Implications of charge asymmetry in the B_{s} System

July 6, 20| |
Ann Nelson
University of Washington

OUTLINE

\Rightarrow reviewing the situation:
\Rightarrow recent D \varnothing
\Rightarrow upcoming LHCb
\Rightarrow SM theory
\Rightarrow BSM theory expectations:
\Rightarrow new physics in B_{s} mixing
\Rightarrow new physics in B decay

Experiment update

"Evidence for an anomalous like sign dimuon charge asymmetry" the D \varnothing collaboration, arXiv:I005.2757 $6.1 \mathrm{fb}^{-1}$
"Measurement of the anomalous like-sign dimuon charge asymmetry with $9 \mathrm{fb}^{-1}$ of $\mathrm{p} \overline{\mathrm{p}}$ collisions", arXiv: I I 06.6308

"wrong sign" B decay

$$
A_{\mathrm{sl}}^{b} \equiv \frac{N_{b}^{++}-N_{b}^{--}}{N_{b}^{++}+N_{b}^{-}} \quad \begin{aligned}
& \text { from oscillation } \\
& \text { gives like sign dimuon }
\end{aligned}
$$

$\Rightarrow \mathrm{D} \varnothing: \mathrm{A}_{\mathrm{sl}}=(-0.00787 \pm 0.00172$ (stat) ± 0.00093 (syst))
\Rightarrow differs by 3.9σ from $A_{s(1)}^{b}(S M)=-0.00028 \pm 0.00005$

Comparison with last year

from Bruce Hoeneisen
representing the
DØ Collaboration
Fermilab, 30 June 2011

Comparison of measurements of A_{sl}^{b}.

Improvements (since Phys. Rev. D 82, 032001, (2010))

- To increase the number of events, the $\left|p_{z}\right|$ cut is lowered from 6.4 GeV to 5.4 GeV.
- To lower the $K \rightarrow \mu$ and $\pi \rightarrow \mu$ backgrounds, the χ^{2} of the match of track parameters obtained with the central detector and outer muon system is reduced from 40 to 12 (with 4 d.o.f.).
- The measurement of f_{K} is improved: $K_{S} \rightarrow \pi \pi \rightarrow \mu$ (muon required for same sample composition as $K \rightarrow \mu$).
- The measurement of $R_{K} \equiv F_{K} / f_{K}$ is done in two independent channels: $K^{* 0} \rightarrow \pi^{-} K^{+} \rightarrow \mu^{+} X$ (with the null-fit method), and the new channel $K_{S} \rightarrow \pi \pi \rightarrow \mu$.
- The data set is increased from $6.1 \mathrm{fb}^{-1}$ to $9.0 \mathrm{fb}^{-1}$.
from Bruce Hoeneisen representing the DØ Collaboration Fermilab, 30 June 2011

2. Results with $9.0 \mathrm{fb}^{-1}$

- From $1 \mu\left(2.041 \times 10^{9}\right.$ muons):

$$
A_{\mathrm{sl}}^{b}=(-1.04 \pm 1.30(\text { stat }) \pm 2.31 \text { (syst) }) \%
$$

- From $2 \mu\left(6.019 \times 10^{6}\right.$ like-sign dimuons): $A_{\mathrm{sl}}^{b}=(-0.808 \pm 0.202$ (stat) ± 0.222 (syst)) $\%$.
- $A_{\mathrm{sl}}^{b}=(-0.787 \pm 0.172$ (stat) ± 0.093 (syst)) \%.

This measurement disagrees with the prediction of the Standard Model by 3.9 standard deviations.

- The charge asymmetry of like-sign dimuon events after subtracting all background contributions from the raw charge asymmetry is:

$$
\begin{aligned}
A_{\mathrm{res}} & \equiv(A-\alpha a)-\left(A_{\mathrm{bkg}}-\alpha a_{\mathrm{bkg}}\right) \\
& =(-0.246 \pm 0.052 \text { (stat) } \pm 0.021 \text { (syst) }) \% .
\end{aligned}
$$

This quantity does not depend on the interpretation in terms of the charge asymmetry of semileptonic decays of B mesons. This measurement disagrees with the prediction of the Standard Model by 4.2 standard deviations.
from Bruce Hoeneisen representing the DØ Collaboration Fermilab, 30 June 2011

from Bruce Hoeneisen representing the DØ Collaboration
Fermilab, 30 June 2011

4. Dependence on the impact parameter

Additional measurements are made applying an impact parameter (IP) cut on each muon.

IP is the distance of closest approach of the muon track to the primary vertex projected onto the plane transverse to the $p \bar{p}$ beams.

The dependence of $A_{\mathrm{sl}}^{b}=C_{d} a_{\mathrm{sl}}^{d}+C_{s} a_{\mathrm{sl}}^{s}$ on IP can reveal the origin of the asymmetry because C_{d} and C_{s} depend on IP.

Top: Histogram of proper time of decays $B_{s}^{0} \rightarrow \mu^{+} X$ (continuous line), $B_{s}^{0} \rightarrow \bar{B}_{s}^{0} \rightarrow \mu^{-} X$ (dashed line if no CP violation, dotted red line if CP violation).

Bottom: The same for \bar{B}_{s}^{0} at $t=0$.

Same for B_{d}^{0} (top) and \bar{B}_{d}^{0} (bottom) at $t=0$. Applying an IP cut can enrich the sample in oscillating B_{d}^{0} 's (shown in red).

The muon impact parameter (IP) distribution in the inclusive muon sample (dots). The solid line represents the muon IP distribution in simulation. The shaded histogram is the contribution from K, π and p background muons in simulation.

The normalized impact parameter (IP) distribution for muons produced in oscillating decays of B_{d}^{0} mesons (dots) and B_{s}^{0} mesons (solid histogram) in simulation.
from Bruce Hoeneisen representing the DØ Collaboration

Measurements of A_{sl}^{b} with $I P>120 \mu \mathrm{~m}$ and $I P<120 \mu \mathrm{~m}$, and corresponding 68% and 95% confidence level regions in the ($a_{\mathrm{sl}}^{d}, a_{\mathrm{sl}}^{s}$) plane. Also shown is the measurement with no IP cut.

upcoming: LHCb

LHCb and leptonic charge asymmetry

Flavour specific asymmetry: afs

- D0 charge asymmetry measurement, using $\mathrm{bb} \rightarrow \mu \mu \mathrm{X}$ event

$$
A^{b}=\frac{N^{++}-N^{--}}{N^{++}+N^{--}}=(0.494) a_{f s}^{s}+(0.506) a_{f s}^{d}
$$

- LHCb plans to measure exclusive rates $\mathrm{B}_{(\mathrm{q})} \rightarrow \mathrm{D}_{(\mathrm{q})} \mu \nu$ in pp

$$
\begin{gathered}
a_{f s}^{s}=\frac{\Delta \Gamma^{s}}{\Delta M^{s}} \tan \phi_{s} \\
A_{f s}^{q}(t)=\frac{\Gamma(f)-\Gamma(\bar{f})}{\Gamma(f)+\Gamma(\bar{f})}
\end{gathered}
$$

- Ignore time dependent part to remove production asym ($\sim 10^{-2}$)
- Compute the difference in the Asymmetry between $\mathrm{B}_{\mathrm{s}}, \mathrm{B}^{0}$ to remove detector asymmetries $\left(\sim 10^{-2}\right)$

$0.57 \mathrm{pb}^{-1}$

from José Ángel Hernando Morata 2010 talk

Flavour Tagged фs

Flavour tagged fit to mass, time, and angular distributior

SMTheory

CKM parameters

$$
\begin{aligned}
& \beta \equiv \arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \\
& \alpha \equiv \arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right) \\
& \gamma \equiv \arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right) \\
& \beta_{s} \equiv \arg \left(-\frac{V_{c s} V_{c b}^{*}}{V_{t s} V_{t b}^{*}}\right) \approx 0
\end{aligned}
$$

The Dreaded Unitarity Triangle

Status of SM CKM parameters from CPV in B_{d} mixing etc. CPV in interference between mixing and decay of B_{d} appears to be mostly (entirely?) from SM

Mixing Basics

$$
\begin{aligned}
& i \frac{d}{d t}\binom{\left|B_{B}\right\rangle}{\left|\bar{B}_{q}\right\rangle}=\left(\begin{array}{cc}
m^{q}-\frac{i \Gamma^{q}}{2_{q *}} & m_{12}^{q}-\frac{i \Gamma_{12}^{q}}{2} \\
m_{12}^{q *}-\frac{i \Gamma_{12}^{2}}{2} & m^{q}-\frac{i \Gamma^{q}}{2}
\end{array}\right)\binom{\left|B_{q}\right\rangle}{\left|\bar{B}_{q}\right\rangle} \\
& \phi_{q} \equiv \arg \left(\frac{-m_{12}^{q}}{\Gamma_{12}^{q}}\right)
\end{aligned}
$$

\Rightarrow Charge asymmetry $\Rightarrow \Gamma(\mathrm{B} \rightarrow \overline{\mathrm{B}}) \neq \Gamma(\overline{\mathrm{B}} \rightarrow \mathrm{B}) \Rightarrow \quad \phi_{q} \neq 0$

$$
\left|m_{12}^{q}-\frac{i \Gamma_{12}^{q}}{2}\right| \neq\left|m_{12}^{q *}-\frac{i \Gamma_{12}^{q *}}{2}\right|
$$

Note: $\left|\Gamma_{12}^{q}\right| \ll\left|m_{12}^{q}\right|$ in $\mathrm{B}_{\mathrm{d}, \mathrm{s}}$ systems $\Delta m_{q}=2\left|m_{12}^{q}\right|$

dimuon asymmetry from B_{s} or B_{d} mixing?

\Rightarrow impact parameter analysis favors B_{s}
$\Rightarrow B_{d}, F C N C$ in $b \leftrightarrow d$ more constrained from B-

factories

\Rightarrow New contribution to B_{s} also hinted at from $B \rightarrow J / \Psi \Phi$ time dependent CPV asymmetry
\Rightarrow theory can be massaged to favor sizable (relative to SM) new contribution to B_{s} mixing with smaller (relative to SM) contribution to B_{d} mixing

New Physics vs SM backgrounds

\Rightarrow QCD uncertainty?
\Rightarrow QCD is CP symmetric (strong CPV negligible)
\Rightarrow Wolfenstein parametrization: selects basis most suitable for understanding where CPV is $\mathrm{O}(\mathrm{I})$

$$
\left[\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right] .
$$

\Rightarrow unsuppressed CPV only in processes dominated by V_{td} and/or V_{ub}
\Rightarrow e.g $B_{d} \bar{B}_{d}$ mixing, not $B_{s} \bar{B}_{s}$ mixing

SM predicts tiny semi-leptonic asymmetry in $B_{d, s}$

leading $m_{12}^{q} \propto\left(V_{t b} V_{t q}^{*}\right)^{2}$

enhancement of mass
mixing by heavy top

$$
\left|\Gamma_{12}^{q}\right| \ll\left|m_{12}^{q}\right|
$$

leading $\Gamma_{12}^{q} \propto\left(V_{c b} V_{c q}^{*}+V_{u b} V_{u q}^{*}\right)^{2}$

CKM unitarity + heavy b quark
$\phi^{q} \approx 0$

New physics in $B_{d, s}$ mass mixing?

Still room (indication?) for new CPV physics in mixing

$$
\Delta_{q} \equiv \frac{M_{12}^{q}}{M_{12}^{q, S M}},
$$

$$
\Delta_{q} \equiv\left|\Delta_{q}\right| e^{i \phi \hat{a}} .
$$

New physics in $\Delta \mathrm{m}_{\mathrm{d}, \mathrm{s}}$?

\Rightarrow need a large order one new phase for dimuon asymmetry
\Rightarrow Don't want to change magnitude of $\left|\Delta m_{s}\right|,\left|\Delta m_{d}\right|$, $\left|\Delta m_{s} / \Delta m_{d}\right|$ by more than $10-20 \%$ of SM
\Rightarrow Dont want to change phase of Δm_{d} by more than 10-20\% or lose B factory CKM fit to phase
\Rightarrow want order one change of phase of Δm_{s} without large change of magnitude

challenges for charge asymmetry via $\Delta \mathrm{m}_{\mathrm{s}}$

\Rightarrow Conspiracy to avoid large nonstandard magnitude
$\Rightarrow \Gamma_{12}(S M)$ on small side, charge asymmetry prefers $\sin \phi_{\mathrm{s}}>1$
\Rightarrow Width problem: $\Delta \Gamma_{s}=\Delta \Gamma(S M) \cos \phi_{s}$

- $\Delta \Gamma(\mathrm{SM})$
$=0.098 \pm 0.024 \mathrm{ps}^{-1}$
- $\Delta \Gamma_{\mathrm{s}}($ expt $)$
$=0.134 \pm 0.039 \mathrm{ps}^{-1}$

Standard Model Flavor Physics:

 new $F C N C$ in $b \leftrightarrow s$ versus experiment
SMTheory

$$
\begin{aligned}
& \Delta \mathrm{m}_{\mathrm{s}} \approx 19.6 \pm 2.2 \mathrm{ps}^{-1} \\
& \operatorname{Br}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right) \approx 3.6 \times 10^{-9} \\
& \operatorname{Br}\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right) \approx 3.2 \pm 0.2 \times 10^{-4}
\end{aligned}
$$

Current Experiment

$\Delta \mathrm{m}_{\mathrm{s}} \approx 17.77 \pm 0.12 \mathrm{ps}^{-1}$
$\operatorname{Br}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)<4.3 \times 10^{-8}$
$\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{X}_{s} \gamma\right) \approx 3.4 \pm 0.3 \times 10^{-4}$

Other than that...

\Rightarrow Clear sailing for model builders!
\Rightarrow NP at TeV scale can compete with SM loops
\Rightarrow similar (relative to CKM) NP contributions to B_{d} and B_{s} mixing allowed
\Rightarrow must violate assumption that all CPV is in Yukawas or in spurions proportional to Yukawas (minimal flavor/CPV)
\Rightarrow new flavor and/or CPV for third generation?

New physics in decay?

issues with new contribution to decay

\Rightarrow affects B branching fractions, requires new physics in decay comparable to SM tree
\Rightarrow Bauer and Dunn: largish new contributions to $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{T}^{+} \mathrm{T}^{-}, \mathrm{c} \overline{\mathrm{c}} \mathrm{OK}$
\Rightarrow potentially large contribution to $\Delta \mathrm{m}_{\mathrm{s}}$ q c, T

 more on Γ_{12}
confusing, but rearrange slightly so $\quad \Gamma_{12}^{S M} \sim \Gamma_{\bar{B} \rightarrow X X} \sim \frac{G_{F}^{2} f_{B}^{2} M_{B}^{3}}{16 \pi} \quad \begin{gathered}\text { from tree-level } \\ \text { calculations }\end{gathered}$
Meanwhile: $\quad M_{12}^{S M} \sim \frac{G_{F}^{2} M_{W}^{2} f_{B}^{2} M_{B}}{16 \pi^{2}} \longrightarrow \frac{M_{12}^{S M}}{\Gamma_{12}^{S M}} \sim\left(\frac{M_{W}^{2}}{\pi M_{B}^{2}}\right)$ applied to new physics:

Our proposal for large contribution to Γ_{12}^{s} : a new light pseudoscalar?

- ζ Particle with coupling $-\frac{1}{F} \partial_{\mu} \zeta \bar{b} \gamma^{\mu}\left(g_{V}^{b s}+g_{A}^{b s} \gamma_{5}\right) s$
- familon?
- pseudoscalar 'Higgs’ ?
- Hidden Valley?
- Mass mixing with $\mathrm{B}_{\mathrm{s}} \quad e^{i \alpha} f^{2} \zeta B_{s}+e^{-i \alpha} f^{2} \zeta \bar{B}_{s}$
- Must have largish width to affect Γ

$$
f=0.0026 \times\left(\frac{F /\left|g_{A}^{b_{S}}\right|}{10^{6} \mathrm{GeV}}\right)^{-1 / 2} \mathrm{GeV}
$$

$\left(B_{s}, \bar{B}_{s}, \zeta\right)$ mass matrix

$$
M^{2}=\left(\begin{array}{ccc}
m_{B_{s}}^{2} & \Delta m_{B_{s}} m_{B_{s}} & e^{i \alpha} f^{2} \\
\Delta m_{B_{s}} m_{B_{s}} & m_{B_{s}}^{2} & e^{-i \alpha} f^{2} \\
e^{-i \alpha} f^{2} & e^{i \alpha} f^{2} & M_{\zeta}^{2}
\end{array}\right)
$$

- Cannot use perturbation theory to diagonalize mass due to near degeneracy of B_{s} system, fortunately mass matrix is simple to diagonalize exactly
- Width matrix may be diagonalized perturbatively in mass eigenstate basis
- obtain B_{L}, B_{H} eigenstates with small ζ mixture, fit mass, width difference ${ }_{35}$

Contribution to mass, width difference

\Rightarrow Relative contribution to mass difference proportional to $M_{\zeta}^{2}-M_{B_{s}}^{2}$

Order one contribution to width difference without order one contribution to mass difference provided that

$$
\left|M_{\zeta}-M_{B_{s}}\right|<\frac{m_{12}^{s}(S M)}{\Gamma_{12}^{s}(S M)} \Gamma_{\zeta} \approx 200 \Gamma_{\zeta}
$$

\Rightarrow either a finetuning conspiracy in the mass, or a fairly large ζ width

2010 fit to data

	Experimental	SM prediction
$\Delta \bar{m}_{s}$	$(17.78 \pm 0.12) \mathrm{ps}^{-1}$	$(19.6 \pm 2.2) \mathrm{ps}^{-1}$
$\Delta \Gamma_{s}$	$0.134 \pm 0.031 \mathrm{ps}^{-1}$	$(0.098 \pm 0.024) \mathrm{ps}^{-1}$
$\bar{\Gamma}_{s}$	$0.680 \pm 0.012 \mathrm{ps}^{-1}$	$(0.654 \pm 0.008) \mathrm{ps}^{-1}$
$\tan \phi_{s}^{\text {sl }}$	-1.66 ± 0.64	0.0042 ± 0.0014
$\beta_{s}^{J / \psi \Phi}$	0.21 ± 0.12	0.018 ± 0.001

fit 5 observables to 4 variables: $\mathrm{f}, \alpha, \mathrm{M}_{\zeta}, \Gamma_{\zeta}$

$$
\chi^{2}(\mathrm{SM})=14.0,(1.6 \%) \chi^{2}(\zeta \text { best } f i t)=2.0 \quad(16 \%)
$$

Other constraints

\Rightarrow For light ζ, we have 2 body decays $b \rightarrow s$, ruling out most of the region with $\mathrm{m} \zeta<4.8 \mathrm{GeV}$ from B width
\Rightarrow Other constraints depend on the decay mode of the ζ

Allowed ζ mass for 2 widths

Figure 3: Left panel: the best-fit region in the M_{ζ} and f space for a fixed width $\Gamma_{\zeta}=0.001 \mathrm{GeV}$. The orange contour has 68% C.L. after minimizing χ^{2} in terms of α. The best fit has $\chi^{2}=2.0$. The gray region is ruled out by the two-body decay width of B_{d} when $M_{\zeta}<m_{B_{d}}-m_{K}$. Three-body decays do not rule out the best-fit region. Right panel: the same as the left panel but for $\Gamma_{\zeta}=0.01 \mathrm{GeV}$. The best fit has $\chi^{2}=5.4$. The blue region is excluded by requiring the three-body decay width to be

Allowed Decay modes

$\Rightarrow \zeta$ can decay directly, or to other exotics which then decay back to SM particles, e.g.

	Decay Modes
Direct decay	$\tau^{+} \tau^{-}, D \bar{D}\left(\pi^{\prime} s\right), D\left(\pi^{\prime} s\right) X$
$\zeta \rightarrow 2 a$	$2 \tau^{+} 2 e^{-}, 2 \tau^{+} 2 \mu^{-}, 2 D^{+} 2 \pi^{-}, 2 \pi^{+} 2 \pi^{-}, 2 \pi^{+} 2 \pi^{-}, 2 K^{-} 2 \pi^{+}, 2 K^{+} 2 K^{-}$
$\zeta \rightarrow a_{1}+a_{2}$	$X+\left(\tau^{+} e^{-}, \tau^{+} \mu^{-}, D^{+} \pi^{-}, \pi^{+} \pi^{-}, \pi^{+} \pi^{-}, K^{-} \pi^{+}, K^{+} K^{-}\right)$

Something nonstandard accounts for $\sim \mid-3 \%$ of B_{s} decays!!

summary: light pseudoscalar

\Rightarrow data:largish new contribution to B_{s} decays, decay mixing without excessive new contribution to mass mixing
\Rightarrow weakly coupled new physics below weak scale
\Rightarrow economical: a new pseudoscalar
\Rightarrow large width, weak coupling to SM suggests a new 'sector', large $\Gamma(\zeta \rightarrow$ hidden $)$, small Γ (hidden \rightarrow vis)
\Rightarrow alternatively largish flavor diagonal couplings to charm or tau
\leftrightarrows but not 'higgs like', i.e. suppressed flavor diagonal coupling to mu ($\mathrm{B}_{\mathrm{s}, \mathrm{d}} \rightarrow \mu^{+} \mu^{-}$constraint), top (unitarity constraint) u
\Rightarrow unless largish $\Gamma(\zeta \rightarrow$ other 'higgses')
\Rightarrow also Y decay constraints on flavor diagonal b coupling

experimental smoking guns of hidden pseudoscalar

\Rightarrow nonstandard contribution to B_{s} decays at few \%
\Rightarrow nonstandard contribution to $\mathrm{B}_{\mathrm{d}}, \mathrm{B}^{+}$decays from $b \rightarrow s \quad\left(\zeta\right.$ decay products) at $\sim 10^{-4}$
\Rightarrow rare Υ decays (model dependent, from flavor diagonal coupling)
$\Rightarrow \phi_{s}^{s l} \neq-2 \beta_{s}^{J / \psi \Phi}$ would indicate decay mixing, not mass mixing

Summary

$\star \sim 4 \sigma$ new CPV beyond CKM indicated by $\mathrm{A}_{\mathrm{s}}{ }^{\text {s }}$
\Rightarrow theory error negligible
\Rightarrow experimental systematic claimed to be small
\star most likely in B_{s} mixing and/or decay
\Rightarrow new CPV in B_{s} mixing preferred theoretically

- SM contribution is loop suppressed
- many models of new TeV scale physics can do this
- some tuning required
\Rightarrow new physics in B_{s} decay allowed experimentally
- hidden pseudoscalar?

