Implications of charm mixing for New Physics

Alexey A. Petrov WSU & MCTP

Table of Contents:

Introduction

- Experimental constraints and SM expectations
- New Physics contributions to charm mixing
 - ΔC =1 operators
 - ΔC =2 operators
- Conclusions and outlook

Introduction: identifying New Physics

The LHC ring is 27km in circumference

How can KEK or other older machines help with New Physics searches?

Introduction: charm and New Physics

Charm transitions serve as excellent probes of New Physics

Unique access to up-quark sector

1. Processes forbidden in the Standard Model to all orders

Examples: $D^0 \rightarrow p^+ \pi^- \nu$

2. Processes forbidden in the Standard Model at tree level

Examples:
$$D^0 - \overline{D}^0, \ D^0 \to X\gamma, \ D \to X \nu \overline{\nu}$$

3. Processes allowed in the Standard Model Examples: relations, valid in the SM, but not necessarily in general

CKM triangle relations

Introduction: charm and New Physics

Charm transitions serve as excellent probes of New Physics

Unique access to up-quark sector

1. Processes forbidden in the Standard Model to all orders

Examples: $D^0 \rightarrow p^+ \pi^- \nu$

Processes forbidden in the Standard Model at tree level

Examples:
$$D^0 - \overline{D}^0, D^0 \to X\gamma, \ D \to X\nu\bar{\nu}$$

3. Processes allowed in the Standard Model Examples: relations, valid in the SM, but not necessarily in general

CKM triangle relations

Introduction: mixing

Coupled oscillators

Mass and lifetime differences of mass eigenstates:

 $\Delta Q=2$: only at one loop in the Standard Model: possible new physics particles in the loop

 $\Delta Q{=}2$ interaction couples dynamics of D^0 and D^0

$$|D(t)\rangle = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = a(t)|D^{0}\rangle + b(t)|\overline{D}^{0}\rangle$$

Time-dependence: coupled Schrödinger equations

$$i\frac{\partial}{\partial t}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle = \left[\begin{array}{cc}A & p^2\\q^2 & A\end{array}\right]|D(t)\rangle$$

Diagonalize: mass eigenstates ≠ flavor eigenstates

$$D_{1,2} \rangle = p \left| D^0 \right\rangle \pm q \left| \overline{D^0} \right\rangle$$

$$x = \frac{M_2 - M_1}{\Gamma}, \ y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$$

Introduction: mixing

Coupled oscillators

Mass and lifetime differences of mass eigenstates:

 $x = \frac{M_2 - M_1}{\Gamma}, \ y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$

$$|D(t)\rangle = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = a(t)|D^0\rangle + b(t)|\overline{D}^0\rangle$$

possible new physics particles in the loop

Time-dependence: coupled Schrödinger equations

 $\Delta Q=2$: only at one loop in the Standard Model:

 $\Delta Q=2$ interaction couples dynamics of D^0 and D^0

$$i\frac{\partial}{\partial t}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle = \left[\begin{array}{cc}A & p^2\\q^2 & A\end{array}\right]|D(t)\rangle$$

➢ Diagonalize: mass eigenstates ≠ flavor eigenstates

Introduction: mixing

Coupled oscillators

Mass and lifetime differences of mass eigenstates

 $\Delta Q=2$: only at one loop in the Standard Model: possible new physics particles in the loop

 $\Delta Q{=}2$ interaction couples dynamics of D^0 and D^0

$$|D(t)\rangle = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = a(t)|D^{0}\rangle + b(t)|\overline{D}^{0}\rangle$$

Time-dependence: coupled Schrödinger equations

$$i\frac{\partial}{\partial t}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle = \left[\begin{array}{cc}A & p^2\\q^2 & A\end{array}\right]|D(t)\rangle$$

Diagonalize: mass eigenstates ≠ flavor eigenstates

No CPV:
$$|D_{1,2}\rangle \Rightarrow |D_{CP\pm}\rangle = \frac{1}{\sqrt{2}} \left[|D^0\rangle \pm |\overline{D^0}\rangle \right]$$

tes: $x = \frac{M_2 - M_1}{\Gamma}, \ y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$

Introduction: why do we care?

$\overline{b} \frac{\overline{t, \overline{c}, \overline{u}}}{\sum \xi \overline{d}}$	$\overline{D^0}$ – D^0 mixing	$\overline{B^0} - B^0$ mixing
wş şw	 intermediate down-type quarks 	 intermediate up-type quarks
$d = \frac{\sum t, c, u}{\sum b}$	 SM: b-quark contribution is 	 SM: t-quark contribution is
V _{td} V _{tb}	negligible due to $V_{cd}V_{ub}^{*}$	dominant
B-B mixing		
	• rate $\propto f(m_s) - f(m_d)$	• rate $\propto m_t^2$
$\frac{d,s,b}{\zeta}$ u	(zero in the SU(3) limit)	(expected to be large)
w È È w	Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002 2 nd order effect!!!	
	1. Sensitive to long distance QCD	1. Computable in QCD (*)
a, s, b	2. Small in the SM: New Physics!	2. Large in the SM: CKM!
D-D mixing	(must know SM x and y)	

(*) up to matrix elements of 4-quark operators

Recent results from BaBar

* Time-dependent $D \to K \pi$ analysis

$$\Gamma_{\rm WS}(t) = e^{-\Gamma t} \left(R_D + y' \sqrt{R_D} (\Gamma t) + \left(\frac{x'^2 + y'^2}{4} \right) (\Gamma t)^2 \right)$$

- No evidence for CPviolation
- Accounting for systematic errors, the no-mixing point is at 3.9sigma contour

Recent results from Belle

KITP UCSB, 2 May 2008

Recent experimental results

• BaBar, Belle and CDF results

$$y'_{\rm D} = (0.97 \pm 0.44 \pm 0.31) \cdot 10^{-2} \quad \text{(BaBar)} ,$$

$$y^{\rm (CP)}_{\rm D} = (1.31 \pm 0.32 \pm 0.25) \cdot 10^{-2} \quad \text{(Belle)} .$$

$$y'_{D} = (0.85 \pm 0.76) \cdot 10^{-2} \quad \text{(CDF)}$$

• Belle Dalitz plot result ($D^0 \rightarrow K_S \pi^+ \pi^-$)

$$x_{\rm D} = (0.80 \pm 0.29 \pm 0.17) \cdot 10^{-2} ,$$

 $y_{\rm D} = (0.33 \pm 0.24 \pm 0.15) \cdot 10^{-2}$

• Preliminary HFAG numbers

$$x_{\rm D} = 8.5^{+3.2}_{-3.1} \cdot 10^{-3} ,$$

 $y_{\rm D} = 7.1^{+2.0}_{-2.1} \cdot 10^{-3} \qquad (\cos \delta_{K\pi} = 1.09 \pm 0.66)$

What about theoretical predictions?

A. Short distance gives a tiny contribution

... as can be seen from a "straightforward computation"...

$$\Rightarrow y_{\rm LO}^{(z^3)} = \frac{G_F^2 m_c^2 f_D^2 M_D}{3\pi\Gamma_D} \xi_s^2 z^3 \left(C_2^2 - 2C_1 C_2 - 3C_1^2 \right) \left[B_{\rm D} - \frac{5}{2} \overline{B}_{\rm D}^{(S)} \right] \propto m_s^6 \Lambda^{-6} \qquad \dots \times_{\rm LO} \gg \gamma_{\rm LO} \parallel m_s^{(z^2)} = \frac{G_F^2 m_c^2 f_D^2 M_D}{3\pi^2 \Gamma_D} \xi_s^2 z^2 \left[C_2^2 B_{\rm D} - \frac{5}{4} (C_2^2 - 2C_1 C_2 - 3C_1^2) \overline{B}_{\rm D}^{(S)} \right] \propto m_s^4 \Lambda^{-4} \qquad \dots \times_{\rm LO} \gg \gamma_{\rm LO} \parallel m_s^{(z^2)} = \frac{1 + N_c}{N_c} \frac{4F_D^2 m_D^2}{2m_D} B_D, \text{ etc.}$$

Notice, however, that at NLO in QCD $(x_{NIO}, y_{NIO}) \gg (x_{IO}, y_{IO})$:

$$y_{\rm NLO}^{(2)} = \frac{G_F^2 m_c^2 f_D^2 M_D}{3\pi\Gamma_D} \xi_s^2 \frac{\alpha_s}{4\pi} z^2 \left(B_D \left[-\left(\frac{77}{6} - \frac{8\pi^2}{9}\right) C_2^2 + 14 C_1 C_2 + 8 C_1^2 \right] \right)$$

$$-\frac{5}{2} \overline{B}_D^{(S)} \left[\left(\frac{8\pi^2}{9} - \frac{25}{3}\right) C_2^2 + 20 C_1 C_2 + 32 C_1^2 \right] \right), \quad \mathbf{X}_{\rm NLO} \sim \mathbf{Y}_{\rm NLO}!$$

Example of NLO contribution
Example of NLO contribution
Example of NLO contribution

Similar for x (trust me!)

Phys. Lett. B625 (2005) 53

22

A. Short distance gives a tiny contribution

... as can be seen from a "straightforward computation"...

Notice, however, that at NLO in QCD $(x_{NLO}, y_{NLO}) \gg (x_{LO}, y_{LO})$:

$$y_{\rm NLO}^{(2)} = \frac{G_F^2 m_c^2 f_D^2 M_D}{3\pi\Gamma_D} \xi_s^2 \frac{\alpha_s}{4\pi} z^2 \left(B_D \left[-\left(\frac{77}{6} - \frac{8\pi^2}{9}\right) C_2^2 + 14 C_1 C_2 + 8 C_1^2 \right] -\frac{5}{2} \overline{B}_D^{(S)} \left[\left(\frac{8\pi^2}{9} - \frac{25}{3}\right) C_2^2 + 20 C_1 C_2 + 32 C_1^2 \right] \right) , \quad \mathbf{X}_{\rm NLO} \sim \mathbf{Y}_{\rm NLO}!$$

Similar for x (trust me!)

E. Golowich and A.A.P. Phys. Lett. B625 (2005) 53

(c)

Example of NLO contribution

22

A. Short distance gives a tiny contribution

... as can be seen from a "straightforward computation"...

$$\begin{array}{rcl} & & & & \\ & & \Rightarrow & & y_{\mathrm{LO}}^{(z^3)} = \frac{G_F^2 m_c^2 f_D^2 M_D}{3\pi\Gamma_D} \, \xi_s^2 \left[z^3 \right] \left(C_2^2 - 2C_1 C_2 - 3C_1^2 \right) \left[B_{\mathrm{D}} - \frac{5}{2} \overline{B}_{\mathrm{D}}^{(S)} \right] \propto m_s^6 \, \Lambda^{-6} \\ & & & & \\ &$$

Notice, however, that at NLO in QCD $(x_{NLO}, y_{NLO}) \gg (x_{LO}, y_{LO})$:

$$y_{\rm NLO}^{(2)} = \frac{G_F^2 m_c^2 f_D^2 M_D}{3\pi\Gamma_D} \,\xi_s^2 \,\frac{\alpha_s}{4\pi} \,z^2 \left(B_{\rm D} \left[-\left(\frac{77}{6} - \frac{8\pi^2}{9}\right) \,C_2^2 + 14 \,C_1 C_2 + 8 \,C_1^2 \right] \right. \\ \left. - \frac{5}{2} \overline{B}_{\rm D}^{(S)} \,\left[\left(\frac{8\pi^2}{9} - \frac{25}{3}\right) \,C_2^2 + 20 \,C_1 C_2 + 32 \,C_1^2 \right] \right) \,, \quad \mathbf{X}_{\rm NLO} \sim \mathbf{Y}_{\rm NLO}!$$

Similar for x (trust me!)

E. Golowich and A.A.P. Phys. Lett. B625 (2005) 53

Alexey A Petrov (WSU & MCTP)

(c)

Example of NLO contribution

22

KITP UCSB, 2 May 2008

A. Short distance gives a tiny contribution

... as can be seen from a "straightforward computation"...

Notice, however, that at NLO in QCD $(x_{NLO}, y_{NLO}) \gg (x_{LO}, y_{LO})$:

$$y_{\rm NLO}^{(2)} = \frac{G_F^2 m_c^2 f_D^2 M_D}{3\pi\Gamma_D} \xi_s^2 \frac{\alpha_s}{4\pi} z^2 \left(B_{\rm D} \left[-\left(\frac{77}{6} - \frac{8\pi^2}{9}\right) C_2^2 + 14 C_1 C_2 + 8 C_1^2 \right] -\frac{5}{2} \overline{B}_{\rm D}^{(S)} \left[\left(\frac{8\pi^2}{9} - \frac{25}{3}\right) C_2^2 + 20 C_1 C_2 + 32 C_1^2 \right] \right) , \quad \mathbf{X}_{\rm NLO} \sim \mathbf{Y}_{\rm NLO}!$$

Example of NLO contribution

(c)

Similar for x (trust me!)

E. Golowich and A.A.P. Phys. Lett. B625 (2005) 53

22

A. Short distance + "subleading corrections" (in $\{m_s, 1/m_c\}$ expansion):

$$y_{sd}^{(6)} \propto \frac{\left(m_s^2 - m_d^2\right)}{m_c^2} \frac{m_s^2 + m_d^2}{m_c^2} \mu_{had}^{-2} \propto m_s^6 \Lambda^{-6}$$
$$x_{sd}^{(6)} \propto \frac{\left(m_s^2 - m_d^2\right)}{m_c^2} \mu_{had}^{-2} \propto m_s^4 \Lambda^{-4}$$

4 unknown matrix elements

...subleading effects?

Resume: <u>model-independent</u> computation with <u>model-dependent</u> result

B. Long distance physics dominates the dynamics...

m_c is NOT large !!!

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | D^0 \rangle \right]$$

... with n being all states to which D⁰ and \overline{D}^0 can decay. Consider $\pi\pi$, πK , KK intermediate states as an example...

J. Donoghue et. al. P. Colangelo et. al.

$$y_2 = Br(D^0 \to K^+ K^-) + Br(D^0 \to \pi^+ \pi^-) - 2\cos \delta \sqrt{Br(D^0 \to K^+ \pi^-)Br(D^0 \to \pi^+ K^-)}$$

P. Colangelo et. a

If every Br is known up to O(1%) \implies the result is expected to be O(1%)!

The result here is a series of large numbers with alternating signs, <u>SU(3) forces 0</u>

x = ? Extremely hard...

Need to "repackage" the analysis: look at the <u>complete</u> multiplet contribution

B. Long distance physics dominates the dynamics...

m_c is NOT large !!!

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | D^0 \rangle \right]$$

... with n being all states to which D⁰ and \overline{D}^0 can decay. Consider $\pi\pi$, πK , KK intermediate states as an example...

> J. Donoghue et. al. P. Colangelo et. al.

$$y_2 = Br(D^0 \to K^+ K^-) + Br(D^0 \to \pi^+ \pi^-)$$

$$\bigcirc 2\cos \delta \sqrt{Br(D^0 \to K^+ \pi^-) Br(D^0 \to \pi^+ K^-)}$$

cancellation expected!

If every Br is known up to O(1%)the result is expected to be O(1%)! \square

The result here is a series of large numbers with alternating signs, SU(3) forces 0

x = ? Extremely hard...

Need to "repackage" the analysis: look at the complete multiplet contribution

SU(3) and phase space

• "Repackage" the analysis: look at the <u>complete</u> multiplet contribution

• Does it help? If only phase space is taken into account: no (mild) model dependence

$$y_{F,R} = \frac{\sum_{n \in F_R} \langle \overline{D}^0 | H_W | n \rangle \rho_n \langle n | H_W | D^0 \rangle}{\sum_{n \in F_R} \Gamma(D^0 \to n)}$$
$$= \frac{\sum_{n \in F_R} \langle \overline{D}^0 | H_W | n \rangle \rho_n \langle n | H_W | D^0 \rangle}{\sum_{n \in F_R} \langle D^0 | H_W | n \rangle \rho_n \langle n | H_W | D^0 \rangle}$$

Can consistently compute

Example: PP intermediate states

• n=PP transforms as $(8 \times 8) = 27 + 8 + 1$, take 8 as an example:

Numerator:

$$A_{N,8} = |A_0|^2 s_1^2 \left[\frac{1}{2} \Phi(\eta, \eta) + \frac{1}{2} \Phi(\pi^0, \pi^0) + \frac{1}{3} \Phi(\eta, \pi^0) + \Phi(\pi^+, \pi^-) - \Phi(\overline{K}^0, \pi^0) \right] \\ + \Phi(K^+, K^-) - \frac{1}{6} \Phi(\eta, K^0) - \frac{1}{6} \Phi(\eta, \overline{K}^0) - \Phi(K^+, \pi^-) - \Phi(K^-, \pi^+) \right]$$

Denominator:

phase space function

$$A_{D,8} = |A_0|^2 \left[\frac{1}{6} \Phi(\eta, K^0) + \Phi(K^+, \pi^-) + \frac{1}{2} \Phi(K^0, \pi^0) + O(s_1^2) \right]$$

• This gives a calculable effect!

$$y_{2,8} = \frac{A_{N,8}}{A_{D,8}} = -0.038s_1^2 = -1.8 \times 10^{-4}$$

Repeat for other states
 Multiply by Br_{Fr} to get y

Results

Final state repr	esentation	$y_{F,R}/s_1^2$	$y_{F,R}$ (%)
PP	8	-0.0038	-0.018
	27	-0.00071	-0.0034
PV	8_S	0.031	0.15
	84	0.032	0.15
	10	0.020	0.10
	10	0.016	0.08
	27	0.040	0.19
(VV)s-wave	8	-0.081	-0.39
	27	-0.061	-0.30
(VV)p-wave	8	-0.10	-0.48
	27	-0.14	-0.70
(VV)d-wave	8	0.51	2.5
	27	0.57	2.8

Final state represe	ntation	$y_{F,R} / s_1^2$	$y_{F,B}$ (%)
(3P)s-wave	8	-0.48	-2.3
	27	-0.11	-0.54
$(3P)_{p-wave}$	8	-1.13	-5.5
1	27	-0.07	-0.36
$(3P)_{ m form-factor}$	8	-0.44	-2.1
	27	-0.13	-0.64
4 <i>P</i>	8	3.3	16
	27	2.2	9.2
	27'	1.9	11

 Product is naturally O(1%) 	
• No (symmetry-enforced) cancellation	ns

Disp relation: compute x (model-dependence)

naturally implies that $x, y \sim 1\%$ is expected in the Standard Model

Final state	fraction
PP	5%
PV	10%
(VV)s-wave	5%
(VV) _{d-wave}	5%
3P	5%
4P	10%

A.F., Y.G., Z.L., Y.N. and A.A.P. Phys.Rev. D69, 114021, 2004

E.Golowich and A.A.P. Phys.Lett. B427, 172, 1998

Resume: a contribution to x and y of the order of 1% is natural in the SM

What about New Physics?

 \blacktriangleright Local ΔC =2 piece of the mass matrix affects x:

$$\left(M - \frac{i}{2}\Gamma\right)_{ij} = m_D^{(0)}\delta_{ij} + \frac{1}{2m_D}\left\langle D_i^0 \left| H_W^{\Delta C=2} \right| D_j^0 \right\rangle + \frac{1}{2m_D}\sum_{T} \frac{\left\langle D_i^0 \left| H_W^{\Delta C=1} \right| I \right\rangle \left\langle I \left| H_W^{\Delta C=1} \right| D_j^0 \right\rangle}{m_D^2 - m_I^2 + i\varepsilon}$$

 \succ Double insertion of ΔC =1 affects x and y:

Amplitude $A_n = \langle D^0 | (H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1}) | n \rangle \equiv A_n^{SM} + A_n^{NP}$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} + \overline{A}_n^{NP}\right) \left(A_n^{SM} + A_n^{NP}\right) \approx \frac{1}{2\Gamma} \sum_{n} \rho_n \overline{A}_n^{SM} A_n^{SM} + \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} A_n^{NP} + \overline{A}_n^{NP} A_n^{SM}\right)$$
phase space

 \succ Double insertion of ΔC =1 affects x and y:

Amplitude $A_n = \langle D^0 | (H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1}) | n \rangle \equiv A_n^{SM} + A_n^{NP}$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} + \overline{A}_n^{NP}\right) \left(A_n^{SM} + A_n^{NP}\right) \approx \frac{1}{2\Gamma} \sum_{n} \rho_n \overline{A}_n^{SM} A_n^{SM} + \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} A_n^{NP} + \overline{A}_n^{NP} A_n^{SM}\right)$$

phase space

 \succ Local ΔC =2 piece of the mass matrix affects x:

$$\left(M - \frac{i}{2}\Gamma\right)_{ij} = m_D^{(0)}\delta_{ij} + \frac{1}{2m_D}\left\langle D_i^0 \left| H_W^{\Delta C=2} \right| D_j^0 \right\rangle + \frac{1}{2m_D}\sum_{T} \frac{\left\langle D_i^0 \left| H_W^{\Delta C=1} \right| I \right\rangle \left\langle I \left| H_W^{\Delta C=1} \right| D_j^0 \right\rangle}{m_D^2 - m_I^2 + i\varepsilon}$$

 \succ Double insertion of ΔC =1 affects x and y:

Amplitude $A_n = \left\langle D^0 \left| \left(H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1} \right) \right| n \right\rangle \equiv A_n^{SM} + A_n^{NP}$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} + \overline{A}_n^{NP}\right) \left(A_n^{SM} + A_n^{NP}\right) \approx \frac{1}{2\Gamma} \sum_{n} \rho_n \overline{A}_n^{SM} A_n^{SM} + \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} A_n^{NP} + \overline{A}_n^{NP} A_n^{SM}\right)$$

phase space

 \blacktriangleright Local ΔC =2 piece of the mass matrix affects x:

$$\left(M - \frac{i}{2}\Gamma\right)_{ij} = m_D^{(0)}\delta_{ij} + \frac{1}{2m_D}\left\langle D_i^0 \left| H_W^{\Delta C=2} \right| D_j^0 \right\rangle + \frac{1}{2m_D}\sum_{T} \frac{\left\langle D_i^0 \left| H_W^{\Delta C=1} \right| I \right\rangle \left\langle I \left| H_W^{\Delta C=1} \right| D_j^0 \right\rangle}{m_D^2 - m_I^2 + i\varepsilon}$$

> Double insertion of
$$\Delta C$$
=1 affects x and y:

Amplitude $A_n = \langle D^0 | (H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1}) | n \rangle \equiv A_n^{SM} + A_n^{NP}$

Suppose $|A_n^{NP}|/|A_n^{SM}|$: $O(\exp. \operatorname{uncertainty}) \le 10\%$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} + \overline{A}_n^{NP}\right) \left(A_n^{SM} + A_n^{NP}\right) = \frac{1}{2\Gamma} \sum_{n} \rho_n \overline{A}_n^{SM} A_n^{SM} + \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} A_n^{NP} + \overline{A}_n^{NP} A_n^{SM}\right)$$

phase space Zero in the SU(3) limit
Falk, Grossman, Ligeti, and A.A.P.

Phys.Rev. D65, 054034, 2002

2nd order effect!!!

 \blacktriangleright Local ΔC =2 piece of the mass matrix affects x:

$$\left(M - \frac{i}{2}\Gamma\right)_{ij} = m_D^{(0)}\delta_{ij} + \frac{1}{2m_D}\left\langle D_i^0 \left| H_W^{\Delta C=2} \right| D_j^0 \right\rangle + \frac{1}{2m_D}\sum_{T} \frac{\left\langle D_i^0 \left| H_W^{\Delta C=1} \right| I \right\rangle \left\langle I \left| H_W^{\Delta C=1} \right| D_j^0 \right\rangle}{m_D^2 - m_I^2 + i\varepsilon}$$

> Double insertion of
$$\Delta C$$
=1 affects x and y:

Amplitude $A_n = \left\langle D^0 \left| \left(H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1} \right) \right| n \right\rangle \equiv A_n^{SM} + A_n^{NP}$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} + \overline{A}_n^{NP}\right) \left(A_n^{SM} + A_n^{NP}\right) = \frac{1}{2\Gamma} \sum_{n} \rho_n \overline{A}_n^{SM} A_n^{SM} + \frac{1}{2\Gamma} \sum_{n} \rho_n \left(\overline{A}_n^{SM} A_n^{NP} + \overline{A}_n^{NP} A_n^{SM}\right)$$

phase space Zero in the SU(3) limit
Falk, Grossman, Ligeti, and A.A.P.
Phys.Rev. D65, 054034, 2002
2nd order effect!!!

Global Analysis of New Physics: $\Delta C=1$

\succ Let's write the most general ΔC =1 Hamiltonian

$$\mathcal{H}_{\mathrm{NP}}^{\Delta C=-1} = \sum_{q,q'} D_{qq'} [\bar{\mathcal{C}}_1(\mu)Q_1 + \bar{\mathcal{C}}_2(\mu)Q_2],$$
$$Q_1 = \bar{u}_i \bar{\Gamma}_1 q'_j \bar{q}_j \bar{\Gamma}_2 c_i, \qquad Q_2 = \bar{u}_i \bar{\Gamma}_1 q'_i \bar{q}_j \bar{\Gamma}_2 c_j$$

Only light on-shell (propagating) quarks affect $\Delta\Gamma$:

$$y = -\frac{4\sqrt{2}G_F}{M_D\Gamma_D} \sum_{q,q'} \mathbf{V}_{cq'}^* \mathbf{V}_{uq} D_{qq'} (K_1 \delta_{ik} \delta_{j\ell} + K_2 \delta_{i\ell} \delta_{jk})$$
$$\times \sum_{\alpha=1}^5 I_\alpha(x, x') \langle \bar{D}^0 | \mathcal{O}_\alpha^{ijk\ell} | D^0 \rangle,$$

with
$$K_1 = [C_1 \bar{C}_1 N_c + (C_1 \bar{C}_2 + \bar{C}_1 C_2)], \quad K_2 = C_2 \bar{C}_2$$
 and

This is the master formula for NP contribution to lifetime differences in heavy mesons

Alexey A Petrov (WSU & MCTP)

$$\begin{split} \mathcal{O}_{1}^{ijk\ell} &= \bar{u}_{k}\Gamma_{\mu}\gamma_{\nu}\bar{\Gamma}_{2}c_{j}\bar{u}_{\ell}\bar{\Gamma}_{1}\gamma^{\nu}\Gamma^{\mu}c_{i} \\ \mathcal{O}_{2}^{ijk\ell} &= \bar{u}_{k}\Gamma_{\mu}\not\!\!/_{c}\bar{\Gamma}_{2}c_{j}\bar{u}_{\ell}\bar{\Gamma}_{1}\not\!\!/_{c}\Gamma^{\mu}c_{i} \\ \mathcal{O}_{3}^{ijk\ell} &= \bar{u}_{k}\Gamma_{\mu}\bar{\Gamma}_{2}c_{j}\bar{u}_{\ell}\bar{\Gamma}_{1}\not\!\!/_{c}\Gamma^{\mu}c_{i} \\ \mathcal{O}_{4}^{ijk\ell} &= \bar{u}_{k}\Gamma_{\mu}\not\!\!/_{c}\bar{\Gamma}_{2}c_{j}\bar{u}_{\ell}\bar{\Gamma}_{1}\Gamma^{\mu}c_{i} \\ \mathcal{O}_{5}^{ijk\ell} &= \bar{u}_{k}\Gamma_{\mu}\bar{\Gamma}_{2}c_{j}\bar{u}_{\ell}\bar{\Gamma}_{1}\Gamma^{\mu}c_{i}, \end{split}$$

E. Golowich, S. Pakvasa, A.A.P. Phys. Rev. Lett. 98, 181801, 2007

Global Analysis of New Physics: $\Delta C=1$

Some examples of New Physics contributions

Model	У _D	Comment
DDV SUSV	6 10 ⁻⁶	Squark Exch.
KP V-SUS I	-4 10-2	Slepton Exch.
Left-right	-5 10-6	'Manifest'.
	-8.8 10 ⁻⁵	'Nonmanifest'.
Multi-Higgs	2 10-10	Charged Higgs
Extra Quarks-	10-8	Not Little Higgs

E. Golowich, S. Pakvasa, A.A.P. Phys. Rev. Lett. 98, 181801, 2007

A.A.P. and G. Yeghiyan Phys. Rev. D77, 034018 (2008)

For considered models, the results are smaller than observed mixing rates

Global Analysis of New Physics: $\Delta C=2$

Alexey A Petrov (WSU & MCTP)

11

RG-running relate $C_i(m)$ at NP scale to the scale of $m \sim 1$ GeV, where ME are computed (on the lattice) Each model of New Physics

$$\frac{d}{d\log\mu}\vec{C}(\mu) = \hat{\gamma}^T(\mu)\vec{C}(\mu)$$

Each model of New Physics provides unique matching condition for $C_i(L_{NP})$

10

New Physics in x: lots of extras

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

New Physics contributions do not suffer from QCD uncertainties as much as SM contributions since they are short-distance dominated.

Extra gauge bosons

Left-right models, horizontal symmetries, etc.

Extra scalars

Two-Higgs doublet models, leptoquarks, Higgsless, etc.

Extra fermions

4th generation, vector-like quarks, little Higgs, etc.

Extra dimensions

Universal extra dimensions, split fermions, warped ED, etc.

Extra symmetries

SUSY: MSSM, alignment models, split SUSY, etc.

New Physics in x: lots of extras

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

New Physics contributions do not suffer from QCD uncertainties as much as SM contributions since they are short-distance dominated.

Extra gauge bosons

Left-right models, horizontal symmetries, etc.

Extra scalars

Two-Higgs doublet models, leptoquarks, Higgsless, etc.

Extra fermions

4th generation, vector-like quarks, little Higgs, etc.

Extra dimensions

Universal extra dimensions, split fermions, warped ED, etc.

Extra symmetries

SUSY: MSSM, alignment models, split SUSY, etc.

Total: 21 models considered

Dealing with New Physics-I

Consider an example: FCNC Z⁰-boson

appears in models with extra vector-like quarks little Higgs models

1. Integrate out Z: for $\mu < M_Z$ get

$$\mathcal{H}_{2/3} = \frac{g^2}{8\cos^2\theta_w M_Z^2} \left(\lambda_{uc}\right)^2 \bar{u}_L \gamma_\mu c_L \bar{u}_L \gamma^\mu c_L$$

2. Perform RG running to $\mu \sim m_c$ (in general: operator mixing)

4. Assume no SM - get an upper bound on NP model parameters (coupling)

Dealing with New Physics - II

> Consider another example: warped extra dimensions

FCNC couplings via KK gluons

1. Integrate out KK excitations, drop all but the lightest

$$\mathcal{H}_{RS} = \frac{2\pi k r_c}{3M_1^2} g_s^2 \left(C_1(M_n) Q_1 + C_2(M_n) Q_2 + C_6(M_n) Q_6 \right)$$

2. Perform RG running to $\mu \sim m_c$

$$\mathcal{H}_{RS} = \frac{g_s^2}{3M_1^2} \left(C_1(m_c)Q_1 + C_2(m_c)Q_2 + C_3(m_c)Q_3 + C_6(m_c)Q_6 \right)$$

3. Compute relevant matrix elements and x_{D}

$$x_{\rm D}^{(RS)} = \frac{g_s^2}{3M_1^2} \frac{f_D^2 B_D M_D}{\Gamma_D} \left(\frac{2}{3} [C_1(m_c) + C_6(m_c)] - \frac{1}{6} C_2(m_c) - \frac{5}{12} C_3(m_c) \right)$$

Dealing with New Physics - II

> Consider another example: warped extra dimensions

FCNC couplings via KK gluons

100

1. Integrate out KK excitations, drop all but the lightest

$$\mathcal{H}_{RS} = \frac{2\pi k r_c}{3M_1^2} g_s^2 \left(C_1(M_n) Q_1 + C_2(M_n) Q_2 + C_6(M_n) Q_6 \right)$$

2. Perform RG running to $\mu \sim m_c$

$$\mathcal{H}_{RS} = \frac{g_s^2}{3M_1^2} \left(C_1(m_c)Q_1 + C_2(m_c)Q_2 + C_3(m_c)Q_3 + C_6(m_c)Q_6 \right)$$

3. Compute relevant matrix elements and x_{D}

$$x_{\rm D}^{(RS)} = \frac{g_s^2}{3M_1^2} \frac{f_D^2 B_D M_D}{\Gamma_D} \left(\frac{2}{3} [C_1(m_c) + C_6(m_c)] - \frac{1}{6} C_2(m_c) - \frac{5}{12} C_3(m_c) \right)$$

Implies: M_{1KKg} > 3.5 TeV!

 q_j q_i q_i q_i q_i q_i q_i q_i q_j q_j

7

New Physics in x: extra fermions

Fourth generation

$$x_{\rm D}^{(4^{th})} = \frac{G_F^2 M_W^2}{6\pi^2 \Gamma_D} f_D^2 M_D B_D \lambda_{b'}^2 S(x_{b'}, x_{b'}) r_1(m_c, M_W)$$

Vector-like quarks (Q=+2/3)

$$x_{\rm D}^{(-1/3)} \simeq \frac{G_F^2}{6\pi^2 \Gamma_D} f_D^2 B_D r_1(m_c, M_W) M_D M_W^2 \left(V_{cS}^* V_{uS}\right)^2 f(x_S)$$

Vector-like quarks (Q=-1/3)

$$x_{\rm D}^{(2/3)} = \frac{2G_F}{3\sqrt{2}\Gamma_D} \left(\lambda_{uc}\right)^2 r_1(m_c, M_Z) f_{\rm D}^2 M_{\rm D} B_1$$

$$\lambda_{uc} \equiv -\left(V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb}\right)$$

Alexey A Petrov (WSU & MCTP)

KITP UCSB, 2 May 2008

New Physics in x: extra vector bosons

Alexey A Petrov (WSU & MCTP)

KITP UCSB, 2 May 2008

5

New Physics in x: extra scalars

2-Higgs doublet model

$$x_{\rm D}^{(2\rm HDM)} = \frac{G_F^2 M_W^2}{6\pi^2 \Gamma_D} f_D^2 M_D B_D r_1(m_c, M_{H^{\pm}}) \\ \times \sum_{i,j} \lambda_i \lambda_j \left[\tan^4 \beta A_{HH}(x_i, x_j, x_H) + \tan^2 \beta A_{WH}(x_i, x_j, x_H) \right]$$

Flavor-changing neutral Higgs

$$x_{\rm D}^{\rm (H)} = \frac{5f_D^2 M_D B_D}{24\Gamma_D M_H^2} \left[\frac{1-6\eta}{5} C_3(m_c) + \eta \left(C_4(m_c) + C_7(m_c) \right) - \frac{12\eta}{5} \left(C_5(m_c) + C_8(m_c) \right) \right]$$

Higgsless models

$$\begin{aligned} x_{\rm D}^{(\not\!\!\!\!H)} &= \frac{f_D^2 M_D B_D}{\Gamma_D} \left(c_L^c s_L^c \right)^2 \frac{g^2}{M^2} \left[\frac{2}{3} \left(C_1(m_c) + C_6(m_c) \right) + C_2(m_c) \left(-\frac{1}{2} + \frac{\eta}{3} \right) \right. \\ &+ \frac{1}{12} C_3(m_c) \left(1 - 6\eta \right) \right] \quad . \end{aligned}$$

KITP UCSB, 2 May 2008

New Physics in x: extra dimensions

Split fermion models

$$x_{\rm D}^{(split)} = \frac{2}{9\Gamma_D} g_s^2 R_c^2 \pi^2 \Delta y \ r_1(m_c, M) |V_{L\,11}^u V_{L\,12}^{u*}|^2 f_D^2 M_D B_1$$

Warped geometries

$$x_{\rm D}^{(RS)} = \frac{g_s^2}{3M_1^2} \frac{f_D^2 B_D M_D}{\Gamma_D} \left(\frac{2}{3} [C_1(m_c) + C_6(m_c)] - \frac{1}{6} C_2(m_c) - \frac{5}{12} C_3(m_c)\right)$$

10^{-1} 1σ Excluded 10^{-2} 10^{-2} 10^{-2} 10^{-3} 10^{-4} 2^{-4} 4^{-6} 8^{-10} M_1 (TeV)

100

+ others...

Summary: New Physics

Model	Approximate Constraint
Fourth Generation (Fig. 2)	$ V_{ub'}V_{cb'} \cdot m_{b'} < 0.5 \ (GeV)$
Q=-1/3Singlet Quark (Fig. 4)	$s_2 \cdot m_S < 0.27~({\rm GeV})$
$Q=\pm 2/3$ Singlet Quark (Fig. 6)	$ \lambda_{uc} < 2.4 \cdot 10^{-4}$
Little Higgs	Tree: See entry for $Q = -1/3$ Singlet Quark
	Box: Region of parameter space can reach observed $x_{\rm D}$
Generic Z' (Fig. 7)	$M_{Z'}/C>2.2\cdot 10^3~{\rm TeV}$
Family Symmetries (Fig. 8)	$m_1/f > 1.2 \cdot 10^3~{\rm TeV}$ (with $m_1/m_2 = 0.5)$
Left-Right Symmetric (Fig. 9)	No constraint
Alternate Left-Right Symmetric (Fig. 10)	$M_R > 1.2 { m ~TeV} (m_{D_1} = 0.5 { m ~TeV})$
	$(\Delta m/m_{D_1})/M_R > 0.4 \text{ TeV}^{-1}$
Vector Leptoquark Bosons (Fig. 11)	$M_{VLQ} > 55(\lambda_{PP}/0.1)$ TeV
Flavor Conserving Two-Higgs-Doublet (Fig. 13)	No constraint
Flavor Changing Neutral Higgs (Fig. 15)	$m_H/C > 2.4 \cdot 10^3 \text{ TeV}$
FC Neutral Higgs (Cheng-Sher ansatz) (Fig. 16)	$m_H/ \Delta_{uc} > 600 \text{ GeV}$
Scalar Leptoquark Bosons	See entry for RPV SUSY
Higgsless (Fig. 17)	$M > 100 { m ~TeV}$
Universal Extra Dimensions	No constraint
Split Fermion (Fig. 19)	$M/ \Delta y > (6\cdot 10^2~{\rm GeV})$
Warped Geometries (Fig. 21)	$M_1 > 3.5~{\rm TeV}$
Minimal Supersymmetric Standard (Fig. 23)	$ (\delta^u_{12})_{\rm LR,RL} < 3.5\cdot 10^{-2}$ for $\tilde{m}\sim 1~{\rm TeV}$
	$ (\delta^u_{12})_{\rm LL,RR} < .25$ for $\tilde{m} \sim 1~{\rm TeV}$
Supersymmetric Alignment	$\tilde{m} > 2 { m TeV}$
Supersymmetry with RPV (Fig. 27)	$\lambda_{12k}'\lambda_{11k}'/m_{\tilde{d}_{R,k}} < 1.8\cdot 10^{-3}/100~{\rm GeV}$
Split Supersymmetry	No constraint

 ✓ Considered 21 wellestablished models

- ✓ Only 4 models yielded no useful constraints
- Consult paper for explicit constraints

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

Conclusions

Indirect effects of New Physics at flavor factories help to distinguish among models possibly observed at the LHC

- a combination of bottom/charm sector studies
- don't forget measurements unique to tau-charm factories

Charm provides great opportunities for New Physics studies

- unique access to up-type quark sector
- large available statistics
- mixing: x, y = 0 in the SU(3) limit (as $V_{cb}^*V_{ub}$ is very small)
- mixing is a second order effect in SU(3) breaking
- it is conceivable that $y \sim x \sim 1\%$ in the Standard Model
- large contributions from New Physics are possible
- out of 21 models studied, 17 yielded competitive constraints
- additional input to LHC inverse problem
- Observation of CP-violation in the current round of experiments provide "smoking gun" signals for New Physics

Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009)

July 26-31, 2009, Detroit, Michigan

The 2009 Meeting of the Division of Particles and Fields of the American Physical Society will be held on campus of <u>Wayne State University</u> in Detroit, Michigan.

0

http://www.dpf2009.wayne.edu/

Please consider attending!!!

Additional slides

Questions:

1. Can any model-independent statements be made for x or y?

What is the order of SU(3) breaking? i.e. if $x, y \propto m_s^n$ what is n?

2. Can one claim that $y \sim 1\%$ is natural?

Theoretical expectations

At which order in $SU(3)_F$ breaking does the effect occur? Group theory?

$$\left\langle D^{0} \right| H_{W} H_{W} \left| \overline{D}^{0} \right\rangle \Rightarrow \left\langle 0 \right| D H_{W} H_{W} D \left| 0 \right\rangle$$

is a singlet with D B D_i that belongs to 3 of $SU(3)_F$ (one light quark)

The
$$\Delta C=1$$
 part of H_W is $(q_i c)(q_j q_k)(i.e. 3 \times 3 \times 3 = 15 + 6 + 3 + 3 \Rightarrow H_k^{ij})$
 $O_{\overline{15}} = (\overline{sd})(\overline{ud}) + (\overline{uc})(\overline{sd}) + s_1(\overline{dc})(\overline{ud}) + s_1(\overline{uc})(\overline{dd})$
 $-s_1(\overline{sc})(\overline{us}) - s_1(\overline{uc})(\overline{ss}) - s_1^2(\overline{dc})(\overline{us}) - s_1^2(\overline{uc})(\overline{ds})$
 $O_6 = (\overline{sd})(\overline{ud}) - (\overline{uc})(\overline{sd}) + s_1(\overline{dc})(\overline{ud}) - s_1(\overline{uc})(\overline{dd})$
 $-s_1(\overline{sc})(\overline{us}) + s_1(\overline{uc})(\overline{ss}) - s_1^2(\overline{dc})(\overline{us}) + s_1^2(\overline{uc})(\overline{ds})$

Introduce SU(3) breaking via the quark mass operator $M_j^i = diag(m_u, m_d, m_s)$

All nonzero matrix elements built of D_i, H_k^{ij}, M_i^i must be SU(3) singlets

C

11

u

Theoretical expectations

Quantum coherence: supporting measurements

Time-dependent $D^0(t) \otimes K^+\pi^-$ analysis

$$\Gamma\left[D^{0}(t) \circledast K^{+}\pi^{-}\right] = e^{-\Gamma t} \left|A_{K^{+}\pi^{-}}\right|^{2} \left[R + \sqrt{R}R_{m}\left(y'\cos\phi - x'\sin\phi\right)\Gamma t + \frac{R_{m}^{2}}{4}\left(y^{2} + x^{2}\right)\left(\Gamma t\right)^{2}\right]$$
where $R = \left|\frac{A_{K^{+}\pi^{-}}}{\overline{A}_{K^{+}\pi^{-}}}\right|^{2}$ and $x' = x\cos\phi + y\sin\phi$
 $y' = y\cos\phi - x\sin\phi$
Strong phase δ is zero in the SU(3) limit and strongly model-dependent
$$A. Falk, Y. Nir and A.A.P.,$$
 $JHEP 12 (1999) 019$
Strong phase can be measured at CLEO-c!
 $\sqrt{2} A\left(D_{CP_{\pm}} \circledast K^{-}\pi^{+}\right) = A\left(D^{0} \circledast K^{-}\pi^{+}\right) \pm A\left(\overline{D^{0}} \circledast K^{-}\pi^{+}\right)$

$$\cos \delta = \frac{Br(D_{CP+} \otimes K^{-}\pi^{+}) - Br(D_{CP-} \otimes K^{-}\pi^{+})}{2\sqrt{R}Br(D^{0} \otimes K^{-}\pi^{+})}$$

With 3 fb⁻¹ of data $\cos \delta$ can be determined to $|\Delta \cos \delta| \le 0.05!$

Silva, Soffer; Gronau, Grossman, Rosner

sin δ

Theoretical expectations

• If SU(3) breaking enters perturbatively, it is a second order effect...

$$A_i = A_{SU(3)} + \delta_i$$

A. Falk, Y. Grossman, Z. Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002

• Known counter-example:

1. Very narrow light quark resonance with $m_R \sim m_D$

$$x, y \sim \frac{g_{DR}^2}{m_D^2 - m_R^2} \sim \frac{g_{DR}^2}{m_D^2 - m_0^2 - 2m_0 \delta_R}$$

Most probably don't exists...

see E.Golowich and A.A.P. Phys.Lett. B427, 172, 1998

• What happens if part of the multiplet is kinematically forbidden?

Example: both $D^0 \otimes 4\pi$ and $D^0 \otimes 4K$ are from the same multiplet, but the latter is kinematically forbidden

see A.F., Y.G., Z.L., and A.A.P. Phys.Rev. D65, 054034, 2002