
Monopoles
 and Electroweak

Symmetry Breaking

John Terning
with Csaba Csaki, Yuri Shirman 

hep-ph/1003.1718



Outline 

  Motivation

  A Brief History of Monopoles

  Anomalies

  Models

  LHC

  Conclusions



SUSY Technicolor

Hierarchy Problem Now

conspicuous in it’s
absence so far ETC doesn’t work



The Vision Thing
magnetic hypercharge

electric hypercharge

consistent theory of massless dyons?
chiral symmetry breaking -> EWSB?



J.J. Thomson

Philos. Mag. 8 (1904) 331

J = q g

Magnetic Monopoles 5

•
e g

•!

R

J

Figure 1. Static configuration of an electric change and a magnetic monopole.

which follows from symmetry (the integral can only supply a numerical factor, which

turns out to be 4π [27]). The quantization of charge follows by applying semiclassical

quantization of angular momentum:

J · R̂ =
eg

c
= n

!

2
, n = 0, ±1, ±2, . . . , (2.4a)

or

eg = m′
!c, m′ =

n

2
. (2.4b)

(Here, and in the following, we use m′ to designate this “magnetic quantum number.”

The prime will serve to distinguish this quantity from an orbital angular momentum
quantum number, or even from a particle mass.)

2.3. Classical scattering

Actually, earlier in 1896, Poincaré [3] investigated the motion of an electron in the

presence of a magnetic pole. This was inspired by a slightly earlier report of anomalous
motion of cathode rays in the presence of a magnetized needle [32]. Let us generalize

the analysis to two dyons (a term coined by Schwinger in 1969 [11]) with charges e1, g1,

and e2, g2, respectively. There are two charge combinations

q = e1e2 + g1g2, κ = −e1g2 − e2g1

c
. (2.5)

Then the classical equation of relative motion is (µ is the reduced mass and v is the

relative velocity)

µ
d2

dt2
r = q

r

r3
− κv × r

r3
. (2.6)

The constants of the motion are the energy and the angular momentum,

E =
1

2
µv2 +

q

r
, J = r × µv + κr̂. (2.7)

Note that Thomson’s angular momentum (2.3) is prefigured here.

Because J · r̂ = κ, the motion is confined to a cone, as shown in figure 2. Here the
angle of the cone is given by

cot
χ

2
=

l

|κ| , l = µv0b, (2.8)

where v0 is the relative speed at infinity, and b is the impact parameter. The scattering

angle θ is given by

cos
θ

2
= cos

χ

2
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for example, for spin-1/2 particles. The photon propagator is denoted by D+(x − x′)

and fµ(x) is the Dirac string function which satisfies the differential equation

∂µf
µ(x) = 4πδ(x), (5.7)

the four-dimensional generalization of (3.17). A formal solution of this equation is given

by

fµ(x) = 4πnµ (n · ∂)−1 δ(x), (5.8)

where nµ is an arbitrary constant vector. [Equation (3.125) results if n̂ = −ẑ, in which
case f(r, t) = f(r)δ(t).]

5.3. Field theory of magnetic charge

In order to facilitate the construction of the dual-QED formalism we recognize that the

well-known continuous global U(1) dual symmetry (2.2b) [75, 78, 33] implied by (5.2),

(5.4), given by
(

j′

∗j′

)

=

(

cos θ sin θ

− sin θ cos θ

) (

j
∗j

)

, (5.9a)

(

F ′

∗F ′

)

=

(

cos θ sin θ

− sin θ cos θ

)(

F
∗F

)

, (5.9b)

suggests the introduction of an auxiliary vector potential Bµ(x) dual to Aµ(x). In order

to satisfy the Maxwell and charge conservation equations, Dirac [85] modified the field

strength tensor according to

Fµν = ∂µAν − ∂νAµ + ∗Gµν , (5.10)

where now (5.2) gives rise to the consistency condition on Gµν(x) = −Gνµ(x)

∂ν ∗Fµν = −∂νGµν = 4π ∗jµ. (5.11)

We then obtain the following inhomogeneous solution to the dual Maxwell’s equation

(5.11) for the tensor Gµν(x) in terms of the string function fµ and the magnetic current
∗jν :

Gµν(x) = 4π (n · ∂)−1 [nµ
∗jν(x) − nν

∗jµ(x)]

=

∫

(dy) [fµ(x − y) ∗jν(y) − fν(x − y) ∗jµ(y)] , (5.12)

where use is made of (5.4), (5.7), and (5.8). A minimal generalization of the QED

Lagrangian including electron-monopole interactions reads

L = − 1

16π
FµνF

µν + ψ̄ (iγ∂ + eγA − mψ)ψ + χ̄ (iγ∂ − mχ) χ, (5.13)

where the coupling of the monopole field χ(x) to the electromagnetic field occurs

through the quadratic field strength term according to (5.10). We now rewrite the

Lagrangian (5.13) to display more clearly that interaction by introducing the auxiliary

potential Bµ(x).
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Z

d4y [fµ(x� y)K�(y)� f�(x� y)Kµ(y)]
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two gauge potentials, the form of the non-Lorentz invariant kinetic mixing ensures that the
are only two on-shell degrees of freedom for the gauge fields. The advantage of having two
gauge potentials is that one, Aµ, has a local coupling to electric currents, while Bµ has a
local coupling to magnetic currents. In Dirac’s formulation, the magnetic current does not
couple directly to the gauge field, it only couples through the Dirac string attached to each
monopole, which makes calculations very di⇥cult.

For our work we will need to generalize the Zwanziger action to include the CP violating
parameter ⇥. The use of di�erential forms also makes the expressions slightly easier to write,
so we will use the notation

(a ⇤ b)µ⇤ = aµb⇤ � bµa⇤ , (3.4)

(a · �(b ⇤ c))⇤ = �µ⇤�⇥aµb�c⇥ . (3.5)

Zwanziger found [13] that the action (with a vanishing ⇥)

L = � 1

2n2e2
{[n · (⇧ ⇤ A)] · [n ·� (⇧ ⇤B)]� [n · (⇧ ⇤B)] · [n ·� (⇧ ⇤ A)]

+ [n · (⇧ ⇤ A)]2 + [n · (⇧ ⇤B)]2
�
� J · A� 4⇤

e2
K · B. (3.6)

(where n is an arbitrary four vector corresponding to the direction of the Dirac string)
reproduces the Maxwell equations if the identification of the field strength F is given by

F =
1

n2
({n ⇤ [n · (⇧ ⇤ A)]}� � {n ⇤ [n · (⇧ ⇤B)]}) . (3.7)

While the Lagrangian is not Lorentz invariant, the EOM’s will be if written in terms of the
field strength. The proper generalization of this Lagrangian incorporating the ⇥-angle is

L = �Im
⌅

8⇤n2
{[n · ⇧ ⇤ (A + iB)] · [n · ⇧ ⇤ (A� iB)]}

�Re
⌅

8⇤n2
{[n · ⇧ ⇤ (A + iB)] · [n ·� ⇧ ⇤ (A� iB)]}

�J · A� 4⇤

e2
K · B. (3.8)

One can check that this Lagrangian indeed correctly reproduces the Maxwell equations (3.1)
after the Witten e�ect is taken into account. To incorporate the Witten e�ect, one may also
write a low-energy Lagrangian below the mass scale of the fermions that will correct the
coupling terms to

�J · A� 4⇤

e2
K · B ⇥ Re [(A� iB) · (J + ⌅K)] (3.9)

while if the fermions are massless then the ⇥ term can always be rotated away.
One can easily see that with this incorporation of the Witten e�ect in the coupling in the

Lagrangian the SL(2, Z) covariance is also explicit. Since under SL(2, Z) the field strength
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Figure 1: The fermion triangle diagram which contributes to the anomaly. One must also
add the crossed graph where the gauge bosons are interchanged.

A simpler way of obtaining the anomaly is to follow the method of Argyres and Douglas
[10] of using SL(2, Z) transformations to map the theory with a dyon to a dual theory with
an electric charge, perform the calculations in the dual theory, and then map back, as we did
for the �-function in Sec. 2. Thus we want to perform SL(2, Z) transformations of the sort
(2.8-2.9). As in (2.11) one can map a dyon with charges (q, g) to a dual electron with charge
n, where n is the greatest common factor of the integers q and g, using a transformation
with c = g/n and d = q/n. In the dual theory with electric charge n, the axial anomaly is

⇧µj
µ
A(x) =

n2

16⇤2
F ⇥µ⇥ �F ⇥

µ⇥ =
n2

32⇤2
Im (F ⇥µ⇥ + i �F ⇥µ⇥)2 . (5.1)

Using (3.2) we find that in the original theory with a dyon the axial anomaly is

⇧µj
µ
A(x) =

n2

32⇤2
Im (c⌅ � + d)2 (F µ⇥ + i �F µ⇥)2 (5.2)

=
1

16⇤2
Re (q + ⌅ �g)2 F µ⇥ �Fµ⇥ +

1

16⇤2
Im (q + ⌅ �g)2 F µ⇥ Fµ⇥

=
1

16⇤2

 ⌥�
q +

⇥

2⇤
g

⇥2

� g2 16⇤2

e4

�
F µ⇥ �Fµ⇥ +

⇤
qg +

⇥

2⇤
g2

⌅
F µ⇥ Fµ⇥

⌦
. (5.3)

We immediately recognize that the coe⇥cients are indeed determined by the one-loop �
function contributions as expected. The second term, proportional to the gauge kinetic term
F µ⇥ Fµ⇥ , may give one pause since it might seem that it allows us to rotate away this term
in the action. However there is only an axial anomaly if there are charged massless fermions,
but then ⇥ and �� are unphysical. Rotating ⇥ to zero we are left with

⇧µj
µ
A(x) =

1

16⇤2

⇧⇤
q2 � g2 16⇤2

e4

⌅
F µ⇥ �Fµ⇥ + qg F µ⇥ Fµ⇥

⌃
. (5.4)

6 Gauge Anomalies

In the case of a mixed gauge anomaly between the U(1) of electromagnetism (with only
electric charges) and an SU(N) gauge group one finds that gauge dependent terms appear
in the action

Lanom = c � Gaµ⇥ �Ga
µ⇥ (6.1)
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New dimension 4, four particle operator



Angular Momentum
�L = �r ⇥ �p� q g r̂

L2 = |�r � �p |2 + q2 g2

[Li, Lj ] = i �ijkLk

Classical:

Quantum:

L2 = �(� + 1), � � q g

Wu, Yang  Nucl. Phys. B107, (1976) 365
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Angular Momentum
h
(⇥µ � iqAµ)2 � q

2
�µ�Fµ� �m2

i
� = 0

1
r2

(⇥(⇥ + 1)� q2g2)� q g
⇤� · r̂

r2


� 1

r2

⇥

⇥r
(r2 ⇥

⇥r
) +

1
r2

(⇤L2 � q2g2)� q ⇤� · ⇤B � (E2 �m2)
�

� = 0

� = q gfor           one helicity can reach the origin
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magnetic charge
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The Model
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charges, which are given by:
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The most important feature of this type of model is that in addition to the gauge in-
teractions there are also Rubakov-Callan interactions that are forced on us by the unusual
properties of magnetic charges interacting with electric charges combined with angular mo-
mentum conservation. The leading Rubakov-Callan interactions (i.e. with four fermions) in
momentum space are
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µuj
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where the first operator is responsible for the top quark mass, while the second and third
terms couple the chiral symmetry breaking in the lepton-monopole and quark-monopole
sectors. The vector aµ accounts for the angular momentum in the electromagnetic field, and
is discussed in the Appendix.

3 E↵ective Chiral Lagrangian

Since the quark-monopoles and lepton-monopoles have di↵erent magnetic hypercharges and
magnetic color charges, the global symmetry of the magnetic sector (neglecting perturbative
gauge couplings) is

SU(6)qL ⇥ SU(6)qR ⇥ SU(2)`L ⇥ SU(2)`R ⇥ U(1)q ⇥ U(1)` (3.1)

which is spontaneously broken to

SU(6)q ⇥ SU(2)` ⇥ U(1)q ⇥ U(1)` (3.2)

So there are 38 potential Nambu-Goldstone bosons. The Rubakov-Callan interactions ex-
plicitly break the global symmetry to

SU(3)c ⇥ SU(2)L ⇥ SU(2)R ⇥ U(1)q ⇥ U(1)` . (3.3)

2

Appendix

The EM field around an electric charge q and a magnetic charge g carries an angular mo-
mentum [2]

~J = qg r̂ (5.1)

where r̂ is a unit vector pointing from the charge to the magnetic monopole. The Dirac
charge quantization condition [3] ensures that ~J is quantized in half integer units. Two
dyons must satisfy a generalized charge quantization condition [7]:

µ12 = q1 g2 � q2 g1 =
n

2
, (5.2)

Zwanziger [10] showed how to write the angular momentum in the general frame in a Lorentz
covariant fashion :

Mµ⌫
ij = ±µij

✏µ⌫↵�pi↵pj�q
(pi · pj)2 � p2i p

2
j

(5.3)

where
⇣
~J
⌘

`
=

1

2
✏`mnM

mn . (5.4)

Note that ~J depends on the relative position of the particles, and thus is di↵erent in the
initial and final states of a scattering process. In order to find any scattering amplitude
involving magnetically charged particles one must take this extra angular momentum into
account [10].

Generally one needs to couple the spin/angular momentum of the external states to the
angular momentum in the electromagnetic field (which is determined by µij). Zwanziger [10]
has explained how to do this for the case when µij is integer. For the spin one case (µ12 = 1)
in the frame where the monopole is at trest and the the spin of the EM field points in
the z-direction, the field angular momentum is described by the usual circular polarization
vectors ✏µ± = (0, 1,±i, 0), thus in the arbitrary frame they will be given by

aµ±(p1, p2, n) ⌘ (⇤p1p2)
µ
⌫✏

⌫
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p
(p1 · p2)2 � p21p

2
2

.

(5.5)
which is the result Zwanziger has found by guessing the vector with the right transformation
properties. An important property of these vectors is that their square is independent of the
arbitrary vector n (note that no summation over helicities is implied):
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(5.6)
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field shows up as an additional phase factor in the two-particle state under such rotations;
the two-particle state does not simply transform as a direct product of the two one-particle
states, since the additional phase factor is being picked up:

Rz(�)|p̂1, p̂2i = e

±iµ12�|p̂1, p̂2i. (2.2)

This is the way to incorporate the additional angular momentum in the EM field into the
representation theory of the Lorentz group. Once this is understood it is quite simple to
find the coupling between external states and the spin in the EM field with µ12. The key
is the Lorentz matrix ⇤p1p2 which brings the standard form of a two-particle state into an
arbitrary two-particle state:

⇤p1p2|p̂1p̂2i = |p1p2i (2.3)

Clearly this ⇤p1p2 is not unique, since for example a rotation around the z-axis can always be
attached to the right. Thus there will be some freedom in ⇤p1p2 which needs to be fixed by
some convention. The first and the last columns of ⇤ are completely fixed by the equation

p

µ
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µ
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µ
2 = (⇤p1p2)

µ
0(m

2
2 + p

2)
1
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µ
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while the columns ⇤µ
1 and ⇤µ

2 should be orthonormal to these to ensure unitarity. The
convention of Zwanziger is to require that ⇤µ

2 is orthogonal (in addition to p1 and p2) also
to a fixed external vector n

µ, which will play the role of the Dirac string. This then fully
fixes the ⇤ matrix to be
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µ
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µ
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and we used the notation
✏

µ(p1, p2, n) = ✏

µ⌫↵�
p1⌫p2↵n� (2.9)

Once ⇤p1p2 is fixed one can easily find the appropriate polarization vectors of the EM field
by simply boosting the polarization vectors in the special frame.

For the spin one case (µ12 = 1) in the standard frame the spin of the EM field points in
the z-direction, and is described by the usual circular polarization vectors ✏

µ
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The most important feature of this type of model is that in addition to the gauge in-
teractions there are also Rubakov-Callan interactions that are forced on us by the unusual
properties of magnetic charges interacting with electric charges combined with angular mo-
mentum conservation. The leading Rubakov-Callan interactions (i.e. with four fermions) in
momentum space are
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where the first operator is responsible for the top quark mass, while the second and third
terms couple the chiral symmetry breaking in the lepton-monopole and quark-monopole
sectors. The vector aµ accounts for the angular momentum in the electromagnetic field, and
is discussed in the Appendix.

3 E↵ective Chiral Lagrangian

Since the quark-monopoles and lepton-monopoles have di↵erent magnetic hypercharges and
magnetic color charges, the global symmetry of the magnetic sector (neglecting perturbative
gauge couplings) is

SU(6)qL ⇥ SU(6)qR ⇥ SU(2)`L ⇥ SU(2)`R ⇥ U(1)q ⇥ U(1)` (3.1)

which is spontaneously broken to

SU(6)q ⇥ SU(2)` ⇥ U(1)q ⇥ U(1)` (3.2)

So there are 38 potential Nambu-Goldstone bosons. The Rubakov-Callan interactions ex-
plicitly break the global symmetry to

SU(3)c ⇥ SU(2)L ⇥ SU(2)R ⇥ U(1)q ⇥ U(1)` . (3.3)
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where the first operator is responsible for the top quark mass, while the second and third
terms couple the chiral symmetry breaking in the lepton-monopole and quark-monopole
sectors. The vector aµ accounts for the angular momentum in the electromagnetic field, and
is discussed in the Appendix.

3 E↵ective Chiral Lagrangian

Since the quark-monopoles and lepton-monopoles have di↵erent magnetic hypercharges and
magnetic color charges, the global symmetry of the magnetic sector (neglecting perturbative
gauge couplings) is

SU(6)qL ⇥ SU(6)qR ⇥ SU(2)`L ⇥ SU(2)`R ⇥ U(1)q ⇥ U(1)` (3.1)

which is spontaneously broken to

SU(6)q ⇥ SU(2)` ⇥ U(1)q ⇥ U(1)` (3.2)

So there are 38 potential Nambu-Goldstone bosons. The Rubakov-Callan interactions ex-
plicitly break the global symmetry to

SU(3)c ⇥ SU(2)L ⇥ SU(2)R ⇥ U(1)q ⇥ U(1)` . (3.3)
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3 Nambu-Goldstone Bosons

38 PNGBS

So only three of the potential Nambu-Goldstone bosons are exact, and these are eaten by the
W and Z. The remaining 35 PNGB’s can be classified by how the transform under SU(3)c
and SU(2)D, the diagonal subgroup of SU(2)L ⇥ SU(2)R, as

(1, 3) + (8, 1) + (8, 3) (3.4)

These PNGB’s not only receive mass corrections from the Rubakov-Callan interactions but
also from color and electroweak gauge boson loops.

The low-energy e↵ective chiral Lagrangian is

L =
f 2
`,0

4
TrDµ⌃†

`Dµ⌃` +
f 2
q,0

4
TrDµ⌃†

qDµ⌃q +
�
f`,0 Tr⌃`�

(u)qLuR + h.c.
�

+
�
a f 2

`,0f
2
q,0 Tr

�
⌃` ⌃

†
q

�
+ h.c.

�
(3.5)

where Tr indicates a trace over indices, ⌃` is a 2x2 matrix representing the“pionic” degrees
of freedom from the lepton-monopole sector, while ⌃q is a 6x6 matrix representing degrees of
freedom from the quark-monopole sector. The subscript 0 on fq,0, f`,0 indicates the “pion”
decay constants at zeroth order in �(u) and a.

The third term in the chiral Lagrangian represents the Rubakov-Callan operator that
gives rise to the top quark mass, while the last term represents the Rubakov-Callan operator
that only contains monopoles and dyons. Naively we would expect that spontaneous breaking
scale, fq,0, for the quark-monopoles would be less that the scale, f`,0 associated with the
lepton-monopoles, perhaps much less. However we see that the term that couples the two
sectors is very analogous to the coupling between QCD pions and the Higgs:

bf 2
⇡ Tr

�
�H⌃†�+ h.c. (3.6)

In other words ⌃` plays the role of the Higgs in breaking electroweak symmetry and this
operator feeds down a mass to the quark-monopoles. If the coe�cient a is su�ciently small
then this would act as an explicit symmetry breaking parameter in the quark-monopole
sector and there would be a mass eigenstate that is mostly composed of the pion of the
quark-monopole sector which is a PNGB, just like the pion of QCD. However we really
expect a to be number of order 1 or 4⇡, so it is possible that this term is so large that rather
than being a PNGB it is simply a heavy bound state, analogous to the ⌘c in the cc̄ sector
of QCD. Depending on the values of a and fq,0/f`,0 we are at some point that interpolates
between a light PNGB and a heavy bound state. As the PNGB becomes heavy, there will
be additional contributions to the PNGB decay constant fq,0. Just as in QCD, the physical
value of the decay constant will receive a correction from this mixing term:

f 2
q = f 2

q,0 +O(af 2
`,0) . (3.7)

In the heavy PNGB limit, the quark-monopole sector contribution to the W and Z masses
can be dominated by the O(af 2

`,0) piece. In other words, there is an O(a) contribution to

the order parameters hQLU
†
Ri, hQLD

†
Ri.
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of QCD. Depending on the values of a and fq,0/f`,0 we are at some point that interpolates
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In the heavy PNGB limit, the quark-monopole sector contribution to the W and Z masses
can be dominated by the O(af 2

`,0) piece. In other words, there is an O(a) contribution to

the order parameters hQLU
†
Ri, hQLD

†
Ri.

There are two fields that transform as (1, 3) under SU(3)c and SU(2)D, one coming from
⌃q and one from ⌃`, let us call them ⇡q and ⇡`. The Rubakov-Callan interaction mixes these
fields and we find two orthogonal linear combinations that are mass eigenstates

⇡GB =
1q

f 2
`,0 + f 2

q,0

(f`,0⇡` � fq,0⇡q) (3.9)

P =
1q

f 2
`,0 + f 2

q,0

(fq,0⇡` + f`,0⇡q) (3.10)

The triplet ⇡GB are the massless Nambu-Goldstone bosons eaten by the W and Z, while
P is a massive PNGB. Since P is color neutral it should be the lightest PNGB. We will refer
to the (8, 1) and (8, 3) PNGB’s as P8,1 and P8,3

The P+ can decay to tb̄ with a width given by

�(P 0 ! tb̄) ⇠ g4

256 ⇡

f 2
` m

2
tmP

(m2
P �m2

W )2

✓
1� m2

t

m2
P

◆2

(3.11)

where g is the SU(2)L gauge coupling. There is also a decay to W+ and a photon, where
the photon is produced through a magnetic coupling.

The P 0 can decay to two photons, but this process cannot proceed though two magnetic
couplings of the photons. The reason is that the P 0 is part of a flavor triplet, while the
magnetic photon couplings are flavor independent. For the triplet to decay there must be
one electric coupling of a photon. So the width is much narrower than the width of a flavor
singlet state which could decay through purely magnetic couplings. Generalizing the usual
anomaly calculation we find a with a width given by

�(P 0 ! ��) ⇠ 1

192⇡3

m3
P

f 2
P

. (3.12)

Factors of electric charge do not appear in this formula because we have used the Dirac
relation

↵el ↵mag =
1

4
. (3.13)

The P8,1 can decay to two gluons through one “color-electric” and one “color-magnetic”
charge and will have a width similar to 3.11 with a group theory factor.

The P 0
8,3 can decay to a photon (or Z) and a gluon, where the photon (or Z) must be

produced through an electric coupling but the gluon can be produced through a “color-
magnetic” coupling, so the width is suppressed by ↵/↵s (or ↵/↵s.
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Conclusions

Monopoles are still fascinating 
after all these years

monopoles can break EWS and give the 
top quark a large mass

monopole phenomenolgy has open questions 


