CoLorFulNNLO
 a NNLO subtraction method

Vittorio Del Duca
ETH Zurich \& INFN LNF

in collaboration with C. Duhr, A. Kardos, G. Somogyi and Z. Trócsányi

KITP 24 March 2016

Precision QCD

Precise determination of
Q strong coupling constant α_{s}
Q parton distributions

Precise prediction for
Q Standard Model processes (Higgs, top, etc.)
Q new physics processes
Q their backgrounds

Cross sections at high Q^{2}

separate the short- and the long-range interactions through factorisation

$$
\begin{gathered}
\sigma_{X}=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} f_{a / A}\left(x_{1}, \mu_{F}^{2}\right) f_{b / B}\left(x_{2}, \mu_{F}^{2}\right) \\
\times \hat{\sigma}_{a b \rightarrow X}\left(x_{1}, x_{2},\left\{p_{i}^{\mu}\right\} ; \alpha_{S}\left(\mu_{R}^{2}\right), \alpha\left(\mu_{F}^{2}\right), \frac{Q^{2}}{\mu_{R}^{2}}, \frac{Q^{2}}{\mu_{F}^{2}}\right) \\
X=W, Z, H, Q \bar{Q}, \text { high- } E_{T} \text { jets, } \ldots
\end{gathered}
$$

$\hat{\sigma}$ is known as a fixed-order expansion in α_{S}

$$
\begin{aligned}
& \hat{\sigma}=C \alpha_{S}^{n}\left(1+c_{1} \alpha_{S}+c_{2} \alpha_{S}^{2}+\ldots\right) \\
& c_{1}=\mathrm{NLO} \quad c_{2}=\mathrm{NNLO}
\end{aligned}
$$

or as an all-order resummation

$$
\begin{gathered}
\hat{\sigma}=C \alpha_{S}^{n}\left[1+\left(c_{11} L+c_{10}\right) \alpha_{S}+\left(c_{22} L^{2}+c_{21} L+c_{20}\right) \alpha_{S}^{2}+\ldots\right] \\
\text { where } L=\ln \left(M / q_{T}\right), \ln (1-x), \ln (1 / x), \ln (1-T), \ldots \\
c_{11}, c_{22}=\mathrm{LL} \quad c_{10}, c_{21}=\mathrm{NLL} \quad c_{20}=\mathrm{NNLL}
\end{gathered}
$$

Total cross section for inclusive Higgs production at LHC

C.Anastasiou K. Melnikov 2002
contour bands are lower
$\mu_{R}=2 M_{H} \quad \mu_{F}=M_{H} / 2$
upper
$\mu_{R}=M_{H} / 2 \quad \mu_{F}=2 M_{H}$
we need at least NLO computations

NLO features

Q Jet structure: final-state collinear radiation

- PDF evolution: initial-state collinear radiation

Q Opening of new channels
Q Reduced sensitivity to fictitious input scales: μ_{R}, μ_{F}
Q predictive normalisation of observables

- first step toward precision measurements
- first estimate of signal and background for Higgs and (possibly) new physics
Q Matching with parton-shower MC's:
MC@NLO POWHEG

the NLO revolution

At ICHEP 2010, Gavin Salam called "NLO revolution" the rapid progress in NLO computations

from Gavin Salam's talk at Montpellier 2012


```
2010: NLO W+4j [BlackHat+Sherpa: Berger et al]
2011: NLO WWjj [Rocket: Melia et al]
2011: NLO Z+4j [BlackHat+Sherpa: Ita et al]
2011: NLO 4j [BlackHat+Sherpa: Bern et al]
2011: first automation [MadNLO: Hirschi et al]
2011: first automation [Helac NLO: Bevilacqua et al]
2011: first automation [GoSam: Cullen et al]
2011: }\mp@subsup{e}{}{+}\mp@subsup{e}{}{-}->7j[\mathrm{ [Becker et al, leading colour]
```

```
[unitarity]
```

[unitarity]
[unitarity]
[unitarity]
[unitarity]
[unitarity]
[unitarity]
[unitarity]
[unitarity + feyn.diags]
[unitarity + feyn.diags]
[unitarity]
[unitarity]
[feyn.diags(+unitarity)]
[feyn.diags(+unitarity)]
[numerical loops]

```
    [numerical loops]
```


Some reasons for NNLO corrections

NLO corrections are large:
Higgs or ttbar production in hadron collisions
Q NLO uncertainty bands are too large to test theory vs. data: ttbar or bbbar production in hadron collisions

Q NLO is effectively leading order: energy distributions in jet cones

Q in the world average of α_{s}, data are compared to theory, but not included in 2015/16 determination of world average :

- all results not being based on complete NNLO (e+e-, DIS, heavy quarkonia, hadron collider jets, soft and hard fragmentation functions,...)

Total cross section for inclusive Higgs production at LHC

C.Anastasiou K. Melnikov 2002
contour bands are lower
$\mu_{R}=2 M_{H} \quad \mu_{F}=M_{H} / 2$
upper
$\mu_{R}=M_{H} / 2 \quad \mu_{F}=2 M_{H}$
scale uncertainty
is about 10%

NNLO prediction stabilises the perturbative series

Jet structure

the jet non-trivial structure shows up first at NLO
leading order

NLO

World Summary of $\alpha_{s} 2015 / 2016$:

- 6 classes of measurements, each pre-averaged
- at least using NNLO QCD...
- including reliable estimates of experimental, theoretical and nonpert. uncertainties, using commonly accepted procedures

2016 summary of α_{s}

X^{2} average of unweighted class-averages: $\alpha_{s}(M z)=0.1181 \pm 0.0013$

NNLO state of the art

Q $2 \rightarrow 1$ processes
9
Drell-Yan W, Z production
total cross section
Hamberg, van Neerven, Matsuura 1990 Harlander, Kilgore 2002
differential cross section
Melnikov, Petriello 2006
Higgs production in HEFT
total cross section
Harlander, Kilgore; Anastasiou, Melnikov 2002
Ravindran, Smith, van Neerven 2003
differential cross section Anastasiou, Melnikov, Petriello 2004

NNLO state of the art

$2 \rightarrow 2$ processes

- VY production
- ZY production
- WY production
- ZZ production
- WW production
- WH production

Catani, Cieri, De Florian, Ferrera, Grazzini 201 I
Grazzini Kallweit Rathlev Torre 2013
Grazzini Kallweit Rathlev 2015
Cascioli et al 2014
Gehrmann et al 2014
Ferrera Grazzini Tramontano 201I

- ZH production
- ttbar production total cross section

$$
\text { Baernreuther, Czakon, Mitov } 2012
$$

Czakon, Mitov 2012
Czakon, Fiedler, Mitov 2013
differential cross section Czakon, Fiedler, Mitov 2014

NNLO state of the art

$\mathrm{W}+\mathrm{I}$ jet production
Boughezal, Focke, Liu, Petriello 2015

$Z+I$ jet production

Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan 2015 Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello 2015

Higgs + I jet production in HEFT
Boughezal, Caola, Melnikov, Petriello, Schulze 2013-I5
Chen, Gehrmann, Glover, Jaquier 2014
Boughezal, Focke, Giele, Liu, Petriello 2015

2 jet production (only gg)

Curry, Gehrmann-De Ridder, Gehrmann, Glover, Pires 2013

NNLO state of the art

$9 \mathrm{I} \rightarrow 3$ processes
$e^{+} e^{-} \rightarrow 3$ jets Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 2007-08 Becher, Schwartz 2008
Weinzierl 2009

Q $2 \rightarrow 3$ processes
Higgs +2 jet production in VBF (in DIS approx)
Cacciari Dreyer Karlberg Salam Zanderighi 20I5

NNLO cross section methods

A variety of (subtraction) methods exist, to get a fiducial cross section at NNLO

Q Sector decomposition
Denner Roth 1996; Binoth Heinrich 2000 Anastasiou, Melnikov, Petriello 2004

Antenna subtraction Gehrmann-De Ridder, Gehrmann, Glover 2005

- ColorfulNNLO subtraction Somogyi, Trocsanyi,VDD 2005-06

Q qT subtraction

Catani, Grazzini 2007

Q Residue subtraction
Czakon 2010
Q N -jettiness subtraction

The goal of all those methods is

to compute cross sections at NNLO with any possible acceptance cuts

Higgs production at LHC

a fully differential cross section:
bin-integrated rapidity distribution, with a jet veto
C. Anastasiou K. Melnikov F. Petriello 2004

$$
\begin{aligned}
& \text { jet veto: require } \\
& R=0.4 \\
& \left|\mathbf{p}_{T}^{j}\right|<p_{T}^{\text {veto }}=40 \mathrm{GeV} \\
& \text { for } 2 \text { partons } \\
& R_{12}^{2}=\left(\eta_{1}-\eta_{2}\right)^{2}+\left(\phi_{1}-\phi_{2}\right)^{2} \\
& \text { if } R_{12}>R \\
& \left|\mathbf{p}_{T}^{1}\right|,\left|\mathbf{p}_{T}^{2}\right|<p_{T}^{\text {veto }} \\
& \text { if } R_{12}<R \\
& \left|\mathbf{p}_{T}^{1}+\mathbf{p}_{T}^{2}\right|<p_{T}^{\text {veto }}
\end{aligned}
$$

$M_{H}=150 \mathrm{GeV}$ (jet veto relevant in the $H \rightarrow W^{+} W^{-}$decay channel)
K factor is much smaller for the vetoed x -sect than for the inclusive one: average $\left|\mathbf{p}_{T}^{j}\right|$ increases from NLO to NNLO: less x-sect passes the veto

What is the problem in computing (fiducial or differential) cross sections beyond leading order?

Given a production process and a physical observable to be computed, in order to get a consistent result we must take into account amplitudes with real radiation (bremsstrahlung) and amplitudes with virtual loops.

The virtual amplitudes exhibit explicit ε poles when dimensionally regularised.

The bremsstrahlung amplitudes sport kinematic singularities as one or more partons become unresolved, which turn into ε poles after phase space integration.

Those ε poles must cancel no matter how the chosen acceptance cuts specify the phase space to be used.

NLO assembly kit

$e^{+} e^{-} \rightarrow 3$ jets
leading order

$$
\left|\mathcal{M}_{n+1}^{\text {tree }}\right|^{2}
$$

$$
\longrightarrow
$$

$$
\begin{aligned}
\left|\mathcal{M}_{n}^{\text {tree }}\right|^{2} & \times \int d P S\left|P_{\text {split }}\right|^{2} \\
& =-\left(\frac{A}{\epsilon^{2}}+\frac{B}{\epsilon}\right)
\end{aligned}
$$

NLO virtual

$$
d=4-2 \epsilon \quad \int d^{d} l 2\left(\mathcal{M}_{n}^{\text {loop }}\right)^{*} \mathcal{M}_{n}^{\text {tree }}=\left(\frac{A}{\epsilon^{2}}+\frac{B}{\epsilon}\right)\left|\mathcal{M}_{n}^{\text {tree }}\right|^{2}+\text { fin }
$$

NLO production rates

Process-independent procedures devised in the 90's

slicing
subtraction

- dipole

Q antenna

Giele, Glover, Kosower 1992-93
Frixione, Kunszt, Signer; Nagy, Trocsanyi 1995
Catani, Seymour 1996
Kosower; Campbell Cullen \& Glover 1999

$$
\begin{aligned}
& \sigma=\sigma^{\mathrm{LO}}+\sigma^{\mathrm{NLO}}=\int_{m} d \sigma_{m}^{B} J_{m}+\sigma^{\mathrm{NLO}} \\
& \sigma^{\mathrm{NLO}}=\int_{m+1} d \sigma_{m+1}^{\mathrm{R}} J_{m+1}+\int_{m} d \sigma_{m}^{\mathrm{V}} J_{m}
\end{aligned}
$$

these 2 terms are divergent in $d=4$
use universal IR structure to subtract divergences
$\sigma^{\mathrm{NLO}}=\int_{m+1}\left[d \sigma_{m+1}^{\mathrm{R}} J_{m+1}-d \sigma_{m+1}^{\mathrm{R}, \mathrm{A}} J_{m}\right]+\int_{m}\left[d \sigma_{m}^{\mathrm{V}}+\int_{1} d \sigma_{m+1}^{\mathrm{R}, \mathrm{A}}\right] J_{m}$ the 2 terms are finite in $d=4$

Observable (jet) functions

J_{m} vanishes when one parton becomes soft or collinear to another one

$$
J_{m}\left(p_{1}, \ldots, p_{m}\right) \rightarrow 0, \quad \text { if } \quad p_{i} \cdot p_{j} \rightarrow 0
$$

$\Longrightarrow d \sigma_{m}^{\mathrm{B}}$ is integrable over I-parton IR phase space
J_{m+1} vanishes when two partons become simultaneously soft and/or collinear

$$
J_{m+1}\left(p_{1}, \ldots, p_{m+1}\right) \rightarrow 0, \quad \text { if } \quad p_{i} \cdot p_{j} \text { and } p_{k} \cdot p_{l} \rightarrow 0 \quad(i \neq k)
$$

R and V are integrable over 2-parton IR phase space
observables are IR safe

$$
\begin{gathered}
J_{n+1}\left(p_{1}, . ., p_{j}=\lambda q, . ., p_{n+1}\right) \rightarrow J_{n}\left(p_{1}, \ldots, p_{n+1}\right) \quad \text { if } \lambda \rightarrow 0 \\
J_{n+1}\left(p_{1}, . ., p_{i}, . ., p_{j}, . ., p_{n+1}\right) \rightarrow J_{n}\left(p_{1}, \ldots, p, . ., p_{n+1}\right) \quad \text { if } \quad p_{i} \rightarrow z p, p_{j} \rightarrow(1-z) p
\end{gathered}
$$

$$
\text { for all } n \geq m
$$

NLO IR limits

collinear operator

$$
\mathrm{C}_{i r}\left|\mathcal{M}_{m+2}^{(0)}\left(p_{i}, p_{r}, \ldots\right)\right|^{2} \propto \frac{1}{s_{i r}}\left\langle\mathcal{M}_{m+1}(0)\left(p_{i r}, \ldots\right)\right|{\hat{\hat{f}} \mathrm{f}_{i, f}}_{(0)}\left|\mathcal{M}_{m+1}(0)\left(p_{i r}, \ldots\right)\right\rangle
$$

soft operator

$$
\mathrm{S}_{r}\left|\mathcal{M}_{m+2}^{(0)}\left(p_{r}, \ldots\right)\right|^{2} \propto \frac{s_{i k}}{s_{i r} s_{r k}}\left\langle\mathcal{M}_{m+1}(0)(\ldots)\right| T_{i} \cdot T_{k}\left|\mathcal{M}_{m+1}(0)(\ldots)\right\rangle
$$

counterterm

$$
\sum_{r}\left(\sum_{i \neq r} \frac{1}{2} \mathrm{C}_{i r}+\mathrm{S}_{r}\right)\left|\mathcal{M}_{m+2}^{(0)}\left(p_{i}, p_{r}, \ldots\right)\right|^{2}
$$

performs double subtraction in overlapping regions

NLO overlapping divergences

$\mathrm{C}_{i r} \mathrm{~S}_{r}$ can be used to cancel double subtraction

$$
\begin{aligned}
& \mathrm{C}_{i r}\left(\mathrm{~S}_{r}-\mathrm{C}_{i r} \mathrm{~S}_{r}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0 \\
& \mathrm{~S}_{r}\left(\mathrm{C}_{i r}-\mathrm{C}_{i r} \mathrm{~S}_{r}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0
\end{aligned}
$$

the NLO counterterm

$$
\mathrm{A}_{1}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\sum_{r}\left[\sum_{i \neq r} \frac{1}{2} \mathrm{C}_{i r}+\left(\mathrm{S}_{r}-\sum_{i \neq r} \mathrm{C}_{i r} \mathrm{~S}_{r}\right)\right]\left|\mathcal{M}_{m+2}^{(0)}\left(p_{i}, p_{r}, \ldots\right)\right|^{2}
$$

Q has the same singular behaviour as SME, and is free of double subtractions
$\mathrm{C}_{i r}\left(1-\mathrm{A}_{1}\right)\left|\mathcal{M}_{m+1}^{(0)}\right|^{2}=0$

$$
\mathrm{S}_{r}\left(1-\mathrm{A}_{1}\right)\left|\mathcal{M}_{m+1}^{(0)}\right|^{2}=0
$$

Q contains spurious singularities when parton $s \neq r$ becomes unresolved, but they are screened by J_{m}

Collinear mapping

$$
\begin{gathered}
\tilde{p}_{i r}^{\mu}=\frac{1}{1-\alpha_{i r}}\left(p_{i}^{\mu}+p_{r}^{\mu}-\alpha_{i r} Q^{\mu}\right), \quad \tilde{p}_{n}^{\mu}=\frac{1}{1-\alpha_{i r}} p_{n}^{\mu}, \quad n \neq i, r \\
\alpha_{i r}=\frac{1}{2}\left[y_{(i r) Q}-\sqrt{y_{(i r) Q}^{2}-4 y_{i r}}\right] \quad y_{i r}=\frac{2 p_{i} \cdot p_{r}}{Q^{2}}
\end{gathered}
$$

$$
\text { momentum is conserved } \tilde{p}_{i r}^{\mu}+\sum_{n} \tilde{p}_{n}^{\mu}=p_{i}^{\mu}+p_{r}^{\mu}+\sum_{n} p_{n}^{\mu}
$$

NLO counterterm

$$
\begin{gathered}
\mathrm{A}_{1}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\sum_{r}\left[\sum_{i \neq r} \frac{1}{2} \mathrm{C}_{i r}+\left(\mathrm{S}_{r}-\sum_{i \neq r} \mathrm{C}_{i r} \mathrm{~S}_{r}\right)\right]\left|\mathcal{M}_{m+2}^{(0)}\left(p_{i}, p_{r}, \ldots\right)\right|^{2} \\
\mathrm{~d} \sigma_{m+2}^{\mathrm{R}, \mathrm{~A}_{1}}=\mathrm{d} \phi_{m+1}\left[\mathrm{~d} p_{1}\right] \mathcal{A}_{1}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{R}, \mathrm{~A}_{1}}=\mathrm{d} \phi_{m+1}\left|\mathcal{M}_{m+1}^{(0)}\right|^{2} \otimes \boldsymbol{I}(m+1, \varepsilon)
\end{gathered}
$$

NNLO assembly kit

$e^{+} e^{-} \rightarrow 3$ jets
double virtual
real-virtual

double real

NNLO subtraction

$$
\sigma^{\mathrm{NNLO}}=\int_{m+2} d \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} d \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} d \sigma_{m}^{\mathrm{VV}} J_{m}
$$

$$
\text { the } 3 \text { terms are separately IR divergent in } d=4 \text { dimensions }
$$

Q RR: has kinematic singularities as one or two partons become unresolved. After phase space integration, we get up to I / ε^{4} poles
(2 RV: has explicit ε poles up to I / ε^{2} In addition, it has kinematic singularities as one parton becomes unresolved. After phase space integration, we get up to I / ε^{2} poles

9 VV : has explicit ε poles up to $\mathrm{I} / \varepsilon^{4}$
No kinematic singularities (they are killed by the jet functions)
Q KLN theorem ensures that all poles must cancel for an IR safe physical observable

The RR, RV, VV has must be organised in such a way as to be computable in 4 dimensions, like at NLO

- The ε poles must cancel no matter how the chosen acceptance cuts specify the phase space to be used.
- We must make this cancellation explicit, so the various contributions can be computed numerically

Q There are already a few (subtraction) methods which do that. Why another one?

CoLorFulNNLO subtraction

Completely Local subtractions for Fully differential predictions at NNLO
Q general and explicit expressions, including colour and flavour
Q fully local counterterms, featuring all colour and spin correlations
Q analytic cancellation of ε poles
Q option to constrain subtractions to near singular regions
Q algorithmic contruction, in principle valid at any order in α_{s}

NNLO subtraction

$$
\sigma^{\mathrm{NNLO}}=\int_{m+2} d \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} d \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} d \sigma_{m}^{\mathrm{VV}} J_{m}
$$

use universal IR structure to build counterterms which subtract the kinematic singularities

$$
\sigma^{\mathrm{NNLO}}=\int_{m+2}\left[d \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-d \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}\right]
$$

takes care of the doubly-unresolved limits of RR, but still divergent in the singly-unresolved ones

$$
+\int_{m+1}\left[d \sigma_{m+1}^{\mathrm{RV}} J_{m+1}-d \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}} J_{m}\right]
$$

takes care of the singly-unresolved limits of RV,
but still contains I/E poles in regions away from the I-parton IR regions

$$
+\int_{m}\left[d \sigma_{m}^{\mathrm{VV}}+\int_{2} d \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}+\int_{1} d \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}\right] J_{m}
$$

Collinear and soft currents

 universal IR structure \longrightarrow process-independent procedureuniversal collinear and soft currents
3 -parton tree splitting functions

J. Campbell N. Glover 1997; S. Catani M. Grazzini 1998;A. Frizzo F. Maltoni VDD I999; D. Kosower 20022-parton one-loop splitting functions
bever obeve

Z. Bern L. Dixon D. Dunbar D. Kosower I994; Z. Bern W. Kilgore C. Schmidt VDD 1998-99;
D. Kosower P. Uwer 1999; S. Catani M. Grazzini I999; D. Kosower 2003
however,

- there are regions in phase space with overlapping limits
- universal collinear and soft currents are well defined only in the strict limit

CoLorFulNNLO subtraction

Q general procedure for matching of limits: construct subtraction terms that regularise the singularities of the amplitudes in all unresolved parts of the phase space, avoiding multiple subtractions

Q perform momentum mappings, such that the phase space factorises exactly over the unresolved momenta and such that it respects the structure of the cancellations among subtraction terms
G. Somogyi Z. TrocsanyiVDD 2006

Q fully local in color \otimes spin space
Q azimuthal correlations fully taken into account in gluon splitting
Q ratio of the sum of counterterms to the real emission cross section tends to unity in any IR limit

Q straightforward to constrain subtractions to near singular regions
Q independence of physical results on phase space cutoff

A_{2} counterterm

9 construct the 2 -unresolved-parton counterterm using the IR currents

$$
\begin{aligned}
& \mathbf{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\sum_{r} \sum_{s \neq r}\left\{\sum _ { i \neq r , s } \left[\frac{1}{6} \mathbf{C}_{i r s}+\sum_{j \neq i, r, s} \frac{1}{8} \mathbf{C}_{i r ; j s}+\frac{1}{2} \mathbf{S}_{r s}\right.\right. \\
&\left.+\frac{1}{2}\left(\mathrm{CS}_{i r ; s}-\mathbf{C}_{i r s} \mathrm{CS}_{i r ; s}-\sum_{j \neq i r, s} \mathbf{C}_{i r ; j s} \mathrm{CS}_{i r ; s}\right)\right] \\
&-\sum_{i \neq r, s}\left[\mathrm{CS}_{i r ; s} \mathbf{S}_{r s}+\mathbf{C}_{i r s}\left(\frac{1}{2} \mathbf{S}_{r s}-\mathrm{CS}_{i r ; s} \mathbf{S}_{r s}\right)\right. \\
&\left.\left.+\sum_{j \neq i r, r, s} \mathrm{C}_{i r ; j s}\left(\frac{1}{2} \mathbf{S}_{r s}-\mathbf{C S}_{i r ; s} \mathbf{S}_{r s}\right)\right]\right\}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \text { G.Somogyi Z.TrocsanyiVDD } 2005
\end{aligned}
$$

performing double and triple subtractions in overlapping regions
$\mathrm{C}_{\text {irs }}\left(1-\mathrm{A}_{2}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0$
$\mathrm{S}_{r s}\left(1-\mathrm{A}_{2}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0$
$\mathrm{C}_{i r ; j s}\left(1-\mathrm{A}_{2}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0$
$\mathrm{CS}_{i r ; s}\left(1-\mathrm{A}_{2}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=0$

Triple-collinear mapping

$$
\tilde{p}_{i r s}^{\mu}=\frac{1}{1-\alpha_{i r s}}\left(p_{i}^{\mu}+p_{r}^{\mu}+p_{s}^{\mu}-\alpha_{i r s} Q^{\mu}\right), \quad \tilde{p}_{n}^{\mu}=\frac{1}{1-\alpha_{i r s}} p_{n}^{\mu}, \quad n \neq i, r, s
$$

$$
\alpha_{i r s}=\frac{1}{2}\left[y_{(i r s) Q}-\sqrt{y_{(i r s) Q}^{2}-4 y_{i r s}}\right]
$$

momentum conservation $\quad \tilde{p}_{i r s}^{\mu}+\sum_{n} \tilde{p}_{n}^{\mu}=p_{i}^{\mu}+p_{r}^{\mu}+p_{s}^{\mu}+\sum_{n} p_{n}^{\mu}$

Q kinematic singularities cancel in $R R$

soft

triple collinear
ratio $=$ subtraction terms $/ R R$

Q kinematic singularities cancel in RV

collinear

soft
ratio $=$ subtraction terms $/\left(\mathrm{RV}+\mathrm{RR}, \mathrm{A}_{1}\right)$

RR counterterm

needs a NLO subtraction between the $\mathrm{m}+2$ and the $\mathrm{m}+\mathrm{I}$ parton contributions

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{\{m+2\}}^{\mathrm{NNLO}}+\sigma_{\{m+1\}}^{\mathrm{NNLO}}+\sigma_{\{m\}}^{\mathrm{NNLO}} \\
& \sigma_{\{m+2\}}^{\mathrm{NNLO}}=\int_{m+2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}\right.
\end{aligned}
$$

must be finite in the doubly-unresolved regions

$$
-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}+\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}
$$

G. Somogyi Z.Trocsanyi VDD 2005-6
A_{1} takes care of the singly-unresolved regions and A_{12} of the over-subtracting
$R R$ counterterm $=A_{2}+A_{1}-A_{12}$

$$
\begin{aligned}
\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} & =\mathrm{d} \phi_{m}\left[\mathrm{~d} p_{2}\right] \mathcal{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} & =\mathrm{d} \phi_{m+1}\left[\mathrm{~d} p_{1}\right] \mathcal{A}_{1}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} & =\mathrm{d} \phi_{m}\left[\mathrm{~d} p_{1}\right]\left[\mathrm{d} p_{1}\right] \mathcal{A}_{12}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
\end{aligned}
$$

need to construct A_{12} such that all overlapping regions in I-parton and 2-parton IR phase space regions are counted only once

$$
\begin{aligned}
& \mathbf{C}_{i r}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{C}_{i r}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \mathbf{S}_{r}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{S}_{r}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \mathbf{C}_{i r s}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{C}_{i r s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \mathbf{C}_{i r ; j s}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{C}_{i r ; j s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \mathbf{C S}_{i r ; s}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{C S}_{i r ; s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \\
& \mathbf{S}_{r s}\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{12}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}=\mathbf{S}_{r s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
\end{aligned}
$$

the definition of A_{12} is rather simple

$$
\mathbf{A}_{12}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \equiv \mathbf{A}_{1} \mathbf{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
$$

but showing that it has the right properties is non trivial, and requires considering iterated singly-unresolved limits and strongly-ordered doubly-unresolved limits

Iterated counterterms

$$
\begin{aligned}
\mathcal{A}_{12}\left|\mathcal{M}_{m+2}^{(0)}(\{p\})\right|^{2} & =\sum_{t}\left[\sum_{k \neq t} \frac{1}{2} \mathcal{C}_{k t} \mathcal{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}(\{p\})\right|^{2}\right. \\
& \left.+\left(\mathcal{S}_{t} \mathcal{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}(\{p\})\right|^{2}-\sum_{k \neq t} \mathcal{C}_{k t} \mathcal{S}_{t} \mathcal{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}(\{p\})\right|^{2}\right)\right]
\end{aligned}
$$

where

$$
\left.\left.\begin{array}{rl}
\mathcal{C}_{k t} \mathcal{A}_{2}=\sum_{r \neq k, t} & {[}
\end{array} \mathcal{C}_{k t} \mathcal{C}_{k t r}+\mathcal{C}_{k t} \mathcal{C}_{k t ; r}-\mathcal{C}_{k t} \mathcal{C}_{k t r} \mathcal{C}_{k t ; r}-\mathcal{C}_{k t} \mathcal{C}_{r k t} \mathcal{S}_{k t}\right]+\sum_{i \neq r, k, t}\left(\frac{1}{2} \mathcal{C}_{k t} \mathcal{C}_{i r ; k t}-\mathcal{C}_{k t} \mathcal{C}_{i r ; k t} \mathcal{S}_{k t ; r}\right)\right]+\mathcal{C}_{k t} \mathcal{S}_{k t} .
$$

and likewise for $\mathcal{S}_{t} \mathcal{A}_{2}, \mathcal{C}_{k t} \mathcal{S}_{t} \mathcal{A}_{2}$

Iterated counterterms

Q the momentum mapping for each of the iterated counterterms is built out of a composition of either the NLO collinear or the NLO soft mappings, or of both
the treatment of colour in iterated singly-unresolved limits differs for spin-correlated SME from that of colour-correlated SME

no soft factorization formulae for simultaneously colour-correlated and spin-correlated SME. This was a no-go in the direction of generalised dipole-type counterterms

RV counterterm

We note that the integrated A_{1} counterterm of $R R$ has the same explicit ε poles as RV.
Furthermore, as we said, the $R V, A_{\text {। }}$ counterterm takes care of the singly-unresolved limits of RV, but we also need a term which takes care of the singly-unresolved limits of the integrated $A_{\text {I }}$ counterterm of RR
G. Somogyi Z.Trocsanyi 2006

$$
\begin{aligned}
& \sigma_{\{m+1\}}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1}\right. \\
& \left.\mathrm{i} \text { Z.Trocsanyi 2006 } \quad-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\}_{\varepsilon=0}
\end{aligned}
$$

NNLO counterterms

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{\{m+2\}}^{\mathrm{NNLO}}+\sigma_{\{m+1\}}^{\mathrm{NNLO}}+\sigma_{\{m\}}^{\mathrm{NNLO}} \\
\sigma_{\{m+2\}}^{\mathrm{NNLO}}=\int_{m+2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}\right. \\
\\
\left.-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}+\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right]_{d} \\
\sigma_{\{m+1\}}^{\mathrm{NNLO}}= \\
\\
\left.\quad \int_{m+1}\left\{\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right] J_{m+1} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\}_{\varepsilon=0}
\end{gathered}
$$

remainder must be finite by KLN theorem

$$
\sigma_{\{m\}}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\}_{\varepsilon=0} J_{m}
$$

Integrating the counterterms

Q momentum mappings used to define the counterterms
$\{p\}_{n+u} \xrightarrow{\mathrm{R}}\{\tilde{p}\}_{n} \longrightarrow \mathrm{~d} \phi_{n+u}(\{p\} ; Q)=\mathrm{d} \phi_{n}\left(\{\tilde{p}\}_{n}^{(R)} ; Q\right)\left[\mathrm{d} p_{u, n}^{(R)}\right]$
Q implement exact momentum conservation different collinear and soft mappings, specified by R

- exact factorisation of phase space

Q in colour and spin space, counterterms are products of

- factorised amplitudes independent of variables in $\left[\mathrm{d} p_{u, n}^{(R)}\right]$

Q singular factors, i.e. the universal collinear and soft currents, to be integrated over $\left[\mathrm{d} p_{u, n}^{(R)}\right]$

$$
\mathcal{C}_{R}\left(\{p\}_{n+u}\right)=\left(8 \pi \alpha_{s} \mu^{2 \epsilon}\right)^{u} \operatorname{Sing}_{R}\left(p_{u}^{(R)}\right) \otimes\left|M_{n}^{(0)}\left(\{\tilde{p}\}_{n}^{(R)}\right)\right|^{2}
$$

Q compute the integral of the counterterm over unresolved partons

$$
\int_{u} \mathcal{C}_{R}\left(\{p\}_{n+u}\right)=\left(8 \pi \alpha_{s} \mu^{2 \epsilon}\right)^{u}\left[\int_{u} \operatorname{Sing}_{R}\left(p_{u}^{(R)}\right)\right] \otimes\left|M_{n}^{(0)}\left(\{\tilde{p}\}_{n}^{(R)}\right)\right|^{2}
$$

List of integrated counterterms

- coefficients of ε poles computed analytically through Mellin-Barnes representation;
finite parts computed numerically
- whole computation checked numerically through sector decomposition

Poles cancel

thanks to KLN theorem, all ε poles must cancel out of

$\sigma_{\{m\}}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\}_{\varepsilon=0} J_{m}$

Q checked the cancellation of $\mathrm{I} / \varepsilon^{4}$ and $\mathrm{I} / \varepsilon^{3}$ poles for any number of jets, i.e. for any m
checked the cancellation of all ε poles for $m=2$

$$
e^{+} e^{-} \rightarrow q \bar{q}, \quad H \rightarrow b \bar{b}
$$

Q checked the cancellation of all ε poles for $m=3 \quad e^{+} e^{-} \rightarrow q \bar{q} g$

$\mathrm{H} \rightarrow \mathrm{bb}$

Q double virtual contribution at $\mu^{2}=m_{H}^{2}$

$$
\begin{aligned}
\mathrm{d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{VV}} & =\left(\frac{\alpha_{\mathrm{s}}\left(\mu^{2}\right)}{2 \pi}\right)^{2} \mathrm{~d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{B}}\left\{\frac{2 C_{\mathrm{F}}^{2}}{\epsilon^{4}}+\left(\frac{11 C_{\mathrm{A}} C_{\mathrm{F}}}{4}+6 C_{\mathrm{F}}^{2}-\frac{C_{\mathrm{F}} n_{\mathrm{f}}}{2}\right) \frac{1}{\epsilon^{3}}\right. \\
& +\left[\left(\frac{8}{9}+\frac{\pi^{2}}{12}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(\frac{17}{2}-2 \pi^{2}\right) C_{\mathrm{F}}^{2}-\frac{2 C_{\mathrm{F}} n_{\mathrm{f}}}{9}\right] \frac{1}{\epsilon^{2}} \\
& \left.+\left[\left(-\frac{961}{216}+\frac{13 \zeta_{3}}{2}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(\frac{109}{8}-2 \pi^{2}-14 \zeta_{3}\right) C_{\mathrm{F}}^{2}+\frac{65 C_{\mathrm{F}} n_{\mathrm{f}}}{108}\right] \frac{1}{\epsilon}\right\}
\end{aligned}
$$

Anastasiou Herzog Lazopoulos 2011

Q sum of integrated counterterms at $\mu^{2}=m_{H}^{2}$

$$
\begin{aligned}
\sum \int \mathrm{d} \sigma^{\mathrm{A}} & =\left(\frac{\alpha_{\mathrm{s}}\left(\mu^{2}\right)}{2 \pi}\right)^{2} \mathrm{~d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{B}}\left\{\frac{-2 C_{\mathrm{F}}^{2}}{\epsilon^{4}}+\left(-\frac{11 C_{\mathrm{A}} C_{\mathrm{F}}}{4}-6 C_{\mathrm{F}}^{2}+\frac{C_{\mathrm{F}} n_{\mathrm{f}}}{2}\right) \frac{1}{\epsilon^{3}}\right. \\
& +\left[\left(-\frac{8}{9}-\frac{\pi^{2}}{12}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(-\frac{17}{2}+2 \pi^{2}\right) C_{\mathrm{F}}^{2}+\frac{2 C_{\mathrm{F}} n_{\mathrm{f}}}{9}\right] \frac{1}{\epsilon^{2}} \\
& \left.+\left[\left(\frac{961}{216}-\frac{13 \zeta_{3}}{2}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(-\frac{109}{8}+2 \pi^{2}+14 \zeta_{3}\right) C_{\mathrm{F}}^{2}-\frac{65 C_{\mathrm{F}} n_{\mathrm{f}}}{108}\right] \frac{1}{\epsilon}\right\}
\end{aligned}
$$

Duhr Somogyi TramontanoTrocsanyiVDD 2015

inclusive decay rate

highest energy jet pseudorapidity
leading jet energy

$e^{+} e^{-} \rightarrow 3$ jets

Q double virtual contribution at $\mu^{2}=s$

$$
\mathrm{d} \sigma_{3}^{V V}=\operatorname{Poles}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\operatorname{Finite}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)
$$

where

$$
\begin{aligned}
\operatorname{Poles}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)= & 2\left[-\left(I_{q \bar{q} g}^{(1)}(\epsilon)\right)^{2}-\frac{\beta_{0}}{\epsilon} I_{q \bar{q} g}^{(1)}(\epsilon)\right. \\
& \left.+e^{-\epsilon \gamma} \frac{\Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)}\left(\frac{\beta_{0}}{\epsilon}+K\right) I_{q \bar{q} g}^{(1)}(2 \epsilon)+H_{q \bar{q} g}^{(2)}\right] A_{3}^{0}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right) \\
& +2 I_{q \bar{q} g}^{(1)}(\epsilon) A_{3}^{1 \times 0}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
H_{q \bar{q} g}^{(2)}= & \frac{e^{\epsilon \gamma}}{4 \epsilon \Gamma(1-\epsilon)}\left[\left(4 \zeta_{3}+\frac{589}{432}-\frac{11 \pi^{2}}{72}\right) N_{\mathrm{c}}+\left(-\frac{1}{2} \zeta_{3}-\frac{41}{54}-\frac{\pi^{2}}{48}\right)\right. \\
& \left.+\left(-3 \zeta_{3}-\frac{3}{16}+\frac{\pi^{2}}{4}\right) \frac{1}{N_{\mathrm{c}}}+\left(-\frac{19}{18}+\frac{\pi^{2}}{36}\right) N_{\mathrm{c}} n_{\mathrm{f}}+\left(-\frac{1}{54}-\frac{\pi^{2}}{24}\right) \frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}+\frac{5}{27} n_{\mathrm{f}}^{2}\right]
\end{aligned}
$$

Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 2007
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 3$ jets
Q Poles $\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+$ Poles $\sum \int \mathrm{d} \sigma^{A}=117 k$ terms

Q zero numerically in any phase space point using sector decomposition
Q zero analytically using symbol technology C. Duhr 20I5

- Finite $\sum \int \mathrm{d} \sigma^{A}$

Q we compute finite part of integrated counterterms numerically and fit numbers with a formula which contains polynomials of $\log \left(y_{i j}\right)$ and $\log \left(I-y_{i j}\right)$

3-jet event shape variables

$$
\begin{aligned}
& \quad \frac{O}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} O}=\frac{\alpha_{s}(Q)}{2 \pi} A_{O}+\left(\frac{\alpha_{s}(Q)}{2 \pi}\right)^{2} B_{O}+\left(\frac{\alpha_{s}(Q)}{2 \pi}\right)^{3} C_{O} \\
& C_{O}=\underset{C_{O ; 5}}{ }+C_{O ; 4}+C_{O ; 3} \text { is NNLO contribution } \\
& \quad \mathrm{RV} \quad \mathrm{VV}
\end{aligned}
$$

Q $C_{O ; 5}$ and $C_{O ; 4}$ have been computed and shown to be finite
for $e^{+} e^{-} \rightarrow q \bar{q} g g g$ and $e^{+} e^{-} \rightarrow q \bar{q} g g$
G. Somogyi 2006
$O=C$ and $O=I-T$

Q Perfect agreement with NLO results for Bo

Thrust

$T=\operatorname{Max} \frac{\sum_{i}\left|\mathbf{p}_{\mathbf{i}} \cdot \mathbf{n}\right|}{\sum_{i}\left|\mathbf{p}_{\mathbf{i}}\right|}$
$T=$ I for back-to-back jets
$T=\mathrm{I} / 2$ for isotropic distribution of particles (spherical events)
$2 / 3 \leq T \leq 1$ for 3 -jet events

C parameter

$C=3\left(\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}\right)$
where λ_{α} are eigenvalues of $\Theta^{\alpha \beta}=\frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta} /\left|\mathbf{p}_{\mathbf{i}}\right|}{\sum_{j}\left|\mathbf{p}_{\mathbf{j}}\right|}$

$$
\alpha, \beta=1,2,3
$$

For massless particles $\quad C=3-\frac{3}{2} \sum_{i, j} \frac{\left(p_{i} \cdot p_{j}\right)^{2}}{\left(p_{i} \cdot Q\right)\left(p_{j} \cdot Q\right)}$
$Q=\sum_{i} p_{i}^{\mu}$
C = 0 for back-to-back jets
$C=1$ for isotropic distribution of (at least 4) jets
$0 \leq C \leq 3 / 4$ for 3 -jet events

Thrust

Duhr Kardos Somogyi Trocsanyi VDD, in preparation

NNLO coefficient

Q generally good agreement with EERAD3 \& Weinzierl
Q differences in the 4-jet region (our computation checked vs.aMC@NLO to I\% accuracy)

C parameter

Duhr Kardos Somogyi Trocsanyi VDD, in preparation

NNLO coefficient

Oblateness

9 thrust major $T_{M}=\max _{\vec{n} \cdot \vec{n}_{T}=0}\left(\frac{\sum_{i}\left|\vec{n} \cdot \overrightarrow{p_{i}}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right)$
n defines direction of thrust-major axis $n_{T M}$ by maximising T_{M} over all directions orthogonal to thrust axis n_{T}

9 thrust minor $T_{m}=\frac{\sum_{i}\left|\vec{n}_{T_{m}} \cdot \vec{p}_{i}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}$
thrust-minor axis $\vec{n}_{T_{m}}=\vec{n}_{T} \times \vec{n}_{T_{M}}$
defined as orthogonal to both the thrust and thrust-major axes

Q oblateness is the difference between thrust major and thrust minor

$$
O=T_{M}-T_{m}
$$

$0=0$ for back-to-back jets
$0 \leq 0 \leq I / \sqrt{ } 3$ for 3 -jet events

Oblateness

Duhr Kardos Somogyi TrocsanyiVDD, in preparation

NNLO coefficient

Energy-energy correlation

energy-energy correlation is the normalised energy-weighted cross section defined in terms of the angle between two particles i and j in an event

$$
\begin{aligned}
& E E C(\chi)=\frac{1}{\sigma_{\text {had }}} \sum_{i, j} \int \frac{E_{i} E_{j}}{Q^{2}} \mathrm{~d} \sigma_{e^{+} e^{-} \rightarrow i j+X} \delta\left(\cos \chi+\cos \theta_{i j}\right) \\
& \theta_{i j}=\pi-\chi \quad \text { angle between the } 2 \text { particles } \\
& Q=\text { centre-of-mass energy } \\
& E_{i} E_{j}=\text { particle energies } \\
& \sigma_{\text {had }}=\text { total cross section }
\end{aligned}
$$

Energy-energy correlation

Duhr Kardos Somogyi Trocsanyi VDD, in preparation

NNLO coefficient

code performance

Q RR on one core: 10M PS points in 9hrs RV on one core: 10M PS points in 31hrs
9. code runs on 300 cores

Q RR: to match Weinzierl's binning we need \sim 15B PS points $\rightarrow \sim 45 \mathrm{hrs}$ RV smooth with $\sim 1.5 B$ PS points $\rightarrow \sim 15$ hrs
VV runs in ~ 2hrs

Conclusions

we devised a NNLO subtraction scheme for $e^{+} e^{-} \rightarrow n$ jetsthe calculation is organised into 3 contributions, RR, RV, VV, each of which finite in $d=4$ dimensions

9the code can compute any 3-jet event shape at NNLO
extension to jets in hadron collisions in progress
possible improvements on the method?

- finite part of integrated counterterms analytically Duaz Mistberger Somogyi,
- more efficient organisation of counterterms
- inclusion of external massive fermions

