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Precise determination of

strong coupling constant

parton distributions

Precise prediction for

Standard Model processes (Higgs, top, etc.)

new physics processes

their backgrounds

Precision QCD

αs
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is known as a fixed-order expansion inσ̂ αS

c1 = NLO c2 = NNLO

or as an all-order resummation

L = ln(M/qT ), ln(1 − x), ln(1/x), ln(1 − T ), . . .where
c11, c22 = LL c10, c21 = NLL c20 = NNLL

Cross sections at high Q2 
separate the short- and the long-range 
interactions through factorisation



Total cross section for inclusive Higgs production at LHC

µR = 2MH µF = MH/2

lower
contour bands are

upper
µR = MH/2 µF = 2MH

C. Anastasiou K. Melnikov 2002

 we need at least NLO computations



NLO features
Jet structure: final-state collinear radiation

PDF evolution: initial-state collinear radiation

Opening of new channels

Reduced sensitivity to fictitious input scales: µR, µF

predictive normalisation of observables

first step toward precision measurements
first estimate of signal and background
for Higgs and (possibly) new physics

Matching with parton-shower MC’s: 
MC@NLO    POWHEG



the NLO revolution
At ICHEP 2010, Gavin Salam called ``NLO revolution’’ the rapid progress in
NLO computations  

from Gavin Salam’s talk at Montpellier 2012



Some reasons for NNLO corrections 

NLO corrections are large: 
Higgs or ttbar production in hadron collisions

NLO uncertainty bands are too large to test theory vs. data:  
ttbar or bbbar production in hadron collisions

NLO is effectively leading order:
energy distributions in jet cones

in the world average of αs, data are compared to theory, but

S. Bethke’s talk at ZPW16



Total cross section for inclusive Higgs production at LHC

µR = 2MH µF = MH/2

lower
contour bands are

upper
µR = MH/2 µF = 2MH

scale uncertainty
is about 10%

NNLO prediction stabilises the perturbative series

C. Anastasiou K. Melnikov 2002



Jet structure
the jet non-trivial structure shows up first at NLO

leading order

NLO

NNLO



S. Bethke’s talk at ZPW16



S. Bethke’s talk at ZPW16



NNLO state of the art 

Higgs production in HEFT

total cross section Harlander, Kilgore;  Anastasiou, Melnikov 2002
Ravindran, Smith, van Neerven 2003

Anastasiou, Melnikov, Petriello 2004

Drell-Yan          production  

total cross section Hamberg, van Neerven, Matsuura 1990
Harlander, Kilgore 2002

W,Z

Melnikov, Petriello 2006differential cross section

2 → 1  processes  

differential cross section



NNLO state of the art 
2 → 2  processes  

 ttbar production
total cross section

Baernreuther, Czakon, Mitov 2012
Czakon, Mitov 2012
Czakon, Fiedler, Mitov 2013

differential cross section Czakon, Fiedler, Mitov 2014

 ZZ production

Grazzini Kallweit Rathlev Torre 2013

Cascioli et al 2014

 Zγ production

 γγ production Catani, Cieri, De Florian, Ferrera, Grazzini 2011

 WW production Gehrmann et al 2014

 Wγ production Grazzini Kallweit Rathlev 2015

 ZH production

Ferrera Grazzini Tramontano 2011 WH production
Ferrera Grazzini Tramontano 2014



NNLO state of the art 

2 → 2  processes  

Higgs + 1 jet production in HEFT
Boughezal, Caola, Melnikov, Petriello, Schulze 2013-15
Chen, Gehrmann, Glover, Jaquier 2014
Boughezal, Focke, Giele, Liu, Petriello 2015

 W + 1 jet production Boughezal, Focke, Liu, Petriello 2015

 Z + 1 jet production
Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan 2015
Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello 2015

Curry, Gehrmann-De Ridder, Gehrmann, Glover, Pires 2013

 2 jet production (only gg)



NNLO state of the art 

1 → 3  processes  

e
+
e
−

→ 3 jets Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 2007-08
Becher, Schwartz 2008
Weinzierl 2009

2 → 3  processes  

Higgs + 2 jet production in VBF (in DIS approx)
Cacciari Dreyer Karlberg Salam Zanderighi 2015



NNLO cross section methods
A variety of (subtraction) methods exist, 
to get a fiducial cross section at NNLO  

Sector decomposition Denner Roth 1996; Binoth Heinrich 2000
Anastasiou, Melnikov, Petriello 2004

Antenna subtraction Gehrmann-De Ridder, Gehrmann, Glover 2005

qT subtraction Catani, Grazzini 2007

Residue subtraction Czakon 2010

N-jettiness subtraction Boughezal, Focke, Liu, Petriello 2015
Gaunt Stahlhofen Tackmann Walsh 2015

ColorfulNNLO subtraction Somogyi, Trocsanyi, VDD 2005-06



The goal of all those methods is

to compute cross sections at NNLO
with any possible acceptance cuts 



Higgs production at LHC
a fully differential cross section:
bin-integrated rapidity distribution, with a jet veto

jet veto: require
R = 0.4

for 2 partons

|pj
T | < p

veto
T = 40 GeV

|p1

T |, |p
2

T | < p
veto

T

|p1

T + p
2

T | < p
veto

T

R2

12 = (η1 − η2)
2 + (φ1 − φ2)

2

if

if

R12 > R

R12 < R

MH = 150 GeV (jet veto relevant in the                        decay channel)H → W
+
W

−

K factor is much smaller for the vetoed x-sect than for the inclusive one:
average         increases from NLO to NNLO: less x-sect passes the veto|pj

T |

C. Anastasiou K. Melnikov F. Petriello 2004



What is the problem in computing 
(fiducial or differential) cross sections

beyond leading order?

Given a production process and a physical observable to be computed, in 
order to get a consistent result we must take into account amplitudes 
with real radiation (bremsstrahlung) and amplitudes with virtual loops.

The virtual amplitudes exhibit explicit ε poles when dimensionally 
regularised.

The bremsstrahlung amplitudes sport kinematic singularities as one or 
more partons become unresolved, which turn into ε poles after
phase space integration.

Those ε poles must cancel no matter how the chosen acceptance cuts 
specify the phase space to be used.



NLO assembly kit  

leading order

e
+
e
−

→ 3 jets
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NLO production rates  
Process-independent procedures devised in the 90’s

these 2 terms are divergent in d=4

Giele, Glover, Kosower 1992-93slicing
subtraction Frixione, Kunszt, Signer; Nagy, Trocsanyi 1995

dipole Catani, Seymour 1996
antenna Kosower; Campbell Cullen & Glover 1999
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=

∫
m

dσ
B
m Jm + σ

NLO

σ
NLO

=

∫
m+1

dσ
R
m+1Jm+1 +

∫
m

dσ
V
m

Jm

use universal IR structure to subtract divergences

the 2 terms are finite in d=4
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Observable (jet) functions
vanishes when one parton becomes soft or collinear to another oneJm

Jm(p1, ..., pm) → 0 , if pi · pj → 0

vanishes when two partons become simultaneously soft and/or collinearJm+1

Jm+1(p1, ..., pm+1) → 0 , if pi · pj and pk · pl → 0 (i ̸= k)

dσ
B

m
is integrable over 1-parton IR phase space

R and V are integrable over 2-parton IR phase space

observables are IR safe

Jn+1(p1, .., pi, .., pj , .., pn+1) → Jn(p1, .., p, .., pn+1) if pi → zp, pj → (1−z)p

Jn+1(p1, .., pj = λq, .., pn+1) → Jn(p1, ..., pn+1) if λ → 0

for all n ≥ m



NLO IR limits  
collinear operator
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NLO overlapping divergences

has the same singular behaviour as SME, and is free of double subtractions
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Collinear mapping
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ĩr

·
·
·

·
·
·

m+1

m̃ + 2

ir
r

phase space factorises



NLO counterterm
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NNLO assembly kit  
e
+
e
−

→ 3 jets

double virtual

real-virtual

double real



NNLO subtraction

σ
NNLO

=

∫
m+2

dσ
RR
m+2Jm+2 +

∫
m+1

dσ
RV
m+1Jm+1 +

∫
m

dσ
VV
m

Jm

the 3 terms are separately IR divergent in d=4 dimensions

RR: has kinematic singularities as one or two partons become unresolved.
After phase space integration, we get up to 1/ε4 poles

RV: has explicit ε poles up to 1/ε2

In addition, it has kinematic singularities as one parton becomes unresolved.
After phase space integration, we get up to 1/ε2 poles

VV: has explicit ε poles up to 1/ε4

No kinematic singularities (they are killed by the jet functions)

KLN theorem ensures that all poles must cancel 
for an IR safe physical observable



The ε poles must cancel no matter how the chosen 
acceptance cuts specify the phase space to be used.

We must make this cancellation explicit, so the 
various contributions can be computed numerically

There are already a few (subtraction) methods which do that. 
Why another one? 

The RR, RV,  VV has must be organised in such a way as
to be computable in 4 dimensions, like at NLO



CoLorFulNNLO subtraction
Completely Local subtractions for Fully differential predictions at NNLO

fully local counterterms, featuring all colour and spin correlations 

analytic cancellation of ε poles

option to constrain subtractions to near singular regions

general and explicit expressions, including colour and flavour

algorithmic contruction, in principle valid at any order in αs



NNLO subtraction
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which subtract the kinematic singularities
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takes care of the doubly-unresolved limits of RR,
but still divergent in the singly-unresolved ones

+
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[
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universal IR structure

Collinear and soft currents 
process-independent procedure

universal collinear and soft currents

3-parton tree splitting functions

J. Campbell N. Glover 1997; S. Catani M. Grazzini 1998; A. Frizzo F. Maltoni VDD 1999; D. Kosower 2002

2-parton one-loop splitting functions

Z. Bern L. Dixon D. Dunbar D. Kosower 1994;  Z. Bern W. Kilgore C. Schmidt VDD 1998-99;
D. Kosower P. Uwer 1999; S. Catani M. Grazzini 1999; D. Kosower 2003

however,
- there are regions in phase space with overlapping limits
- universal collinear and soft currents are well defined only in the strict limit 



CoLorFulNNLO subtraction
construction based on universal collinear and soft currents

general procedure for matching of limits:
construct subtraction terms that regularise the singularities
of the amplitudes in all unresolved parts of the phase space,
avoiding multiple subtractions

perform momentum mappings, such that the phase space factorises
exactly over the unresolved momenta and such that it respects the
structure of the cancellations among subtraction terms

G. Somogyi Z. Trocsanyi VDD 2005

G. Somogyi Z. Trocsanyi VDD 2006

fully local in color ⊗ spin space

azimuthal correlations fully taken into account in gluon splitting

ratio of the sum of counterterms to the real emission cross section
tends to unity in any IR limit

straightforward to constrain subtractions to near singular regions 

independence of physical results on phase space cutoff



A2 counterterm
construct the 2-unresolved-parton counterterm using the IR currents

Cirs (1 − A2) |M
(0)
m+2|

2 = 0
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performing double and triple subtractions in overlapping regions

Constructing dσRR,A2

m+2

☛ Use IR factorization formulae valid in the doubly-
unresolved regions Catani-Grazzini, Campbell-Glover

☛ To account for double subtraction in overlapping
regions: subtract the collinear limit of the soft one
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Zoltán Trócsányi: Matching of Singly- and Doubly-Unresolved Limits of Tree-level QCD Squared Matrix Elements ETH Zürich, March 8, 2005 – p.16/22
G. Somogyi Z. Trocsanyi VDD 2005



Triple-collinear mapping
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kinematic singularities cancel in RR  

soft triple collinear

ratio = subtraction terms/RR



kinematic singularities cancel in RV  

collinear soft

ratio = subtraction terms/(RV + RR,A1)



needs a NLO subtraction between the m+2 and the m+1 parton contributions

must be finite in
the doubly-unresolved regions 

The subtraction scheme at NNLO

σNNLO = σNNLO
{m+2} + σNNLO

{m+1} + σNNLO
{m}

σNNLO
{m+2} =

∫

m+2

[

dσRR
m+2 Jm+2 − dσRR,A2

m+2 Jm
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m+2 Jm+1 + dσRR,A12

m+2 Jm

]

d=4

σNNLO
{m+1} =

∫

m+1

[
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m+1 Jm

+

∫

1
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m+2 Jm+1 − dσRR,A12
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∫
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∫

2
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∫

1
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m+1
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d=4

Jm

has to be finite
in the doubly-
unresolved
regions!

Restricts
A1 and A12

severely

Zoltán Trócsányi: Matching of Singly- and Doubly-Unresolved Limits of Tree-level QCD Squared Matrix Elements ETH Zürich, March 8, 2005 – p.13/22

A1 takes care of the singly-unresolved regions and A12 of the over-subtracting

G. Somogyi Z. Trocsanyi VDD 2005-6

RR counterterm

RR counterterm =  A2 + A1 - A12

dσ
RR,A

2

m+2 = dφm [dp2] A2|M
(0)
m+2|

2

dσ
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12

m+2 = dφm [dp1] [dp1] A12|M
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2
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1
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(0)
m+2|

2



need to construct A12 such that all overlapping regions in
1-parton and 2-parton IR phase space regions are counted only once

Constructing dσRR,A12

m+2

Need to construct A12 such that

☛ Cir(A1 + A2 − A12)|M
(0)
m+2|

2 = Cir|M
(0)
m+2|

2
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(0)
m+2|

2

☛ Cir;js(A1 + A2 − A12)|M
(0)
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2
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2
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(0)
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2 ≡ A1A2|M
(0)
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2 does the job −→
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(0)
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2, CktA2|M
(0)
m+2|

2 and

CktStA2|M
(0)
m+2|

2

Zoltán Trócsányi: Matching of Singly- and Doubly-Unresolved Limits of Tree-level QCD Squared Matrix Elements ETH Zürich, March 8, 2005 – p.17/22

Constructing dσRR,A12

m+2

Need to construct A12 such that
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2 does the job −→
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2 and
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the definition of        is rather simple  A12

but showing that it has the right properties is non trivial, and requires considering
iterated singly-unresolved limits and strongly-ordered doubly-unresolved limits 



Iterated counterterms
A12|M

(0)
m+2({p})|2 =

∑

t

[

∑

k ̸=t

1

2
CktA2|M

(0)
m+2({p})|2

+

⎛

⎝StA2|M
(0)
m+2({p})|2 −

∑

k ̸=t

CktStA2|M
(0)
m+2({p})|2

⎞

⎠

]

where

CktA2 =
∑

r ̸=k,t

[

CktCktr + CktCSkt;r − CktCktrCSkt;r − CktCrktSkt

+
∑

i̸=r,k,t

(

1

2
CktCir;kt − CktCir;ktCSkt;r

)]

+ CktSkt

and likewise for StA2 , CktStA2



Iterated counterterms

the momentum mapping for each of the iterated counterterms is 
built out of a composition of either the NLO collinear or the NLO 
soft mappings, or of both

the treatment of colour in iterated singly-unresolved limits differs 
for spin-correlated SME from that of colour-correlated SME

no soft factorization formulae for simultaneously 
colour-correlated and spin-correlated SME.
This was a no-go in the direction of generalised 
dipole-type counterterms



σ
NNLO
{m+1} =

∫

m+1

{[

dσ
RV
m+1 +

∫

1

dσ
RR,A1

m+2

]

Jm+1

−

[

dσ
RV,A1

m+1 +

(

∫

1

dσ
RR,A1

m+2

)

A1

]

Jm

}

ε=0
G. Somogyi Z. Trocsanyi 2006

RV counterterm
We note that the integrated A1 counterterm of RR has the same 
explicit ε poles as RV.
Furthermore, as we said, the RV,A1 counterterm takes care of the 
singly-unresolved limits of RV,
but we also need a term which takes care of the singly-unresolved 
limits of the integrated A1 counterterm of RR



The subtraction scheme at NNLO

σNNLO = σNNLO
{m+2} + σNNLO

{m+1} + σNNLO
{m}

σNNLO
{m+2} =

∫

m+2

[

dσRR
m+2 Jm+2 − dσRR,A2

m+2 Jm

−dσRR,A1

m+2 Jm+1 + dσRR,A12

m+2 Jm

]

d=4

σNNLO
{m+1} =

∫

m+1

[

dσRV
m+1 Jm+1 − dσRV,A1

m+1 Jm

+

∫

1

(

dσRR,A1

m+2 Jm+1 − dσRR,A12

m+2 Jm

)
]

d=4

σNNLO
{m} =

∫

m

[

dσVV
m +

∫

2

dσRR,A2

m+2 +

∫

1

dσRV,A1

m+1

]

d=4

Jm

has to be finite
in the doubly-
unresolved
regions!

Restricts
A1 and A12

severely

Zoltán Trócsányi: Matching of Singly- and Doubly-Unresolved Limits of Tree-level QCD Squared Matrix Elements ETH Zürich, March 8, 2005 – p.13/22

σ
NNLO
{m+1} =

∫

m+1

{[

dσ
RV
m+1 +

∫

1

dσ
RR,A1

m+2

]

Jm+1

−

[

dσ
RV,A1

m+1 +

(

∫

1

dσ
RR,A1

m+2

)

A1

]

Jm

}

ε=0

remainder must be finite by KLN theorem 

σ
NNLO
{m} =

∫

m

{

dσ
VV
m

+

∫

2

[

dσ
RR,A2

m+2 −dσ
RR,A12

m+2

]

+

∫

1

[

dσ
RV,A1

m+1 +

(

∫

1

dσ
RR,A1

m+2

)

A1

]}

ε=0
Jm

NNLO counterterms



Integrating the counterterms

momentum mappings used to define the counterterms

{p}n+u ! {p̃}n d�n+u({p};Q) = d�n({p̃}(R)
n ;Q) [dp(R)

u,n]

implement exact momentum conservation

R

different collinear and soft mappings, specified by R

exact factorisation of phase space

in colour and spin space, counterterms are products of 

[dp(R)
u,n]

singular factors, i.e. the universal collinear and soft currents,
to be integrated over 

factorised amplitudes independent of variables in [dp(R)
u,n]

CR({p}n+u) = (8⇡↵sµ
2✏)u SingR(p

(R)
u )⌦ |M (0)

n ({p̃}(R)
n )|2

compute the integral of the counterterm over unresolved partons
Z

u
CR({p}n+u) = (8⇡↵sµ

2✏)u
Z

u
SingR(p

(R)
u )

�
⌦ |M (0)

n ({p̃}(R)
n )|2



List of integrated counterterms

- coefficients of ε poles computed analytically through Mellin-Barnes representation;     
finite parts computed numerically
- whole computation checked numerically through sector decomposition



Poles cancel

σ
NNLO
{m} =

∫

m

{

dσ
VV
m

+

∫

2

[

dσ
RR,A2

m+2 −dσ
RR,A12

m+2

]

+

∫

1

[

dσ
RV,A1

m+1 +

(

∫

1

dσ
RR,A1

m+2

)

A1

]}

ε=0
Jm

thanks to KLN theorem, all ε poles must cancel out of 

checked the cancellation of 1/ε4 and 1/ε3 poles for any number of jets,
i.e. for any m

checked the cancellation of all ε poles for m=2

checked the cancellation of all ε poles for m=3

e+e� ! qq̄, H ! bb̄

e+e� ! qq̄g



H →bb

Anastasiou Herzog Lazopoulos 2011

µ2 = m2
Hsum of integrated counterterms at

double virtual contribution at µ2 = m2
H

Duhr Somogyi TramontanoTrocsanyi VDD 2015



H →bb

inclusive decay rate

highest energy jet pseudorapidity leading jet energy

Duhr Somogyi TramontanoTrocsanyi VDD 2015



e+ e- →3 jets
double virtual contribution at µ2 = s

d�V V
3 = Poles

⇣
A

(2⇥0)
3 +A

(1⇥1)
3

⌘
+ Finite

⇣
A

(2⇥0)
3 +A

(1⇥1)
3

⌘

where

with

Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 2007



e+ e- →3 jets

Poles

⇣
A

(2⇥0)
3 +A

(1⇥1)
3

⌘
+ Poles

XZ
d�A = 117k terms

zero numerically in any phase space point using sector decomposition

zero analytically using symbol technology C. Duhr 2015

Finite
XZ

d�A

we compute finite part of integrated counterterms numerically
and fit numbers with a formula which contains polynomials of 
log(yij) and log(1-yij) 



3-jet event shape variables

is NNLO contribution
RR RV VV

Perfect agreement with NLO results for BO 

have been computed and shown to be finite and

G. Somogyi 2006for e
+
e
−

→ qq̄ggg and e
+
e
−

→ qq̄gg

O

�0

d�

dO
=

↵s(Q)

2⇡
AO +

✓
↵s(Q)

2⇡

◆2

BO +

✓
↵s(Q)

2⇡

◆3

CO

CO = CO;5 + CO;4 + CO;3

CO;5 CO;4

O = C and O = 1 - T 



Thrust

T = Max

∑
i
|pi · n|∑
i
|pi|

sum over all final-state particles i
n defines direction of thrust axis nT 

by maximising T 
T = 1 for back-to-back jets

T = 1/2 for isotropic distribution of particles (spherical events)

C parameter

C = 3 −

3

2

∑

i,j

(pi · pj)2

(pi · Q)(pj · Q)

Θ
αβ

=

∑
i pα

i pβ
i /|pi|∑

j |pj|

C = 3(λ1λ2 + λ2λ3 + λ3λ1)

where λα are eigenvalues of α,β = 1, 2, 3

Q =

∑

i

p
µ
iFor massless particles

C = 0 for back-to-back jets
C = 1 for isotropic distribution of (at least 4) jets
0 ≤ C ≤ 3/4 for 3-jet events

2/3 ≤ T ≤ 1 for 3-jet events



Thrust

generally good agreement with EERAD3 & Weinzierl

differences in the 4-jet region
(our computation checked vs. aMC@NLO to 1% accuracy)

NNLO coefficient

Duhr Kardos Somogyi Trocsanyi VDD, in preparation 
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C parameter

NNLO coefficient

Duhr Kardos Somogyi Trocsanyi VDD, in preparation 
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Oblateness

TM = max~n·~nT=0

✓P
i |~n · ~pi|P
i |~pi|

◆

n defines direction of thrust-major axis nTM by maximising TM 
over all directions orthogonal to thrust axis nT

thrust major

thrust minor Tm =

P
i |~nTm · ~pi|P

i |~pi|

thrust-minor axis
defined as orthogonal to both the thrust and thrust-major axes

~nTm = ~nT ⇥ ~nTM

oblateness is the difference between thrust major and thrust minor

O = TM � Tm

O = 0 for back-to-back jets
0 ≤ O ≤ 1/√3 for 3-jet events



Oblateness
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Energy-energy correlation

energy-energy correlation is the normalised energy-weighted cross section
defined in terms of the angle between two particles i and j in an event

Q = centre-of-mass energy
Ei Ej = particle energies
σhad = total cross section

EEC(�) =
1

�had

X

i,j

Z
EiEj

Q2
d�e+e�!i j+X�(cos�+ cos ✓ij)

✓ij = ⇡ � � angle between the 2 particles



Energy-energy correlation
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code performance

RR on one core: 10M PS points in 9hrs
RV on one core: 10M PS points in 31hrs

code runs on 300 cores

RR: to match Weinzierl’s binning we need ~ 15B PS points → ~ 45hrs
RV smooth with ~ 1.5B PS points → ~ 15hrs
VV runs in ~ 2hrs



Conclusions

we devised a NNLO subtraction scheme for e
+
e
−

→ n jets

the calculation is organised into 3 contributions,  RR, RV,  VV, 
each of which finite in d=4 dimensions 

extension to jets in hadron collisions in progress

the code can compute any 3-jet event shape at NNLO

possible improvements on the method?
- finite part of integrated counterterms analytically
- more efficient organisation of counterterms 
- inclusion of external massive fermions

Bevilacqua, in progress 

Dulat Mistlberger Somogyi,
in progress 


