Precise predictions for di-boson production at the LHC

Fabrizio Caola, CERN

LHC RUN II AND THE PRECISION FRONTIER, KITP, 30 MAR. 2016

Precision for di-boson: why

LHC: sizable cross-section

Precision predictions for di-boson production at the LHC: outline

- The quest for precision: NNLO predictions
- The importance of fiducial measurements: the WW cross section

Large effects beyond NNLO: gg->VV @ NLO

NNLO predictions for di-boson processes

Precise predictions: what do we need

 $\mathrm{d}\sigma = \int dx_1 dx_2 f_1(x_1) f_2(x_2) \mathrm{d}\sigma_{\mathrm{part}}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{\mathrm{QCD}}/Q))$ **Require precise input** parameters (α_s , PDFs) High-Q physics \rightarrow part we have most control/on Must describe realistic conditions (fiducial cuts, arbitrary observables \rightarrow fully differential)

> Ultimate limitation: NP corrections. For typical EW scale: ~ percent

Since $\alpha_s \sim 0.1$: percent-level control \rightarrow NNLO PREDICTIONS

Anatomy of a NNLO computation - I

So a NNLO computation for VV 'naturally' contains a (N)LO computation for VV+(1)2 jet

Anatomy of a NNLO computation - II

- For a long time, the problem of NNLO computations was how to consistently extract IR singularity from double-real emission/real-virtual emission. Knowing all relevant amplitudes not enough (especially problematic for processes with non-trivial color structure)
- A lot of progress recently. First steps towards an optimal solution
 - Subtraction: antenna, sector-improved FKS, colorful
 - Slicing: q_T, N-jettiness
- In practice, this allowed for computations of 2->2 reactions at the LHC (top-pair, di-jet, single-top, H+J, V+J...)

NNLO: what does it buy you

For Born-like observables (cross-section, m₄₁, p_{t,1}...)

Stabilization of the perturbative expansion

Example: ZY, ATLAS setup [Grazzini, Kallweit, Rathlev (2015)] $\sigma_{LO} = 0.81^{+8\%}$ -9.3%, $\sigma_{LO} = 1.031^{+2.7\%}$ -4.3%, $\sigma_{NNLO} = 1.059^{+0.7\%}$ -1.4% or $K_{NLO} = +27\%$, $K_{NNLO} = +3\%$

- More reliable scale uncertainty estimates, typically reduced (→ discussions about 'right' scale less important)
 For VV processes: no α_s at Bornlevel, lowest order scale uncertainty
 - badly underestimates corrections (also, new channels open up)

← Example: di-photon, m_{YY}, CMS setup [Campbell, Ellis, Li, Williams (2016)]

NNLO: what does the buy you

For configurations dominated by extra hard radiation, NNLOVV predictions are the same of NLO predictions for VV+J. Example: di-photon opening angle

YY@NNLO gives you YYJ@NLO for free, but nothing more

NNLO: where do we stand

NNLO corrections for almost all di-boson processes.

- YY: Catani et al. (2012); Campbell, Ellis, Li, Williams (2016)
- VV: Grazzini, Kallweit, Rathlev, Torre, Cascioli, Gehrmann, Maierhöfer, Manteuffel, Pozzorini, Tancredi, Weihs (2013-2015)

	Total Cross- Section	Fiducial	Higgs-region
γγ	\checkmark	\checkmark	
Vγ	\checkmark	\checkmark	
ZZ	\checkmark	\checkmark	×
WW	\checkmark	~	×
WZ	×	×	

General picture: good theory/data agreement

Sample results: $\gamma\gamma$ $\sigma_{CMS} = 17.2 \pm 0.2 \text{ (stat)} \pm 1.9 \text{ (syst)} \pm 0.4 \text{ (lumi) pb}$

 $\sigma_{MCFM} = 17.0 \pm 1.2 \text{ pb} \text{ [with gg@NLO]}$

- Excellent data/NNLO agreement
- gg@NLO sizable effect
- Nice validation with functional forms used for data-driven fits

Sample results: VY

[Grazzini, Kallweit, Rathlev, Torre (2013); Grazzini, Kallweit, Rathlev (2015)]

Fiducial region: NNLO vs ATLAS 7 TeV data

process	n^{γ}	N.	$\sigma_{\rm I} \circ [\rm nh]$	σNL O [nh]			$\sigma_{ m NLO}$	$\sigma_{ m NNLO}$
process	$ ho_{ m T,cut}$	it Njet OLO [pb]	OFO [bp]				$\sigma_{ m LO}$	$\sigma_{ m NLO}$
$Z\gamma$	coft	\geq 0	0 8140 +8.0%	$1.222^{+4.2\%}_{-5.3\%}$	$1.320^{+1.3\%}_{-2.3\%}$	$1.31 \stackrel{\pm 0.02 (stat)}{ \pm 0.11 (syst) }_{ \pm 0.05 (lumi) }$	+50%	+8%
$\rightarrow \ell \ell \gamma$ soft	SOIL	= 0	0.8149 _9.3%	$1.031^{+2.7\%}_{-4.3\%}$	$1.059 {}^{+0.7\%}_{-1.4\%}$	$1.05 \stackrel{\pm 0.02 (stat)}{ \pm 0.10 (syst) } _{ \pm 0.04 (lumi) }$	+27%	+3%
	hard	≥ 0	$0.0736^{+3.4\%}_{-4.5\%}$	$0.1320^{+4.2\%}_{-4.0\%}$	$0.1543^{+3.1\%}_{-2.8\%}$		+79%	+17%
$\mathbf{Z}\boldsymbol{\gamma}$		\geq 0	0 0799 +0.3%	$0.1237^{+4.1\%}_{-3.1\%}$	$0.1380^{+2.5\%}_{-2.3\%}$	$\begin{array}{c} \pm 0.013 \ ({\rm stat}) \\ \pm 0.020 \ ({\rm syst}) \\ \pm 0.005 \ ({\rm lumi}) \end{array}$	+57%	+12%
$\rightarrow \nu \nu \gamma$		= 0	0.0788 _0.9%	$0.0881^{+1.2\%}_{-1.3\%}$	$0.0866^{+1.0\%}_{-0.9\%}$	$\begin{array}{c} \pm 0.010 \ ({\rm stat}) \\ \pm 0.013 \ ({\rm syst}) \\ \pm 0.004 \ ({\rm lumi}) \end{array}$	+12%	—2%
$egin{array}{c} W\gamma \ ightarrow \ell u \gamma \end{array}$	soft ≥ 0	≥ 0 0.8726 +6.8%	0 8726 +6.8%	$2.058^{+6.8\%}_{-6.8\%}$	$2.453^{+4.1\%}_{-4.1\%}$	$2.77 \begin{array}{c} \pm 0.03 \; ({\rm stat}) \\ \pm 0.33 \; ({\rm syst}) \\ \pm 0.14 \; ({\rm lumi}) \end{array}$	+136%	+19%
		= 0	-8.1%	$1.395^{+5.2\%}_{-5.8\%}$	$1.493^{+1.7\%}_{-2.7\%}$	$1.76 \stackrel{\pm 0.03 (stat)}{\substack{\pm 0.21 (syst) \\ \pm 0.08 (lumi)}}$	+60%	+7%
	hard	≥ 0	$0.1158^{+2.6\%}_{-3.7\%}$	$0.3959^{+9.0\%}_{-7.3\%}$	$0.4971^{+5.3\%}_{-4.7\%}$		+242%	+26%

- In general, very good agreement, apart for $Z \rightarrow vv$ (under investigation)
- NLO scale variation fails to capture NNLO
- Negligible impact of gg channel

Sample results: ZZ

[Cascioli et al (2014); Grazzini, Kallweit, Rathlev (2015)]

• Largest contribution to NNLO from gg channel (~60%). LO-contribution

- Good agreement at 7, 8 and 13 TeV
- Perfect agreement for $e\mu$ channel, consistent within $I\sigma$ for ee, $\mu\mu$ channels

	channel	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS}$ [fb]
ATLAS 8 TeV	e ⁺ e ⁻ e ⁺ e ⁻	$-3.547(1)^{+2.9\%}_{-3.9\%}$	$5.047(1)^{+2.8\%}_{-2.3\%}$	$5.79(2)^{+3.4\%}_{-2.6\%}$	$4.6^{+0.8}_{-0.7}(\text{stat})^{+0.4}_{-0.4}(\text{syst})^{+0.1}_{-0.1}(\text{lumi})$
	$\mu^+\mu^-\mu^+\mu^-$				$5.0^{+0.6}_{-0.5}(\text{stat})^{+0.2}_{-0.2}(\text{syst})^{+0.2}_{-0.2}(\text{lumi})$
	$e^+e^-\mu^+\mu^-$	$6.950(1)^{+2.9\%}_{-3.9\%}$	$9.864(2)^{+2.8\%}_{-2.3\%}$	$11.31(2)^{+3.2\%}_{-2.5\%}$	$11.1^{+1.0}_{-0.9}(\text{stat})^{+0.5}_{-0.5}(\text{syst})^{+0.3}_{-0.3}(\text{lumi})$

WW: total vs fiducial

The WW puzzle

Early LHC measurements $\sigma_{ATLAS,8} = 71.4^{+1.2}_{-1.2} (stat)^{+5.0}_{-4.4} (syst)^{+2.2}_{-2.1} (lumi) pb$ $\sigma_{CMS,8} = 69.9 \pm 2.8 (stat) \pm 5.6 (syst) \pm 3.1 (lumi) pb$

Theoretical prediction (MCFM) $\sigma_{NLO} = 56.5^{+1.5}$ -1.1 pb NNLO corrections: ~ 10 %

Some tension, for both ATLAS and CMS

The WW puzzle

However, if one looks at the FIDUCIAL REGION

	ATLAS @ 8 TeV	$\ pp \to l^+ l^- \nu \bar{\nu}$	$ pp \to H \to l^+ l^- \nu \bar{\nu}$	total
$\begin{array}{c} e^{+}\mu^{-} + e^{-}\mu^{+} \\ e^{+}e^{-} \\ \mu^{+}\mu^{-} \end{array}$	$\begin{vmatrix} 377.8^{+6.9}_{-6.8}(\text{stat.})^{+25.1}_{-22.2}(\text{syst.})^{+11.4}_{-10.7}(\text{lumi.}) \\ 68.5^{+4.2}_{-4.1}(\text{stat.})^{+7.7}_{-6.6}(\text{syst.})^{+2.1}_{-2.0}(\text{lumi.}) \\ 74.4^{+3.3}_{-3.2}(\text{stat.})^{+7.0}_{-6.0}(\text{syst.})^{+2.3}_{-2.1}(\text{lumi.}) \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 9.8^{+0.0}_{-1.2} \\ 2.2^{+0.0}_{-0.2} \\ 2.4^{+0.0}_{-0.2} \end{vmatrix}$	$\begin{vmatrix} 342.2^{+4.7}_{-2.6} \\ 65.9^{+0.8}_{-0.4} \\ 71.7^{+0.9}_{-0.5} \end{vmatrix}$

[Monni, Zanderighi (2014)]

TENSION SIGNIFICANTLY ALLEVIATED

In other words, comparing NLO predictions to what is ACTUALLY MEASURED leads to reasonable data/theory agreement.

Note: same data, same theory → WHAT IS GOING ON?

(ATLAS) analysis for dummies

I.Perform the measurement. By definition, in the fiducial region.Agreement data/theory

2.Use your favorite toy, let's say POWHEG, to extrapolate from the fiducial region to the total cross-section

3.Get the total cross section and compare → Disagreement data/theory

Step 2 introduced a (a-priori non-needed) theory dependence on the result, and this time got it wrong

The problem with extrapolation: jet veto modeling [Monni, Zanderighi (2014)]

To suppress the large top background, WW analysis require a harsh jet veto, p_{t,veto} = 25 GeV

- Independent on tunes, POWHEG fails to properly model the jet veto efficiency and predicts fiducial cross section which are systematically lower
- When used for acceptance corrections, it then leads to overestimate the inclusive cross section

The problem with extrapolation: jet veto modeling [Monni, Zanderighi (2014)]

A more refined analysis: POWHEG vs NNLL resummation

- For p_{t,veto} = 25 GeV, NNLL resummation effects decrease pure NLO by 3-4%
- POWHEG prediction: -9%
- Also, other small effects in POWHEG further decrease efficiency
- NNLO+NNLL partially compensates for NNLO Kfactor → agreement in the fiducial region should persist / improve at NNLO

THESE EFFECTS COMPLETELY EXPLAIN THE EXCESS IN THE INCLUSIVE 'MEASUREMENT'

New analysis: approximate NLO+NNLL

 $\sigma_{\text{ATLAS,8}} = 71.1^{+1.1} - 1.1 \text{ (stat)}^{+5.7} - 5. \text{ (syst)}^{+1.4} - 1.4 \text{ (lumi) pb}$ [Higgs contribution included]

 $\sigma_{\text{CMS,8}} = 60.1 \pm 0.9 \text{ (stat)} \pm 3.2 \text{ (exp)} \pm 3.1 \text{ (th)} \pm 1.6 \text{ (th)} \text{ pb}$ [Higgs contribution subtracted]

 $\sigma_{\text{NNLO}} = 59.84^{+2.2\%}$ -1.9% + 4.14 + 7.2% (Higgs) pb

- Perfect agreement for CMS
- Slight ~1.5 σ tension with ATLAS

Calls for COMPARISONS IN THE FIDUCIAL REGION (all ingredients are available, minimize theory error)

Why fiducial region 2: top contamination

At NNLO: huge contamination from (LO) tt production for the inclusive cross-section

- Different approaches studies for defining the total cross-section (4FNS, b-veto, resonance expansion)
- Should greatly simplify in the FIDUCIAL REGION

VV: gluon channel at NLO

gg->'

• At NNLO, the gg channel enters for the first time

- Because of the large gluon flux at the LHC, this contribution is usually big (ZZ/WW: 60%/35% of NNLO corrections)
- They are separately finite and gauge-invariant → usually already included in NLO predictions
- non trivial interference pattern with Higgs, especially in the high invariant mass region → very important for off-shell / interference analysis

gg->

• At NNLO, the gg channel enters for the first time

- Gluon induced process → expect large corrections.
 Despite being part of the NNLO computation, it is actually LO
- Corrections to gg->VV are formally part of the N³LO corrections to pp->VV, but are expected to give sizable contribution
- NLO CORRECTIONS FOR GG->VV DESIRABLE

Example: YY

[Campbell, Ellis, Li, Williams (2016)]

$\sigma_{CMS} = 17.2 \pm 0.2 \text{ (stat)} \pm 1.9 \text{ (syst)} \pm 0.4 \text{ (lumi) pb}$

gg->WW/ZZ@NLO: problems

- Despite being a NLO computation, it involves complicated 2-loop amplitudes (LO is loop-induced).
 Similar amplitudes for qq->VV@NNLO
- Especially for Higgs analysis, important to go at high invariant mass → top quark contribution become relevant (same for qq->VV@NNLO)

Recently computed

VERY HARD [important in the off-shell region]

gg->ZZ@NLO: massless $qu\overline{a}^{2}r\overline{k}s^{xz}$, $\frac{m_{4}^{2}}{m_{3}^{2}} = x^{2}y$

gg->ZZ@NLO: massless quarks

- realistic final states (leptons)
- Z off-shell, Z/γ interference
 (→can study on the Higgs peak)
- K-factor relatively flat

gg->WW@NLO: massless quarks

[FC, Melnikov, Röntsch, Tancredi (2015)]

- similar corrections to ZZ, K-factor typically stable
- smaller impact on NNLO (~2%)
- massive loop contribution ~ 10%

gg->WW@NLO: massless quarks [FC, Melnikov, Röntsch, Tancredi (2015)]

• fiducial predictions, ATLAS 8TeV

	$\sigma_{\mu\mu,8~{ m TeV}}$	$\sigma_{ee,8~{ m TeV}}$	$\sigma_{e\mu,8~{ m TeV}}$
$\sigma_{gg,\mathrm{LO}}$ [fb]	$5.94^{+1.89}_{-1.35}$	$5.40^{+1.71}_{-1.23}$	$9.79^{+3.13}_{-2.24}$
$\sigma_{gg,\rm NLO}$ [fb]	$7.01\substack{-0.36 \\ -0.17}$	$6.40_{-0.16}^{-0.32}$	$11.78_{-0.34}^{-0.46}$

• (rough) combination with NNLO

$$\sigma_{\mu\mu,ee,e\mu+\mu e}^{q\bar{q}+H+gg,\text{NLO}} = (72.0^{+1.3}_{-2.1}, \ 66.3^{+1.2}_{-1.7}, \ 337.3^{+6.3}_{-4.5})$$

• ATLAS result

$$\sigma_{\mu\mu,ee,e\mu+\mu e} = (74.4^{+8.1}_{-7.1}, \ 68.5^{+9.0}_{-8.0}, \ 377.8^{+28.4}_{-25.6})$$

It would be very interesting to properly combine NNLO and gg->VV@NLO in the fiducial region

gg->VV: massive loops

[FC, Dowling, Melnikov, Röntsch, Tancredi, in progress]

 Compute exact two-loop amplitudes mediated by heavy quarks beyond current technology

- Intermediate solution: expand in 1/mt
- Should give reliable results below the two-top threshold
- Validation: real emission, can be done exactly

gg->VV: massive loops

[FC, Dowling, Melnikov, Röntsch, Tancredi, in progress]

- Validation example: gg->H+j->4l+j vs gg->4l+j signal/background interference
- Exact result: [Campbell, Ellis, Furlan, Röntsch (2014)]

Conclusions

- Precision physics in the di-boson sector will be possible
- Sophisticated NNLO predictions for almost all processes, almost all in the fiducial region as well
- Comparison data / theory should be compared in the fiducial region (minimize extrapolation errors, simplify theoretical definitions)
- Several small effects on top of NNLO can play a relevant role at the few-percent level. One example: gg->VV@NLO. Other example: electroweak corrections (especially at high pT)
- Looking forward to compare against precise results from Run-2!

Thank you for your attention!