Monopoles

 and Electroweak

 and Electroweak
 Symmetry Breaking

John Terning
with Csaba Csaki, Yuri Shirman
hep-ph/1003.1718

Outline

s) Motivation
\& $\%$ A Brief History of Monopoles
\& Anomalies
\& Models
s) LHC
\& Conclusions

Hierarchy Problem Now

SUSY

Technicolor

ETC doesn't work

The Vision Thing

electric hypercharge
$\ln \mu$
consistent theory of massless dyons? chiral symmetry breaking -> EWSB?

J.J. Thomson

(a)

(b)

$$
J=q g
$$

Philos. Mag. 8 (1904) 331

Dirac

charge quantization

Proc. Roy. Soc. Lond. A133 (1931) 60

Dirac

non-local action?

$$
\begin{gathered}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+{ }^{*} G_{\mu \nu} \\
G_{\mu \nu}(x)=4 \pi(n \cdot \partial)^{-1}\left[n_{\mu} K_{\nu}(x)-n_{\nu} K_{\mu}(x)\right] \\
=\int d^{4} y\left[f_{\mu}(x-y) K_{\nu}(y)-f_{\nu}(x-y) K_{\mu}(y)\right] \\
\partial_{\mu} f^{\mu}(x)=4 \pi \delta(x) \\
f^{\mu}(x)=4 \pi n^{\mu}(n \cdot \partial)^{-1} \delta(x)
\end{gathered}
$$

Phys. Rev. 74 (1948) 817

Schwinger

Science 165 (1969) 757

Zwanziger

non-Lorentz invariant, local action?

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{2 n^{2} e^{2}}\left\{[n \cdot(\partial \wedge A)] \cdot\left[n \cdot \cdot^{*}(\partial \wedge B)\right]-[n \cdot(\partial \wedge B)] \cdot\left[n \cdot \cdot^{*}(\partial \wedge A)\right]\right. \\
&\left.+[n \cdot(\partial \wedge A)]^{2}+[n \cdot(\partial \wedge B)]^{2}\right\}-J \cdot A-\frac{4 \pi}{e^{2}} K \cdot B . \\
& \text { electric magnetic } \\
& F= \frac{1}{n^{2}}\left(\{n \wedge[n \cdot(\partial \wedge A)]\}-^{*}\{n \wedge[n \cdot(\partial \wedge B)]\}\right)
\end{aligned}
$$

Phys. Rev. D3 (1971) 880

't Hooft-Polyakov

topological monopoles

Nucl. Phys., B79 1974, 276
JETP Lett., 20 1974, 194

't Hooft-Mandelstam

magnetic condensate confines electric charge

High Energy Physics Ed. Zichichi, (1976) 1225 Phys. Rept. 23 (1976) 245

Rubakov-Callan

$$
J=e g
$$

new unsuppressed contact interactions!
JETP Lett. 33 (1981) 644
Phys. Rev. D25 (1982) 2141

Seiberg-Witten

$\mathcal{N}=2$
massless fermionic monopoles
hep-th/9407087

Argyres-Douglas

CFT with massless electric and magnetic charges hep-th/9505062

Toy Model

is this anomaly free?

Anomalies

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2 n^{2} e^{2}}\left\{[n \cdot(\partial \wedge A)] \cdot\left[n \cdot{ }^{*}(\partial \wedge B)\right]-[n \cdot(\partial \wedge B)] \cdot\left[n \cdot *^{*}(\partial \wedge A)\right]\right. \\
& \left.+[n \cdot(\partial \wedge A)]^{2}+[n \cdot(\partial \wedge B)]^{2}\right\}-J \cdot A-\frac{4 \pi}{e^{2}} K \cdot B .
\end{aligned}
$$

Csaki, Shirman, JT hep-th/1003.0448

Toy Model

	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}: q$	$U(1)_{Y}: g$
Q	\square	\square	$\frac{1}{6}$	3
L	1	\square	$-\frac{1}{2}$	-9
\bar{U}	\square	1	$-\frac{2}{3}$	-3
\bar{D}	\square	1	$\frac{1}{3}$	-3
\bar{N}	1	1	0	9
\bar{E}	1	1	1	9

$\sum_{j} q_{j}^{3}=0, \quad \sum_{j} g_{j}^{3}=0, \quad \sum_{j} g_{j}^{2} q_{j}=0, \quad \sum_{j} q_{j}^{2} g_{j}=0, \quad \sum_{j} q_{j}=0, \quad \sum_{j} g_{j}=0$,
$\sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j}=0, \quad \sum_{j} \operatorname{Tr} \tau_{r_{j}}^{a} r_{r_{j}}^{b} q_{j}=0, \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} g_{j}=0, \quad \sum_{j} \operatorname{Tr} \tau_{r_{j}}^{a} r_{r_{j}}^{b} g_{j}=0$

Dynamics

	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}: q$	$U(1)_{Y}: g$	
Q	\square	\square	$\frac{1}{6}$	3	
L	1	\square	$-\frac{1}{2}$	-9	
\bar{U}	\square	1	$-\frac{2}{3}$	-3	
\bar{D}	\square	1	$\frac{1}{3}$	-3	
\bar{N}	1	1	0	9	
\bar{E}	1	1	1	9	
	$\left(\frac{1}{6}\right)^{2} \alpha_{Y} 3^{2} \alpha_{m}=\frac{1}{4}$				
	$\alpha_{m} \sim 98$				

Quark Masses

technicolor: fail

Quark Masses

Standard Model

Rubakov-Callan

$$
\begin{gathered}
J_{f}=-q g=1 / 2 \\
S_{f}=-1 / 2
\end{gathered}
$$

$$
\begin{gathered}
J_{i}=q g=-1 / 2 \\
S_{i}=1 / 2
\end{gathered}
$$

New dimension 4, four particle operator

Angular Momentum

Classical:

$$
\vec{L}=\vec{r} \times \vec{p}-q g \hat{r}
$$

$$
L^{2}=|\vec{r} \times \vec{p}|^{2}+q^{2} g^{2}
$$

Quantum:

$$
\left[L_{i}, L_{j}\right]=i \epsilon_{i j k} L_{k}
$$

$$
L^{2}=\ell(\ell+1), \quad \ell \geq q g
$$

Wu, Yang Nucl. Phys. B107, (1976) 365

Angular Momentum

$$
\left[\left(\partial_{\mu}-i q A_{\mu}\right)^{2}-\frac{q}{2} \sigma^{\mu \nu} F_{\mu \nu}-m^{2}\right] \Psi=0
$$

$$
\left[-\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}}\left(\vec{L}^{2}-q^{2} g^{2}\right)-q \vec{\sigma} \cdot \vec{B}-\left(E^{2}-m^{2}\right)\right] \Psi=0
$$

$$
\frac{1}{r^{2}}\left(\ell(\ell+1)-q^{2} g^{2}\right)-q g \frac{\vec{\sigma} \cdot \hat{r}}{r^{2}}
$$

for $\ell=q g$ one helicity can reach the origin

Four Fermion Ops

$$
\begin{aligned}
J_{f}= & -q g=-1 / 2 \\
& S_{f}=-1
\end{aligned}
$$

U_{R} t_{L}

$$
\begin{gathered}
J_{i}=q g=2 \\
S_{i}=1
\end{gathered}
$$

Four Fermion Ops

$$
\begin{aligned}
J_{f}= & -q g=-1 / 2 \\
& S_{f}=-1
\end{aligned}
$$

$U_{R} \quad t_{L}$

$$
\begin{gathered}
J_{i}=q g=2 \\
S_{i}=1
\end{gathered}
$$

time
fail!

Four Fermion Ops

$$
\begin{gathered}
J_{f}=-q g=-2 \\
S_{f}=0
\end{gathered}
$$

$U_{R} \quad t_{R}$

Four Fermion Ops

$$
\begin{gathered}
J_{f}=-q g=-2 \\
S_{f}=0
\end{gathered}
$$

$U_{R} \quad t_{R}$

$$
\begin{gathered}
J_{i}=q g=1 / 2 \\
S_{i}=0
\end{gathered}
$$

fail!

$$
\begin{gathered}
\text { non-Abelian } \\
\text { magnetic charge } \\
Q=T^{3}+Y \\
Q_{m}=T_{m}^{3}+Y_{m} \\
\text { explicit examples known in GUT models }
\end{gathered}
$$

EWSB is forced to align with the monopole charge

non-Abelian

magnetic charge

$$
\begin{aligned}
\vec{B}_{Y}^{a} & =\frac{g}{g_{Y}} \frac{\hat{r}}{r^{2}} \\
\vec{B}_{L}^{a} & =\delta_{L}^{a 3} \frac{g \beta_{L}}{g_{L}} \frac{\hat{r}}{r^{2}} \\
\vec{B}_{c}^{a} & =\delta_{c}^{a 8} \frac{g \beta_{c}}{g_{c}} \frac{\hat{r}}{r^{2}}
\end{aligned}
$$

$$
4 \pi\left(T_{c}^{8} g \beta_{c}+T_{L}^{3} g \beta_{L}+Y g\right)=2 \pi n
$$

non-Abelian

magnetic charge

$$
\begin{gathered}
4 \pi\left(T_{c}^{8} g \beta_{c}+T_{L}^{3} g \beta_{L}+Y g\right)=2 \pi n \\
e A^{\mu}=g_{L} A_{L}^{3 \mu}+g_{Y} A_{Y}^{\mu} \\
\beta_{L}=1
\end{gathered}
$$

$$
T_{c}^{8} g \beta_{c}+q g=\frac{n}{2}
$$

	$\left(S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}\right) / Z_{6}$			
	$S U(3)_{c}$	$S U(2)_{L}$	$U(1)_{Y}^{e l}$	$U(1)_{Y}^{m a g}$
Q_{L}	$\square \square^{m}$	$\square \square^{m}$	$\frac{1}{6}$	$\frac{1}{2}$
L_{L}	1	$\square \square^{m}$	$-\frac{1}{2}$	$-\frac{3}{2}$
U_{R}	$\square \square^{m}$	1^{m}	$\frac{2}{3}$	$\frac{1}{2}$
D_{R}	$\square \square^{m}$	1^{m}	$-\frac{1}{3}$	$\frac{1}{2}$
N_{R}	1	1^{m}	0	$-\frac{3}{2}$
E_{R}	1	1^{m}	-1	$-\frac{3}{2}$
$\alpha_{m}=\frac{1}{4 \alpha} \approx 32$				

Four Fermion Ops
 $$
\begin{array}{r} J_{f}=-q g=-\frac{2}{3}\left(-\frac{3}{2}\right) \\ S_{f}=-1 \end{array}
$$

 N_{R}

 t_{L}
 $t_{R} \nearrow N_{L}$
 $$
\begin{aligned} J_{i}=q g & =\frac{2}{3}\left(-\frac{3}{2}\right) \\ S_{i} & =+1 \end{aligned}
$$

Four Fermion Ops
 $$
\begin{array}{r} J_{f}=-q g=-\frac{2}{3}\left(-\frac{3}{2}\right) \\ S_{f}=-1 \end{array}
$$
 N_{R}
 t_{L}
 $t_{R} \nearrow N_{L}$
 $$
\begin{aligned} J_{i}=q g & =\frac{2}{3}\left(-\frac{3}{2}\right) \\ S_{i} & =+1 \end{aligned} \quad \longleftrightarrow
$$
 hooray!

Four Fermion Ops

$$
\begin{gathered}
\lambda_{i j}^{(u)} N_{R}\left(p_{2}\right) \bar{\sigma}^{\mu} u_{L}^{j}\left(p_{1}\right) a_{\mu,-}\left(p_{1}, p_{2}, n\right)\left[u_{R}^{i}\left(p_{3}\right) \bar{\sigma}^{\nu} N_{L}\left(p_{4}\right) a_{\nu,+}\left(p_{4}, p_{3}, n\right)\right]^{\dagger} \\
E_{R}\left(p_{2}\right) \bar{\sigma}^{\mu} D_{L}\left(p_{1}\right) a_{\mu,+}\left(p_{1}, p_{2}, n\right)\left[D_{R}\left(p_{3}\right) \bar{\sigma}^{\nu} E_{L}\left(p_{4}\right) a_{\nu,-}\left(p_{4}, p_{3}, n\right)\right]^{\dagger} \\
N_{R}\left(p_{2}\right) \bar{\sigma}^{\mu} U_{L}\left(p_{1}\right) a_{\mu,-}\left(p_{1}, p_{2}, n\right)\left[U_{R}\left(p_{3}\right) \bar{\sigma}^{\nu} N_{L}\left(p_{4}\right) a_{\nu,+}\left(p_{4}, p_{3}, n\right)\right]^{\dagger} \\
a_{ \pm}^{\mu}\left(p_{1}, p_{2}, n\right) \equiv\left(\Lambda_{\left.p_{1} p_{2}\right)^{\mu}} \nu_{ \pm}^{\prime}=\epsilon_{2}^{\mu} \pm i \epsilon_{1}^{\mu}=-\frac{\epsilon^{\mu}\left(p_{1}, p_{2}, n\right)}{\left|\epsilon^{\mu}\left(p_{1}, p_{2}, n\right)\right|}- \pm i \frac{\epsilon^{\mu}\left(p_{1}, p_{2}, \epsilon\left(p_{1}, p_{2}, n\right)\right)}{\left|\epsilon^{\mu}\left(p_{1}, p_{2}, n\right)\right| \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-p_{1}^{2} p_{2}^{2}}}\right. \\
\epsilon^{\mu}\left(p_{1}, p_{2}, n\right)=\epsilon^{\mu \nu \alpha \beta} p_{1 \nu} p_{2 \alpha} n_{\beta}
\end{gathered}
$$

Effective Theory

$S U(6)_{q L} \times S U(6)_{q R} \times S U(2)_{\ell L} \times S U(2)_{\ell R} \times U(1)_{q} \times U(1)_{\ell}$
\downarrow

$$
S U(6)_{q} \times S U(2)_{\ell} \times U(1)_{q} \times U(1)_{\ell}
$$

3 Nambu-Goldstone Bosons

38 PNGBS

$$
(1,3)+(8,1)+(8,3)
$$

Effective Theory

$$
\Sigma_{\ell}=e^{2 i \pi_{\ell}^{a} T^{a}}, \quad \Sigma_{q}=e^{2 i \pi_{q}^{a} T^{a}}
$$

$$
\begin{aligned}
\mathcal{L}= & \frac{f_{\ell, 0}^{2}}{4} \operatorname{Tr} D^{\mu} \Sigma_{\ell}^{\dagger} D_{\mu} \Sigma_{\ell}+\frac{f_{q, 0}^{2}}{4} \operatorname{Tr} D^{\mu} \Sigma_{q}^{\dagger} D_{\mu} \Sigma_{q}+\left(f_{\ell, 0} \operatorname{Tr} \Sigma_{\ell} \lambda^{(u)} q_{L} u_{R}+\text { h.c. }\right) \\
& +\left(a f_{\ell, 0}^{2} f_{q, 0}^{2} \operatorname{Tr}\left(\Sigma_{\ell} \Sigma_{q}^{\dagger}\right)+h . c .\right)
\end{aligned}
$$

$$
\Gamma\left(P^{0} \rightarrow \gamma \gamma\right) \sim \frac{1}{192 \pi^{3}} \frac{m_{P}^{3}}{f_{P}^{2}}
$$

Conclusions

Monopoles are still fascinating after all these years
monopoles can break EWS and give the top quark a large mass
monopole phenomenolgy has open questions

