The Search for Higgs Bosons

John Conway University of California, Davis

KITP Aug 2, 2011 NEWS ANALYSIS

Particle Accelerators Full of Spin and Fury, Signifying Something

Elwood H. Smith

By DENNIS OVERBYE

Published: August 1, 2011

- This talk came from my PANIC 11 talk on SM Higgs at CMS
- To this I have added more material:
 - ATLAS combined SM Higgs result
 - Tevatron combined SM Higgs result
 - MSSM Higgs from CMS

Search for SM Higgs is on with the first fb⁻¹

LHC 2011

4

John Conway - KITP - LHC I I

- large radius tracking, 4T field
- PbWO₄ crystal ECAL

slide topic

John Conway - KITP - LHC I I

major challenge in 2011: multiple pp interactions ("pileup")

Higgs@ LHC

John Conway - KITP - LHC

pileup

SM Higgs Production

John Conway - KITP - LHC I I

vector boson fusion

SM Higgs Production

John Conway - KITP - LHC I

SM Higgs Production

SM Higgs Decay

John Conway - KITP - LHC I I

WW: dominates over wide mass range, clean final state (*l*V*l*V)

SM Higgs Decay

John Conway - KITP - LHC I I

WW: dominates over wide mass range, clean final state (*l*v*l*v)

ZZ: three channels, sharp resolution

SM Higgs Decay

John Conway - KITP - LHC 11

WW: dominates over wide mass range, clean final state ($\ell \nu \ell \nu$)

ZZ: three channels, sharp resolution

TT: four channels, can use VBF production

SM Higgs Decay

WW: dominates over wide mass range, clean final state (*l*V*l*V)

ZZ: three channels, sharp resolution

TT: four channels, can use VBF production

SM Higgs Decay

WW: dominates over wide mass range, clean final state (*l*V*l*V)

ZZ: three channels, sharp resolution

TT: four channels, can use VBF production

bb mode will play role in future: boosted Higgs

SM Higgs Decay

Three useful $H \rightarrow ZZ$ final states:

$H \rightarrow ZZ$ channels

$H \rightarrow ZZ \rightarrow 4\ell$

- look for best reconstructed $Z \rightarrow ee, \mu\mu \quad (M_{\ell\ell} > 60 \text{ GeV})$
- find second lepton pair
 - baseline selection: M_{Z2} > 20 GeV
 - high-mass selection: M_{Z2} > 60 GeV
- main background: continuum ZZ (estimate from data)

<u>baseline</u>

	eeee	μμμμ	eeµµ	
ZZ	2.76±0.18	4.10±0.27	6.72±0.45	
Z+jets	0.37±0.07	0.06±0.01	0.39±0.07	
Z+bb,cc, tt	bb,cc, tt 0.01±0.02		0.02±0.02	
H (200 GeV)	0.82±0.01	1.16±0.01 1.91±0.0		
observed	3	6	6	

$H \rightarrow ZZ \rightarrow 4 \ell$

 $|H \rightarrow ZZ \rightarrow 4\ell|$

For high-mass selection, see good agreement with ZZ background prediction.

Signal: sharp peak

high-mass

	eeee	μμμμ	eeµµ	
ZZ	2.50±0.17	3.55±0.23	6.10±0.40	
Z+jets	0.14±0.06	0.004±0.004	0.15±0.06	
H (200 GeV)	0.76±0.01	1.08±0.01	I.80±0.02	
observed	0	2	6	

$H \rightarrow ZZ \rightarrow 4\ell$

 $H \rightarrow ZZ \rightarrow 4\ell$

 $H \rightarrow ZZ \rightarrow 4\ell$

John Conway - KITP - LHC I

Higgs@LHC $H \rightarrow ZZ$ $H \rightarrow WV$ $H \rightarrow ZZ \rightarrow 2\ell 2v$

• two opposite-sign leptons, $|M_{\ell\ell}-M_Z| < 15$ GeV • MET > 69-170 GeV (slides up with M_H)

 $H \rightarrow ZZ \rightarrow 2\ell 2\nu$

Higgs (\bigcirc LHC $H \rightarrow ZZ$

- two opposite-sign leptons, $|M_{\ell\ell}-M_Z| < 15 \text{ GeV}$
- MET > 69-170 GeV (slides up with M_H)
- M_T window cut (slides up with M_H)

95% CL Limit on σ/σ_{SM} 10² SM HZZ \rightarrow 2l2v, 1091pb⁻¹ ····· 95% CL exclusion: mean 95% CL exclusion: 68% band 95% CL exclusion: 95% band 95% CL exclusion: DATA 10 1 u 450 500 550 600 Higgs mass, m_н [GeV/c²] 300 350 250 400

 $H \rightarrow ZZ \rightarrow 2\ell 2\nu$

Higgs @ LHC $H \rightarrow ZZ$ $H \rightarrow WW$

>WW | H→VV.TT |Co

 $H \rightarrow ZZ \rightarrow 2 \ \ell \ 2j$

- two opposite-sign leptons 70 <
- two jets

cons $70 < M_{\ell \ell} < 110 \text{ GeV}$ $75 < M_{jj} < 105 \text{ GeV}$

• $M_{ZZ} \in$ [183,800] GeV

$H \rightarrow ZZ \rightarrow 2\ell 2j$

 $H \rightarrow ZZ \rightarrow 2 \ell 2j$

Higgs @ LHC $H \rightarrow ZZ$

$H \rightarrow ZZ \rightarrow 2\ell 2j$

John Conway - KITP - LHC I

• in $H \rightarrow WW$ decays the W spins are anti-aligned:

$$\bigvee \underset{\Rightarrow}{\bigvee} \longleftarrow H \longrightarrow \bigvee \underset{\Leftarrow}{\bigvee}$$

• in the decays of both W's to ℓv , the leptons tend to come out in the same direction

John Conway - KITP - LHC I

• in $H \rightarrow WW$ decays the W spins are anti-aligned:

$$\bigvee \underset{\Rightarrow}{\bigvee} \longleftarrow H \longrightarrow \bigvee \underset{\Leftarrow}{\bigvee}$$

• in the decays of both W's to ℓv , the leptons tend to come out in the same direction

use this and other kinematic variables in BDT

 $H \rightarrow WW \rightarrow 2\ell 2\nu$

John Conway - KITP - LHC I I

entries / 7 $^{\circ}$ 80 entries / 5 GeV/c² CMS preliminary CMS preliminary Z+jets Z+jets data data 60 m_H=130 $L = 1.1 \text{ fb}^{-1}$ m_H=130 $L = 1.1 \text{ fb}^{-1}$ top top WW WZ/ZZ WW WZ/ZZ 60 W+jets W+jets 40 40 20 20 0 0 50 100 50 100 150 150 200 0 0 $\Delta \phi_{\prime\prime}$ [°] m_{μ} [GeV/c²]

WW + 0 jets category

 $H \rightarrow WW \rightarrow 2\ell 2\nu$

20

entries / 10 GeV/c² CMS preliminary Z+jets Z+jets CMS preliminary data data 60 m_H=130 m_H=130 $L = 1.1 \text{ fb}^{-1}$ $L = 1.1 \text{ fb}^{-1}$ top 60 top WW WZ/ZZ WW WZ/ZZ W+jets W+jets 40 40 20 20 0 0 50 100 150 50 100 150 0 200 0 $m_{\prime\prime}$ [GeV/c²] $\Delta \phi_{\prime\prime}$ [°]

WW + 1 jets category

 $H \rightarrow WW \rightarrow 2\ell 2\nu$

0

entries / 14

John Conway - KITP - LHC I I

2

also split into same-flavor and opposite-flavor:

 $H \rightarrow WW$

 $H \rightarrow WW \rightarrow 2\ell 2\nu$

Higgs@ LHC

John Conway - KITP - LHC I

cut based

BDT based

Exclude SM Higgs in range $150 < M_H < 193$ GeV

"Interesting" excess in low mass range!

John Conway - KITP - LHC 11

 $\mathsf{H} \to \mathsf{Y}\mathsf{Y}$

- e.m. calorimeter designed with this mode in mind!
- YY resolution: 2.4 GeV

event selection

- two photons with at least
 40, 30 GeV pT
- choose vertex based on PV tracks or conversions

• 8 classes: barrel/endcap $\otimes p_T^{\gamma\gamma} > 40 \text{ GeV} \otimes \text{iso } (R_9)$

 $H \rightarrow \gamma \gamma$

expected limit at ~4x SM

 $H \rightarrow \gamma \gamma$

Main focus of $H \rightarrow \tau \tau$: MSSM Higgs at large tan β

Higgs (\bigcirc LHC $H \rightarrow ZZ$

Can exploit VBF production of SM Higgs by requiring two forward "tagging" jets in addition to tau decay channels $(e\tau, \mu\tau, e\mu, \mu\mu)$

 $H \rightarrow \gamma \gamma, \tau \tau$ Combination

Higgs@LHC H→ZZ H→WW H→YY,TT Combination

John Conway - KITP - LHC 11

slide topic

John Conway - KITP - LHC I I

Higgs@ LHC Η→γγ, ττ

 $\rightarrow \tau \tau$

expected limit at ~9x SM

 $H \rightarrow \tau \tau$

Goal: combine results of all six search channels

Combining channels

John Conway - KITP - LHC I |

- form joint likelihood from all channels
- include correlated and uncorrelated systematic uncertainties represented by nuisance parameters
- use CL_s method to quote final limits
- (agrees very well with Bayesian)

channel	mass range	luminosity	number of	type	number of
	(GeV/c^2)	(fb^{-1})	sub-channels	of analysis	nuisances
$H \rightarrow \gamma \gamma$	110-140	1.1	8	mass shape (unbinned)	3+40=43
$H \rightarrow \tau \tau$	110-140	1.1	6	mass shape (binned)	10+21=31
$H \rightarrow WW \rightarrow 2\ell 2\nu$	110-600	1.1	5	MVA (binned); cut&count	16+36=52
$H \rightarrow ZZ \rightarrow 4\ell$	110-600	1.1	3	mass shape (unbinned)	14+8=22
$H \rightarrow ZZ \rightarrow 2\ell 2\nu$	250-600	1.1	2	cut&count	14+4=18
$H \rightarrow ZZ \rightarrow 2\ell 2q$	226-600	1.0	6	mass shape (unbinned)	13+10=23
TOTAL (6)	110-600	1.0-1.1	30		24+119=143

a SM Higgs boson!

a SM Higgs boson!

These are the first CMS results to exclude a SM Higgs boson!

ATLAS - various channel results:

ATLAS - channels

ATLAS/CMS combinations

John Conway - KITP - LHC I

- both experiments exclude 300-450 GeV
- CMS excludes 150-200 GeV, other
- CMS: better sensitivity (125-425 GeV)
- both experiments have low mass excess
- ATLAS+CMS combination coming (LP?)

CMS vs ATLAS

ATLAS low mass wiggles coming from $\gamma\gamma$

ATLAS γγ

Tevatron Run II Preliminary, $L \le 8.6 \text{ fb}^{-1}$

Tantalizingly close to SM sensitivity! Exclude 2x SM @ 130 GeV: LHC excess

Tevatron combined result

40

Tevatron Run II Preliminary, $L \le 8.6 \text{ fb}^{-1}$

Tantalizingly close to SM sensitivity! Exclude 2x SM @ 130 GeV: LHC excess

Tevatron combined result

4(

Tevatron Run II Preliminary, $L \le 8.6 \text{ fb}^{-1}$

Tantalizingly close to SM sensitivity! Exclude 2x SM @ 130 GeV: LHC excess

Tevatron combined result

4(

Tevatron is not out of the game yet - the next few months should be interesting! Very schematically:

Higgs@LHC $H \rightarrow ZZ$ $H \rightarrow WW$ $H \rightarrow \gamma\gamma$, $\tau\tau$

SM Higgs Exclusion

John Conway - KITP - LHC I

Tevatron is not out of the game yet - the next few months should be interesting! Very schematically:

Higgs@LHC $H \rightarrow ZZ$ $H \rightarrow WW$ $H \rightarrow \gamma\gamma$, $\tau\tau$

SM Higgs Exclusion

ohn Conway - KITP - LHC I

Tevatron is not out of the game yet - the next few months should be interesting! Very schematically:

SM Higgs Exclusion

Higgs@ LHC H→ZZ

ohn Conway - KITP - LHC I

Tevatron is not out of the game yet - the next few months should be interesting! Very schematically:

Higgs@LHC $H \rightarrow ZZ$ $H \rightarrow WW$ $H \rightarrow \gamma\gamma$, $\tau\tau$

Combining LHC and Tevatron possible...can it happen?

SM Higgs Exclusion

John Conway - KITP - LHC I I