
Higgsless Simplified

Adam Falkowski
LPT Orsay

KITP, le 9 aout 2011

based on AA, C. Grojean, A. Kaminska, S. Pokorski, A. Weiler, 1108.1183
see paper for other references and credits



Outline

1 Introduction: Higgsless theories

2 Model: a simplified model for Higgsless theories

3 Unitarity constraints: the parameter space of the simplified model

4 Phenomenology: Tevatron constraints and the predictions for the LHC

5 Summary



Who broke electroweak symmetry?

One of the questions to be addressed by the LHC is the nature of
electroweak symmetry breaking

More quantitatively, the question is what stops the growth of the
scattering amplitudes of W and Z
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In the SM (without Higgs) the tree-level amplitude for longitudinally
polarized W’s and Z’s grows with energy, M∼ s/v 2

Unitarity requires ReMJ < 1/2 for all partial waves. Perturbative
unitarity is lost at TeV

Something else must enter at this scale!



Options for Electroweak Symmetry Breaking

3 basic possibilities. Unitarity saved by

Non-perturbative effects (no concrete framework so far)

Weakly Coupled: fundamental scalar coupled to WW and ZZ, otherwise
knowns as the Higgs

Strongly Coupled: composite vectors coupled to electroweak gauge
bosons, otherwise known as Higgsless

...or a combination of the previous two, otherwise known as composite
Higgs

In the following focus on Higgsless



Several approaches to Higgsless theories

Top-down approach: work out asymptotically safe 4D gauge theories that
break EW symmetry in IR

Most ambitious: one deals with a complete and consistent model
Most difficult: safe to assume we haven’t pinpointed all phenomenologically
distinct possibilities

Effective approach: start with 5D theory, 3-site deconstruction, etc
A concrete, well-defined framework for computations, grasps broad-brush
features of realistic theories
But again some distinct phenomenology can be missed

Chiral Lagrangian approach: low-energy degrees of freedom plus p2

expansion
Successful in describing low-energy QCD phenomenology
Given low-energy symmetries, allows one to systematically explore most
general dynamics



Simplified Philosophy

Currently 2 complementary approaches to collider phenomenology

Full-fledged models, e.g the MSSM, to study the richness of possible
collider signatures predicted by motivated models of new physics

Simplified models, e.g gluino + neutralino, to explore relevant signatures
of new physics within a simple effective theory containing a small number
of degrees of freedom
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Simplified Higgsless

Simplified Model for Higgsless Theories

Focus on basic, indispensable degrees of freedom

In this minimal setting, understanding the most general kinematics

Convenient characterization of the parameter space, limits, future LHC
reach, etc

In any case, technicolor scale may well be pretty large, and few degrees of
freedom may be available



A Simplified Model for Higgsless Theories



Agents for unitarizing WW scattering

Possibilities can be classified by representations under Lorentz and Custodial
symmetry

SU(2)C Singlet SU(2)C Triplet

Lorentz Scalar ! #

Lorentz Vector # !

Lorentz Tensor ! #

Not all possibilities allow the coupling to W and Z that does not violate
the custodial symmetry. For # entries large couplings excluded by
constraints from T parameter

Singlet is equivalent to the SM Higgs. Tensor leads to M∼ s2.

That leaves vector triplet as the simplest non-trivial possibility



The model: SM sector

Minimal set-up describing the SM gauge sector includes (fermions later)

Standard Model gauge bosons La
µ, Bµ

3 Goldstone bosons π who become the longitudinal polarizations of the W
and Z bosons

Approximate SU(2)C custodial symmetry

Nonlinear sigma model with SU(2)L × SU(2)R/SU(2)C global symmetry whose
SU(2)L × U(1)Y subgroup is weakly gauged by the SM gauge bosons

U = e iσaπa(x)/v U → gLUg†R



The model: resonance sector

Now add

A triplet of massive vector bosons called the ρµ mesons

Severals way to introduce ρ, as in ChPT for QCD:

Tensor formalism, Vµν → h†Vµνh

Vector formalism, Vµ → h†Vµh

Hidden gauge formalism: Vµ → ih†∂µh + h†Vµh

where h is the SU(2)C transformation.
All of those equivalent when higher order operators are included



Hidden gauge formalism

1 Rewrite U = ξLξ
†
R where new fields transform as

ξL → gLξLh† ξR → gRξRh†

2 New ”hidden” global symmetry SU(2)h. The number of Goldstones
doubled

ξL = e iπaσa/2ve−iGaσa/2v
√
α ξR = e−iπaσa/2ve−iGaσa/2v

√
α

3 ρ introduced as the gauge field of SU(2)h

DµξL = ∂µξL − i
g

2
La
µσ

aξL + i
gρ
2
ξLρ

a
µσ

a

DµξR = ∂µξR − i
g ′

2
Bµσ

3ξR + i
gρ
2
ξRρ

a
µσ

a

Surplus Goldstones G eaten by ρ



Lagrangian

Parity exchanges L↔ R. Define adjoints of SU(2)h

V±µ = ξ†LDµξL ± ξ†RDµξR V±µ → hV±µ h†

At lowest order, most general parity conserving lagrangian

−v 2

4
Tr
{
αV +

µ V +
µ + V−µ V−µ

}
,

+ kinetic term for the gauge fields

3 parameters g , g ′, v fixed by the W and Z mass and the cubic gauge
coupling

2 new parameter α and gρ related to
resonance mass m2

ρ ≈ αg2
ρv

2

resonance couplings to longitudinal SM gauge bosons, gρππεabcπa∂µπbρcµ,

gρππ = αgρ/2

α = 1, or gρππ = gρ/2 corresponds to “3-site deconstruction” (with only
”local” link kinetic terms). α = 2, or gρππ = gρ is the KSFR relation; for
this value SM gauge bosons do not couple directly to π.

We can use any of the 2 parameters to characterize the parameter space:
(gρ, gρππ), (mρ, gρππ), (gρ, α), etc



Lagrangian with parity breaking

Customarily assumed strong sector respects parity. If it’s not the case, the
lowest resonance may have parity breaking interactions,

v 2

4(1− β2)
Tr
{
αV+

µV
+
µ + V−µV

−
µ − 2

√
αβV−µV

+
µ

}
where β ∈ [0, 1). Most prominent effect is ρ coupling to 3 Goldstone bosons

gρππε
abcπa∂µπ

bρcµ +
gρπ3

3v

(
ρaµπ

a∂µπ
bπb − ρaµ∂µπaπbπb

)

m2
ρ =

αg 2
ρv 2

1− β2
gρππ =

α− β2

2(1− β2)
gρ gρπ3 = β

α− β2

√
α(1− β2)

gρ

The widths for the 2- and 3- body decay

Γ(ρ→ 2π) =
g 2
ρππmρ

48π
Γ(ρ→ 3π) =

3g 2
ρπ3 m3

ρ

4096π3v 2

Later I’ll show that branching fraction for 3-body can be up to 30 percent in
allowed parameter space



Unitarity Constraints and Parameter Space



Unitarity

Unitarity of the S-matrix implies the relation for the scattering amplitudes

ImMαβ =
∑
γ

MαγσγM∗βγ

where σ2
α = (1−m2

1/s −m2
2/s)2 − 4m2

1m2
2/s2 for s > (m1 + m2)2, and σα = 0

otherwise. For one initial and one final state available, the amplitude must lie
on the Argand circle,

σα (ReMαα)2 + σα

(
ImMαα −

1

2σα

)2

=
1

4σα

which implies
|ReMαα| ≤ 1/2σα

Projecting into partial waves,

MJ
αβ(s) =

1

32π

∫ 1

−1

d(cos θ)MαβPJ(cos θ)

the same condition for each partial wave. Typically, s-wave gives the strongest
bound.



Unitarity of Electroweak gauge boson scattering
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Scattering amplitudes for longitudinally polarized W and Z, or, equivalently, for
the Goldstone bosons π eaten by W and Z are given by

M(πaπb → πcπd) = δabδcdM(s, t, u) + δacδbdM(t, u, s) + δadδbcM(u, s, t)

M(s, t, u) =
s

v 2
− g 2

ρππ

(
s − u

t −m2
ρ

+
s − t

u −m2
ρ

+ 3
s

m2
ρ

)
S-wave amplitude

M0(πaπb → πcπd) =

[
δabδcd − 1

2
δacδbd − 1

2
δadδbc

]
M0

ππ→ππ(s)

M0
ππ→ππ(s) =

1

16π

[
s

v 2
− 3gρππ

2gρ

s

v 2
− 2g 2

ρππ + 4g 2
ρππ

(
1 +

m2
ρ

2s

)
log

(
1 +

s

m2
ρ

)]



Unitarity of Electroweak gauge boson scattering

Unitarity Condition
|M0

ππ→ππ(s)| ≤ 1

Amplitude grows with energy as

∼ s

v 2

(
1− 3

2

gρππ
gρ

)

Maximum cutoff Λ allowed by unitarity is determined by the lowest
solution |M0

ππ→ππ(Λ2)| = 1

For gρππ ≈ 2gρ/3 the quadratic growth is tamed, M∼ log s, and the
cutoff can be high Λ� mρ

Actually, it is often better to take gρππ ≈ gρ, as then the negative
quadratic contribution cancels against the positive logarithmic one,

mΡ 2mΡ 3mΡ

s
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gΡ = 5.5, gΡΠΠ = 6, mΡ = 2 TeV



Unitarity of Electroweak gauge boson scattering
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Unitarity constraints from semielastic processes

Π Ρ

Π

Π

Π

Π

Π

Π

Ρ

Ρ
Ρ

Ρ

Ρ

Ρ Π

Another, independent unitarity condition

|MIE | ≡ |M0
ππ→ππ|+ θ(s − 4m2

ρ)
√

1− 4m2
ρ/s
|M0

ππ→ρρ|2

|M0
ππ→ππ|

≤ 1



Unitarity constraints from inelastic processe

Amplitude

M0(πaπb → ρcLρ
d
L) =

[
δabδcd − 1

2
δacδbd − 1

2
δadδbc

]
M0

ππ→ρρ(s)

M0
ππ→ρρ(s) ≈

g 2
ρππ

16π

(
s

m2
ρ

− 2

)

Amplitude for inelastic ρ-pair production grows linearly with s,

The coefficient of the O(s) term is always positive

For large gρππ inelastic amplitude often provides the most stringent
unitarity constraint

Yet another constraint is provided by considering the ρπ → ρπ scattering

mΡ 2mΡ 3mΡ
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Parameter space after all unitarity constraints
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Contour plots of the maximum cut-off scale Λ overlaid it with contours of
constant mρ (dashed).



Parameter space in the presence of parity breaking
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Figure: Contour plots of the maximum cut-off scale for β = 0.5 (left) and β = 0.9
(right) overlaid it with contours of constant mρ (dashed).



Electroweak Precision Observables: S parameter
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Figure 1: IR logarithmic contributions to S and T for a cut-off scale Λ in the range 115 − 3000 GeV. The

experimentally allowed region and the SM reference point at which all STU parameters vanish is chosen as in

Ref. [1] (in particular with mt = 175GeV and mH = 150GeV). The constraint U = 0 is always imposed. The axes

are scaled to S = 4 sin2 θW Ŝ/α ≈ 119Ŝ and T = T̂ /α ≈ 129T̂ .

terms of a small subset of effective operators with its associated couplings. Obviously, depending
on the specific Higgsless model one considers there will be different relations amongst the couplings.
In this paper we will instead pursue a more phenomenological approach, following [4], and consider
a generic Higgsless model whose parameters will be constrained only by unitarity and electroweak
precision observables (S and T ) up to the one-loop level. The main advantage of this approach is
that one can test the viability of Higgsless models based on spin-1 bosons as model-independently
as possible (and potentially rule out some of the existing models). Additionally, one can extract
information on the spin-1 bosons which can then be tested at colliders.

Oblique corrections to electroweak precision observables (EWPO) can be conveniently ex-
pressed in terms of the SM gauge boson vacuum polarization correlators, defined as

Lvac−pol = −1

2
W 3

µΠ
µν
33 (q2)W 3

ν − 1

2
BµΠ

µν
00 (q2)Bν − W 3

µΠ
µν
30 (q2)Bν − W+

µ Πµν
WW (q2)W−

ν , (1)

where the (transverse) correlators can be decomposed as

Πµν
ij (q2) =

�
qµqν

q2
− gµν

�
Πij(q

2) . (2)

One defines the Ŝ ≡ αS/4 sin2 θW parameter as the oblique contribution

Ŝ =

�
g

g�

�
Π�

30(0) (3)

2

(plot stolen from Cata,Kamenik [1010.2226] )

Integrating out the ρ-mesons contributes to the S parameter at the tree level,

∆S =
4π

g 2
ρ

large, unless gρ is near the perturbativity limit. Some ways to cope with it:

Allow an axial resonance to cancel part of S ,

Allow O(p4) operator

− ε

16gρ
Tr
{

[gξ†LLµνξL + g′ξ†RRµνξR]ρµν
}

who contributes ∆S = 4πε/g 2
ρ .

Allow parity breaking that contributes as

∆S =
4π

g 2
ρ

(
1− β2

α

)



Electroweak Precision Observables: T parameter
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Figure 1: IR logarithmic contributions to S and T for a cut-off scale Λ in the range 115 − 3000 GeV. The

experimentally allowed region and the SM reference point at which all STU parameters vanish is chosen as in

Ref. [1] (in particular with mt = 175GeV and mH = 150GeV). The constraint U = 0 is always imposed. The axes

are scaled to S = 4 sin2 θW Ŝ/α ≈ 119Ŝ and T = T̂ /α ≈ 129T̂ .

terms of a small subset of effective operators with its associated couplings. Obviously, depending
on the specific Higgsless model one considers there will be different relations amongst the couplings.
In this paper we will instead pursue a more phenomenological approach, following [4], and consider
a generic Higgsless model whose parameters will be constrained only by unitarity and electroweak
precision observables (S and T ) up to the one-loop level. The main advantage of this approach is
that one can test the viability of Higgsless models based on spin-1 bosons as model-independently
as possible (and potentially rule out some of the existing models). Additionally, one can extract
information on the spin-1 bosons which can then be tested at colliders.

Oblique corrections to electroweak precision observables (EWPO) can be conveniently ex-
pressed in terms of the SM gauge boson vacuum polarization correlators, defined as

Lvac−pol = −1

2
W 3

µΠ
µν
33 (q2)W 3

ν − 1

2
BµΠ

µν
00 (q2)Bν − W 3

µΠ
µν
30 (q2)Bν − W+

µ Πµν
WW (q2)W−

ν , (1)

where the (transverse) correlators can be decomposed as

Πµν
ij (q2) =

�
qµqν

q2
− gµν

�
Πij(q

2) . (2)

One defines the Ŝ ≡ αS/4 sin2 θW parameter as the oblique contribution

Ŝ =

�
g

g�

�
Π�

30(0) (3)

2

T parameter zero at tree level. At one loop

∆T ∼ − 3

8π cos2 θW

(
1− 3α

4
+
α2

4

)
log Λ

For α < 3 less negative than in the SM without Higgs, good. But always
negative, bad. For ε 6= 0 also quadratically divergent contributions to T that
can have any sign.



Phenomenology of Resonances



Mixing between SM and heavy resonances

In the ”flavor” basis (W±, ρ±) mass matrix not diagonal

v 2

(
(1 + α)g 2/4 −αggρ/2
−αggρ/2 αg 2

ρ

)
For gρ � g hierarchical eigenvalues

m2
ρ ≈ αg 2

ρv 2 m2
W ≈

g 2v 2

4

The rotation to mass eigenstates

W± → cos θW± − sin θρ± ρ± → sin θW± + cos θρ± sin θ ≈ g

2gρ



Couplings of a single resonance to the SM

Robust coupling: Cubic gauge couplings from mixing

− g 2

4gρ
[W +W−ρ0]−

g
√

g 2 + g ′2

4gρ
[W−Zρ+]−

g
√

g 2 + g ′2

4gρ
[W +Zρ−]

Less Robust: if all SM quarks and leptons are fundamental (the couple to
resonances only via the mixing)

− g 2

2
√

2gρ
ρ±µ f LγµT±fL −

1

2gρ
ρ0
µf γµ

(
(g 2 − g ′2)T 3 + g ′2Q

)
f

Caveat: in concrete models one expects top quark to have a large composite
component, and therefore a larger coupling to resonances. Ignored here, but in
concrete models the branching fraction to top quarks can be significant or even
dominant



Resonance decays

Decays to SM gauge bosons dominated by decays to longitudinal polarization

Γ(ρ0 →W +W−) ≈ Γ(ρ± → ZW±) ≈
m5
ρ

192πg 2
ρv 4
≈ mρ

g 2
ρππ

48π

Decays to VV effectively have no 1/gρ suppression! Decays to SM fermions
suppressed

Br(ρ± → e±ν) ≈ 2Br(ρ0 → e+e−) ≈ 16m4
W

m4
ρ

500 1000 1500 2000
mΡ@GeVD

10-4

0.001

0.01
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1
Br

gΡ = Π

For mρ ∼ TeV leptonic branching is less than 10−3.

At LHC or Tevatron heavy ρ meson show up as resonances in the

WW and WZ channels



Production of resonances in hadron colliders

3 main production channels:

1 Drell-Yan: q q̄ → ρ

u

u

Ρ

2 Vector Boson Fusion: q q → ρ q q

u

d

d

Rho0

u

W

W

3 Rho-Strahlung: q q̄ → ρV

u

d

Ρ

Z
W



Drell-Yan dominates for relatively light ρ

VBF is important for very heavy ρ
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Best limits on WW and WZ resonances currently from D0 [1011.6278 ]

No corresponding analysis from the LHC yet

LHC limits on leptonic Z’ and W’ are not competitive because of the small
leptonic branching fraction



The parameter space

Contour of ρ production cross section at the LHC at
√

s = 7TeV

Orange dashed line: ρ0, Red dashed line ρ±
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The parameter space

Contour of ρ production cross section at the LHC at
√

s = 7TeV

Orange dashed line: ρ0, Red dashed line ρ±
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Take Away Points

The full theory of electroweak symmetry breaking may well turn out to be
very complicated...

... but it may pay off to take a simplified approach to isolate relevant
collider signatures and understand the full kinematic parameter space

Parameter space for Higgsless electroweak symmetry breaking will be open
for a while; even in the simplest model the resonance masses as heavy as
2-3 TeV are possible

Still a lot to do for the LHC, unless they find the Higgs of course :-)


