

Conclusions

> Indirect effects of New Physics at flavor factories help to distinguish among models possibly observed at the LHC

- a combination of bottom/charm sector studies
- don't forget measurements unique to tau-charm factories
> Charm provides great opportunities for New Physics studies
- unique access to up-type quark sector
- large available statistics
- mixing: $x, y=0$ in the $S U(3)$ limit (as $V^{*}{ }_{c b} V_{u b}$ is very small)
- mixing is a second order effect in SU(3) breaking
- it is conceivable that $y \sim x \sim 1 \%$ in the Standard Model
- large contributions from New Physics are possible
- out of 21 models studied, 17 yielded competitive constraints
- additional input to LHC inverse problem
$>$ Observation of CP-violation in the current round of experiments provide "smoking gun" signals for New Physics

Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009)

July 26-31, 2009, Detroit, Michigan
The 2009 Meeting of the Division of Particles and Fields of the American Physical Society will be held on campus of Wayne State University in Detroit, Michigan.
http://www.dpf2009.wayne.edu/

Please consider attending!!!

Additional slides

Questions:

1. Can any model-independent statements be made for x or y ?

What is the order of $\mathrm{SU}(3)$ breaking?
i.e. if $x, y \propto m_{s}^{n}$ what is n ?
2. Can one claim that $y \sim 1 \%$ is natural?

Theoretical expectations

At which order in $\mathrm{SU}(3)_{\mathrm{F}}$ breaking does the effect occur? Group theory?

$$
\left\langle D^{0}\right| H_{W} H_{W}\left|\bar{D}^{0}\right\rangle \Longrightarrow\langle 0| D H_{W} H_{W} D|0\rangle
$$

is a singlet with $D ® D_{i}$ that belongs to 3 of $\operatorname{SU}(3)_{F}$ (one light quark)

The $\Delta \mathrm{C}=1$ part of H_{W} is $\left(\bar{q}_{i} c\right)\left(\bar{q}_{j} q_{k}\right)$ i.e. $3 \times \overline{3} \times \overline{3}=\overline{15}+6+\overline{3}+\overline{3} \Rightarrow H_{k}^{i j}$

$$
\begin{aligned}
O_{15} & =(\bar{s} d)(\bar{u} d)+(\bar{u} c)(\bar{s} d)+s_{1}(\bar{d} c)(\bar{u} d)+s_{1}(\bar{u} c)(\bar{d} d) \\
& -s_{1}(\bar{s} c)(\bar{u} s)-s_{1}(\bar{u} c)(\bar{s} s)-s_{1}^{2}(\bar{d} c)(\bar{u} s)-s_{1}^{2}(\bar{u} c)(\bar{d} s) \\
O_{6} & =(\bar{s} d)(\bar{u} d)-(\bar{u} c)(\bar{s} d)+s_{1}(\bar{d} c)(\bar{u} d)-s_{1}(\bar{u} c)(\bar{d} d) \\
& -s_{1}(\bar{s} c)(\bar{u} s)+s_{1}(\bar{u} c)(\bar{s} s)-s_{1}^{2}(\bar{d} c)(\bar{u} s)+s_{1}^{2}(\bar{u} c)(\bar{d} s)
\end{aligned}
$$

Introduce $\mathrm{SU}(3)$ breaking via the quark mass operator $M_{j}^{i}=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)$
All nonzero matrix elements built of $D_{i}, H_{k}^{i j}, M_{j}^{i}$ must be $\mathrm{SU}(3)$ singlets

Theoretical expectations

note that $D_{i} D_{i}$ is symmetric $\quad \Longrightarrow \quad$ belongs to 6 of $S U(3)_{F}$

$$
\left\langle D^{0}\right| H_{W} H_{W}\left|\bar{D}^{0}\right\rangle \Longrightarrow\langle 0| D H_{W} H_{W} D|0\rangle
$$

Explicitly,

$$
D D \Longrightarrow D_{6}
$$

$$
H_{W} H_{W} \Rightarrow O_{\overline{60}}+O_{42}+O_{15}
$$

1. No $\overline{6}$ in the decomposition of $H_{W} H_{W} \Rightarrow$ no $\mathrm{SU}(3)$ singlet can be formed

2. Consider a single insertion of $M_{j}^{i} \Rightarrow D_{6} M$ transforms as $6 \times 8=24+\overline{15}+6+\overline{3} \Rightarrow$ still no $\mathrm{SU}(3)$ singlet can be formed
$\Rightarrow \quad$ NO D mixing at first order in $\mathrm{SU}(3)$ breaking
3. Consider double insertion of $M \Rightarrow D M M$: $6 \times(8 \times 8)_{S}=(60+\overline{42}+24+\overline{15}+\overline{15}+6)$

$$
+(24+15+6+\overline{3})+6
$$

Quantum coherence: supporting measurements

Time-dependent $D^{0}(t){ }^{\circledR} K^{+} \pi^{-}$analysis

$$
\begin{aligned}
& \Gamma\left[D^{0}(t) ® K^{+} \pi^{-}\right]=e^{-\Gamma t}\left|A_{K^{+} \pi^{-}}\right|^{2}\left[R+\sqrt{R} R_{m}\left(y^{\prime} \cos \phi-x^{\prime} \sin \phi\right) \Gamma t+\frac{R_{m}^{2}}{4}\left(y^{2}+x^{2}\right)(\Gamma t)^{2}\right] \\
& \quad \text { where } R=\left|\begin{array}{ll}
A_{K^{+} \pi^{-}} \\
\bar{A}_{K^{+} \pi^{-}}
\end{array}\right|^{2} \quad \text { and } \quad \begin{array}{l}
x^{\prime}=x \cos \delta+y \sin \delta \\
y^{\prime}=y \cos \delta-x \sin \delta
\end{array}
\end{aligned}
$$

Strong phase δ is zero in the $\operatorname{SU}(3)$ limit and strongly model-dependent
A. Falk, Y. Nir and A.A.P., JHEP 12 (1999) 019

Strong phase can be measured at CLEO-c!

$$
\sqrt{2} A\left(D_{C P_{ \pm}}{ }^{\circledR} K^{-} \pi^{+}\right)=A\left(D^{0} ® K^{-} \pi^{+}\right) \pm A\left(\overline{D^{0}}{ }^{\circledR} K^{-} \pi^{+},\right.
$$

$$
\cos \delta=\frac{\operatorname{Br}\left(D_{C P_{+}+}{ }^{\circledR} K^{-} \pi^{+}\right)-B r\left(D_{C P_{-}}{ }^{\circledR} K^{-} \pi^{+}\right)}{2 \sqrt{R} \operatorname{Br}\left(D^{0} \circledR K^{-} \pi^{+}\right)}
$$

Silva, Soffer;
With $3 \mathrm{fb}^{-1}$ of data $\cos \delta$ can be determined to $|\Delta \cos \delta|<0.05$!

Theoretical expectations

- If $\operatorname{SU}(3)$ breaking enters perturbatively, it is a second order effect...

$$
A_{i}=A_{S U(3)}+\delta_{i}
$$

- Known counter-example:
A. Falk, Y. Grossman, Z. Ligeti, and A.A.P.

Phys.Rev. D65, 054034, 2002

1. Very narrow light quark resonance with $\mathrm{m}_{\mathrm{R}} \sim \mathrm{m}_{\mathrm{D}}$
$x, y \sim \frac{g_{D R}^{2}}{m_{D}^{2}-m_{R}^{2}} \sim \frac{g_{D R}^{2}}{m_{D}^{2}-m_{0}^{2}-2 m_{0} \delta_{R}}$

Most probably don't exists...
see E.Golowich and A.A.P. Phys.Lett. B427, 172, 1998

- What happens if part of the multiplet is kinematically forbidden?

Example: both $D^{0} ® 4 \pi$ and $D^{0} \circledR 4 K$ are from the same multiplet, but the latter is kinematically forbidden

