#### *Implications of charge asymmetry in the Bs System*

#### July 6, 2011

#### Ann Nelson University of Washington

1

#### OUTLINE

- reviewing the situation:
  - ➡recent DØ
  - upcoming LHCb
  - ➡SM theory
- ➡ BSM theory expectations:
  - ➡ new physics in B<sub>s</sub> mixing
  - new physics in B decay

### Experiment update

"Evidence for an anomalous like sign dimuon charge asymmetry" the DØ collaboration, arXiv:1005.2757 6.1 fb<sup>-1</sup>

"Measurement of the anomalous like-sign dimuon charge asymmetry with 9 fb<sup>-1</sup> of pp collisions", arXiv:1106.6308



$$A_{\rm sl}^b \equiv \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

"wrong sign" B decay from oscillation gives like sign dimuon

 $\Rightarrow D \varnothing : A^{b}_{sl} = (-0.00787 \pm 0.00172 \text{ (stat)} \pm 0.00093 \text{ (syst)})$ 

 $rightarrow differs by 3.9\sigma$  from  $A_{sl}^{b}(SM) = -0.00028 \pm 0.00005$ 

#### Comparison with last year



from Bruce Hoeneisen representing the DØ Collaboration Fermilab, 30 June 2011

Comparison of measurements of  $A_{sl}^b$ .

28

Improvements (since Phys. Rev. D 82, 032001, (2010))

- To increase the number of events, the  $|p_z|$  cut is lowered from 6.4 GeV to 5.4 GeV.
- To lower the  $K \to \mu$  and  $\pi \to \mu$  backgrounds, the  $\chi^2$  of the match of track parameters obtained with the central detector and outer muon system is reduced from 40 to 12 (with 4 d.o.f.).
- The measurement of  $f_K$  is improved:  $K_S \to \pi \pi \to \mu$  (muon required for same sample composition as  $K \to \mu$ ).
- The measurement of  $R_K \equiv F_K/f_K$  is done in two independent channels:  $K^{*0} \to \pi^- K^+ \to \mu^+ X$  (with the null-fit method), and the new channel  $K_S \to \pi \pi \to \mu$ .
- The data set is increased from 6.1 fb<sup>-1</sup> to 9.0 fb<sup>-1</sup>.

#### 2. Results with 9.0 fb<sup>-1</sup>

• From 1 
$$\mu$$
 (2.041 × 10<sup>9</sup> muons):  
 $A_{sl}^b = (-1.04 \pm 1.30 \text{ (stat)} \pm 2.31 \text{ (syst)}) \%.$ 

- From 2  $\mu$  (6.019 × 10<sup>6</sup> like-sign dimuons):  $A_{\rm sl}^b = (-0.808 \pm 0.202 \text{ (stat)} \pm 0.222 \text{ (syst)})$  %.
- A<sup>b</sup><sub>sl</sub> = (-0.787 ± 0.172 (stat) ± 0.093 (syst)) %. This measurement disagrees with the prediction of the Standard Model by 3.9 standard deviations.
- The charge asymmetry of like-sign dimuon events after subtracting all background contributions from the raw charge asymmetry is:

$$A_{\text{res}} \equiv (A - \alpha a) - (A_{\text{bkg}} - \alpha a_{\text{bkg}})$$
  
= (-0.246 ± 0.052 (stat) ± 0.021 (syst))%.

This quantity does not depend on the interpretation in terms of the charge asymmetry of semileptonic decays of B mesons. This from Br measurement disagrees with the prediction of the Standard Model represe by 4.2 standard deviations.

from Bruce Hoeneisen representing the DØ Collaboration Fermilab, 30 June 2011

7



#### 4. Dependence on the impact parameter

Additional measurements are made applying an impact parameter (*IP*) cut on each muon.

*IP* is the distance of closest approach of the muon track to the primary vertex projected onto the plane transverse to the  $p\bar{p}$  beams.

The dependence of  $A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$  on *IP* can reveal the origin of the asymmetry because  $C_d$  and  $C_s$  depend on *IP*.

35



Top: Histogram of proper time of decays  $B_s^0 \to \mu^+ X$  (continuous line),  $B_s^0 \to \overline{B}_s^0 \to \mu^- X$  (dashed line if no CP violation, dotted red line if CP violation). Bottom: The same for  $\overline{B}_s^0$  at t = 0.

36



Same for  $B_d^0$  (top) and  $\bar{B}_d^0$  (bottom) at t = 0. Applying an IP cut can enrich the sample in oscillating  $B_d^0$ 's (shown in red).

37



The muon impact parameter (*IP*) distribution in the inclusive muon sample (dots). The solid line represents the muon *IP* distribution in simulation. The shaded histogram is the contribution from K,  $\pi$  and p background muons in simulation.

38



The normalized impact parameter (*IP*) distribution for muons produced in oscillating decays of  $B_d^0$  mesons (dots) and  $B_s^0$  mesons (solid histogram) in simulation.

39



Measurements of  $A_{sl}^b$  with  $IP > 120\mu$ m and  $IP < 120\mu$ m, and corresponding 68% and 95% confidence level regions in the  $(a_{sl}^d, a_{sl}^s)$  plane. Also shown is the measurement with no IP cut.

43

### upcoming: LHCb

#### LHCb and leptonic charge asymmetry



### Flavour Tagged $\phi$ s



Flavour tagged fit to mass, time, and angular distribution

1

T. Bowcock - SPCS2011

7/6/11

### **SM** Theory



#### The Dreaded Unitarity Triangle



etc. CPV in interference between mixing and decay of  $B_d$  appears to be mostly (entirely?) from SM

20

#### **Mixing Basics**



⇒ Charge asymmetry  $\Rightarrow \Gamma(B \rightarrow B) \neq \Gamma(B \rightarrow B) \Rightarrow \phi_q \neq 0$ 

$$\left| m_{12}^{q} - \frac{i\Gamma_{12}^{q}}{2} \right| \neq \left| m_{12}^{q*} - \frac{i\Gamma_{12}^{q*}}{2} \right|$$

Note:  $|\Gamma_{12}^q| \ll |m_{12}^q|$  in  $\mathsf{B}_{\mathsf{d},\mathsf{s}}$  systems  $\Delta m_q = 2|m_{12}^q|$ 

dimuon asymmetry from B<sub>s</sub> or B<sub>d</sub> mixing?

⇒impact parameter analysis favors B<sub>s</sub>

- →  $B_{d,}$  FCNC in b ↔ d more constrained from B-factories
- ⇒ New contribution to  $B_s$  also hinted at from  $B \rightarrow J/\Psi \Phi$  time dependent CPV asymmetry
- ➡theory can be massaged to favor sizable (relative to SM) new contribution to B<sub>s</sub> mixing with smaller (relative to SM) contribution to B<sub>d</sub> mixing

#### New Physics vs SM backgrounds

#### ➡QCD uncertainty?

- ➡QCD is CP symmetric (strong CPV negligible)
- Wolfenstein parametrization: selects basis most suitable for understanding where CPV is O(I)

$$\begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

- unsuppressed CPV only in processes dominated by  $V_{td}$  and/or  $V_{ub}$ 
  - $\Rightarrow$  e.g B<sub>d</sub>  $\overline{B}_d$  mixing, not B<sub>s</sub>  $\overline{B}_s$  mixing

## SM predicts tiny semi-leptonic asymmetry in B<sub>d,s</sub>

leading  $m_{12}^q \propto (V_{tb}V_{tq}^*)^2$ 

leading  $\Gamma_{12}^q \propto (V_{cb}V_{cq}^* + V_{ub}V_{uq}^*)^2$ 





CKM unitarity + heavy b quark

 $\phi^q\approx 0$ 

enhancement of mass mixing by heavy top  $|\Gamma_{12}^{q}| \ll |m_{12}^{q}|$ 

### New physics in B<sub>d,s</sub> mass mixing?

## Still room (indication?) for new CPV physics in mixing



#### New physics in $\Delta m_{d,s}$ ?

- need a large order one new phase for dimuon asymmetry
- → Don't want to change magnitude of  $|\Delta m_s|$ ,  $|\Delta m_d|$ ,  $|\Delta m_s/\Delta m_d|$  by more than 10-20% of SM
- → Dont want to change phase of  $\Delta m_d$  by more than 10-20% or lose B factory CKM fit to phase Im( $\Delta m_s$ )
- ⇒ want order one change of phase of Δm<sub>s</sub> without large change of magnitude



#### challenges for charge asymmetry via $\Delta m_s$

28

- Conspiracy to avoid large nonstandard magnitude
- Γ<sub>12</sub>(SM) on small side,
   charge asymmetry prefers
   sin φ<sub>s</sub>>1
- Width problem:  $\Delta\Gamma_s = \Delta\Gamma(SM) \cos \phi_s$ 
  - $\Delta\Gamma(SM)$ =0.098 ± 0.024 ps<sup>-1</sup>
  - $\Delta \Gamma_{s}(expt)$ =0.134±0.039ps<sup>-1</sup>



 $\begin{array}{c} \text{expt preference for} \\ \text{large } \cos \, \varphi_{s} \\ \text{and } \text{large } \sin \, \varphi_{s} \end{array}$ 

#### **Standard Model Flavor Physics:**

#### new FCNC in b⇔s versus experiment

SM Theory Current Experiment

 $\Delta m_s \approx 19.6 \pm 2.2 \text{ ps}^{-1}$   $Br(B_s \rightarrow \mu^+ \mu^-) \approx 3.6 \times 10^{-9}$   $Br(B \rightarrow X_s \gamma) \approx 3.2 \pm 0.2 \times 10^{-4}$ 

 $\Delta m_s \approx 17.77 \pm 0.12 \text{ ps}^{-1}$   $Br(B_s \rightarrow \mu^+ \mu^-) < 4.3 \times 10^{-8}$  $Br(B \rightarrow X_s \gamma) \approx 3.4 \pm 0.3 \times 10^{-4}$ 

#### Other than that...

#### Clear sailing for model builders!

- ➡NP at TeV scale can compete with SM loops
- similar (relative to CKM) NP contributions to B<sub>d</sub> and B<sub>s</sub> mixing allowed
- must violate assumption that all CPV is in Yukawas or in spurions proportional to Yukawas (minimal flavor/CPV)

new flavor and/or CPV for third generation?

### New physics in decay?

#### issues with new contribution to decay



- affects B branching fractions, requires new physics in decay comparable to SM tree
  - ⇒ Bauer and Dunn: largish new contributions to qB<sub>s</sub>→ $\tau^+\tau^-$ , c c OK

32

 $\blacksquare$  potentially large contribution to  $\Delta m_s$ 



# Our proposal for large contribution to Γ<sup>S</sup><sub>12</sub>: a new light pseudoscalar?

•  $\zeta$  Particle with coupling -

$$-\frac{1}{F}\partial_{\mu}\zeta\,\overline{b}\,\gamma^{\mu}\left(g_{V}^{bs}\,+\,g_{A}^{bs}\,\gamma_{5}\right)s$$

- familon?
- pseudoscalar 'Higgs' ?
- Hidden Valley?
- Mass mixing with  $B_s$   $e^{i\alpha} f^2 \zeta B_s + e^{-i\alpha} f^2 \zeta \overline{B}_s$
- Must have largish width  $f = 0.0026 \times \left(\frac{F/|g_A^{bs}|}{10^6 \text{ GeV}}\right)^{-1/2} \text{ GeV}$

### $(B_s, \overline{B}_s, \zeta)$ mass matrix

$$M^{2} = \begin{pmatrix} m_{B_{s}}^{2} & \Delta m_{B_{s}}m_{B_{s}} & e^{i\alpha}f^{2} \\ \Delta m_{B_{s}}m_{B_{s}} & m_{B_{s}}^{2} & e^{-i\alpha}f^{2} \\ e^{-i\alpha}f^{2} & e^{i\alpha}f^{2} & M_{\zeta}^{2} \end{pmatrix}$$

•Cannot use perturbation theory to diagonalize mass due to near degeneracy of  $B_s$  system, fortunately mass matrix is simple to diagonalize exactly

- •Width matrix may be diagonalized perturbatively in mass eigenstate basis
- •obtain  $B_L$ ,  $B_H$  eigenstates with small  $\zeta$  mixture, fit mass, width difference  $_{35}$

#### Contribution to mass, width difference

- Relative contribution to mass difference proportional to  $M_{\zeta}^2 M_{B_s}^2$
- → Order one contribution to width difference without order one contribution to mass difference provided that  $|M_{\zeta} - M_{B_s}| < \frac{m_{12}^s(SM)}{\Gamma_{12}^s(SM)}\Gamma_{\zeta} \approx 200\Gamma_{\zeta}$
- $\clubsuit$  either a finetuning conspiracy in the mass, or a fairly large  $\zeta$  width

36

#### 2010 fit to data

|                         | Experimental                       | SM prediction                       |
|-------------------------|------------------------------------|-------------------------------------|
| $\Delta \overline{m}_s$ | $(17.78 \pm 0.12) \text{ ps}^{-1}$ | $(19.6 \pm 2.2) \text{ ps}^{-1}$    |
| $\Delta\Gamma_s$        | $0.134 \pm 0.031 \text{ ps}^{-1}$  | $(0.098 \pm 0.024) \text{ ps}^{-1}$ |
| $\overline{\Gamma}_s$   | $0.680 \pm 0.012 \text{ ps}^{-1}$  | $(0.654 \pm 0.008) \text{ ps}^{-1}$ |
| $	an \phi_s^{ m sl}$    | $-1.66 \pm 0.64$                   | $0.0042 \pm 0.0014$                 |
| $eta_s^{J/\psi\Phi}$    | $0.21 \pm 0.12$                    | $0.018 \pm 0.001$                   |

fit 5 observables to 4 variables: f, α, Μζ, Γζ  $\chi^{2}(SM)=14.0, (1.6\%) \chi^{2}(\zeta \text{ best fit})=2.0 (16\%)$ 

#### Other constraints

- → For light  $\zeta$ , we have 2 body decays b→s, ruling out most of the region with m  $\zeta$  <4.8 GeV from B width
- $\blacktriangleright$  Other constraints depend on the decay mode of the  $\zeta$

#### Allowed $\zeta$ mass for 2 widths



Figure 3: Left panel: the best-fit region in the  $M_{\zeta}$  and f space for a fixed width  $\Gamma_{\zeta} = 0.001$  GeV. The orange contour has 68% C.L. after minimizing  $\chi^2$  in terms of  $\alpha$ . The best fit has  $\chi^2 = 2.0$ . The gray region is ruled out by the two-body decay width of  $B_d$  when  $M_{\zeta} < m_{B_d} - m_K$ . Three-body decays do not rule out the best-fit region. Right panel: the same as the left panel but for  $\Gamma_{\zeta} = 0.01$  GeV. The best fit has  $\chi^2 = 5.4$ . The blue region is excluded by requiring the three-body decay width to be Sunday, July 10, 2011

#### Allowed Decay modes

### $rightarrow \zeta$ can decay directly, or to other exotics which then decay back to SM particles, e.g.

|                       | Decay Modes                                                                                       |  |
|-----------------------|---------------------------------------------------------------------------------------------------|--|
| Direct decay          | $\tau^+\tau^-,  D\bar{D}(\pi's),  D(\pi's)X$                                                      |  |
| $\zeta \to 2 a$       | $2\tau^+ 2e^-, 2\tau^+ 2\mu^-, 2D^+ 2\pi^-, 2\pi^+ 2\pi^-, 2\pi^+ 2\pi^-, 2K^- 2\pi^+, 2K^+ 2K^-$ |  |
| $\zeta \to a_1 + a_2$ | $X + (\tau^+ e^-, \tau^+ \mu^-, D^+ \pi^-, \pi^+ \pi^-, \pi^+ \pi^-, K^- \pi^+, K^+ K^-)$         |  |

Something nonstandard accounts for  $\sim I-3\%$  of B<sub>s</sub> decays!!

#### summary: light pseudoscalar

- data:largish new contribution to B<sub>s</sub> decays, decay mixing without excessive new contribution to mass mixing
  - weakly coupled new physics below weak scale
- economical: a new pseudoscalar
  - ⇒large width, weak coupling to SM suggests a new 'sector', large  $\Gamma(\zeta \rightarrow hidden)$ , small  $\Gamma(hidden \rightarrow vis)$
  - alternatively largish flavor diagonal couplings to charm or tau
    - ⇒ but not 'higgs like', i.e. suppressed flavor diagonal coupling to mu ( $B_{s,d} \rightarrow \mu^+ \mu^-$  constraint), top (unitarity constraint) u

→unless largish  $\Gamma$  ( $\zeta$ → other 'higgses')

⇒also Y decay constraints on flavor diagonal b coupling

#### experimental smoking guns of hidden pseudoscalar

- $\Rightarrow$  nonstandard contribution to B<sub>s</sub> decays at few %
- ⇒ nonstandard contribution to  $B_{d,}B^+$  decays from b → s ( $\zeta$  decay products) at ~10<sup>-4</sup>
- rare Y decays (model dependent, from flavor diagonal coupling)
- $\clubsuit \phi_s^{sl} \neq -2\beta_s^{J/\psi\Phi}$  would indicate decay mixing, not mass mixing

#### Summary

 $\star \sim 4 \sigma$  new CPV beyond CKM indicated by  $A^{b}_{sl}$ 

- theory error negligible
- experimental systematic claimed to be small

 $\bigstar$  most likely in B<sub>s</sub> mixing and/or decay

- $\rightarrow$  new CPV in B<sub>s</sub> mixing preferred theoretically
  - SM contribution is loop suppressed
  - many models of new TeV scale physics can do this
  - some tuning required
- $\rightarrow$  new physics in B<sub>s</sub> decay allowed experimentally
  - hidden pseudoscalar?