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Higgs production at the LHC

• Establishing whether the BEH mechanism and its boson is 
SM-like will be of utmost importance for the run of the LHC.

• Higgs-boson production modes at the LHC:

Gluon fusion TTH   Higgs strahlung VBF

Dominant production mode at the LHC

• We want to know the gluon-fusion cross section precisely!



Higgs production at the LHCMeasuring Production Signal Strengths!
Assuming SM BR we can measure the signal production strengths.!
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Higgs production at the LHC
• Known at NLO and NNLO, but plagued by large perturbative 

uncertainties. [Dawson; Djouadi, Spira, Zerwas; Harlander, Kilgore; 
Anastasiou, Melnikov; Ravindran, Smith, van Neerven]
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The gluon fusion cross section
• The dominant Higgs production mechanism at 

the LHC is gluon fusion.
➡ Loop-induced process.

• For a light Higgs boson, the dimension five operator describing 
a tree-level coupling of the gluons to the Higgs boson is

L = LQCD,5 �
1
4v

C1 H Ga
µ⌫ Gµ⌫

a

• For now, I will concentrate on the effective theory, and 
comment on quark mass effects at the end.

• Top-mass corrections known at NNLO.

[Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca, 
Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]



• The gluon fusion cross section is given in perturbation theory by
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The gluon fusion cross section



• Steep fall of the gluon luminosity!

The threshold expansion

�̂(z) = ��1 + �0 + (1� z)�1 +O(1� z)2

•           Compute cross section as a series around threshold!Goal:

➡ NNLO result was obtained in this way.      

➡ Uncharted territory!
➡ New conceptual challenges.

•                    Never has an N3LO computation been performed 
so far...
Challenge:

➡ Approximate partonic cross sections by threshold expansion:



Outline

• Computing at N3LO.

• Other corrections:

• Phenomenology at N3LO:

➡ Scale variation & higher-order QCD effects.

➡ PDFs, quark masses and electroweak effects.



Computing at N3LO

Pushing the  boundary



The gluon fusion cross section

Virtual corrections (‘loops’) Real emission

• Both contributions are individually divergent:

➡ UV divergences are handled by renormalization.

➡ IR divergences cancelled by PDF counterterms.

[Dawson; Djouadi, Spira, Zerwas]

• At          , there are two contributions (~1991):NLO



The gluon fusion cross section

Double virtual Real-virtual

Double real

[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]
• At             , there are three contributions (2002):   NNLO



The gluon fusion cross section

Triple virtual

Double real 
virtual

Real-virtual 
squared

Double virtual 
real

Triple real

• At            , there are five contributions:  N3LO



The General Strategy

• Generate all Feynman diagrams (with QGraf), and translate 
them into analytic expressions.  

• Reduce everything to a minimal set of phase-space integrals 
that we need to compute (master integrals).

• Find a truncated power series solution to the differential 
equations.

• Master integrals satisfy a set of coupled ordinary differential 
equations in the single variable   .z

• Fix boundary conditions by requiring by matching to the 
limit           , where all the QCD radiation is soft.z ! 1

• Compute boundary conditions explicitly.

[~100.000 @ N3LO    
(~1.000 @ NNLO)]

[1.028 (27)]

[72 (5)]



Convergence of the expansion
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Figure 3: The numerical e↵ect in Setup 1 of the N3LO correction in the main partonic channels
and the total cross-section as a function of the truncation order in the threshold expansion, for
n = 0 in eq. (3.6).

the convolution (3.6). This leads to a slower apparent convergence, at least in the case

where only a few terms are taken into account in the threshold expansion. While the

spread between the di↵erent curves gives a measure for the quality of the convergence of

the threshold expansion, we know of no compelling argument why any of this curves should

be preferable over others at this order of the expansion. We observe, however, that the

di↵erent curves agree among each other within a range of 0.1 pb, thereby corroborating

our claim that the threshold expansion provides reliable results for the N3LO cross-section.

In Fig. 3 we plot the N3LO corrections for the gg and qg channels2, as well as the total

inclusive cross-section, as a function of the truncation order (for n = 0). The quark-initiated

channels contribute only a small fraction to the inclusive cross-section. The convergence of

the threshold expansion for these channels is less rapid than for the dominant gluon-gluon

channel. This is better demonstrated in Fig. 4, where we plot the ratio

�X(N) ⌘ �(3)
X,EFT (N)� �(3)

X,EFT (Nlast)

�(3)
X,EFT (Nlast)

100% . (3.8)

Here, �(3)
X,EFT (N) denotes the contribution of the partonic channel X to the N3LO correc-

tion to the hadronic cross-section when computed through O(z̄N ) in the threshold expan-

sion. Nlast (equal to 37) is the highest truncation order used in our current computation.

Although the convergence of the quark-gluon and the quark channels is rather slow, the
2We sum of course over all possible quark and anti-quark flavours.
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Convergence of the expansion

• Reason for the slow convergence:
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• Total cross section is independent of n, but threshold 
expansion depends on it.

• A quantifier of the convergence: a modified QCD 
factorisation formula.

Figure 1: The numerical e↵ect in Setup 1 (see Tab. 1) of the N3LO corrections in the gluon-gluon
channel as a function of the truncation order of the threshold expansion and for various values of
the parameter n in eq. (3.6).

3.2 Convergence of the threshold expansion at N3LO

As parts of the N3LO coe�cient functions ⌘(3,m),reg
ij (z) have not yet been derived in closed

analytic form and are only known as truncated series expansions in z̄, it is important to

assess how well these truncated power series approximate the exact result. In other words,

we need to establish how well the threshold expansion converges. Indeed, the partonic

cross-sections �̂ij,EFT need to be convoluted with the partonic luminosities, eq. (2.1), and

the convolution integrals receive in principle contributions down to values of z ' ⌧ ' 10�4.

Hence, assessing the residual uncertainty due to the truncation of the series is of utmost

importance.

In ref. [82, 89] a method was introduced to study the convergence of the threshold

expansion. We start by casting the hadronic cross-section in the large-mt limit in the form

�EFT = ⌧1+n
X

ij

✓
f (n)
i ⌦ f (n)

j ⌦ �̂ij,EFT

z1+n

◆
(⌧) , (3.6)

where

f (n)
i (z) ⌘ fi(z)

zn
. (3.7)

For n = 0, we recover precisely the usual QCD factorization formula. For n 6= 0, however,

eq. (3.6) is a deformed, but equally valid and equivalent, formulation of the usual QCD

factorization formula (2.1). Indeed, it is easy to check that the hadronic cross-section �EFT

is independent of the arbitrary parameter n. Expanding �̂ij,EFT /z1+n into a series around

– 8 –

Figure 1: The numerical e↵ect in Setup 1 (see Tab. 1) of the N3LO corrections in the gluon-gluon
channel as a function of the truncation order of the threshold expansion and for various values of
the parameter n in eq. (3.6).

3.2 Convergence of the threshold expansion at N3LO

As parts of the N3LO coe�cient functions ⌘(3,m),reg
ij (z) have not yet been derived in closed

analytic form and are only known as truncated series expansions in z̄, it is important to

assess how well these truncated power series approximate the exact result. In other words,

we need to establish how well the threshold expansion converges. Indeed, the partonic

cross-sections �̂ij,EFT need to be convoluted with the partonic luminosities, eq. (2.1), and

the convolution integrals receive in principle contributions down to values of z ' ⌧ ' 10�4.

Hence, assessing the residual uncertainty due to the truncation of the series is of utmost

importance.

In ref. [82, 89] a method was introduced to study the convergence of the threshold

expansion. We start by casting the hadronic cross-section in the large-mt limit in the form

�EFT = ⌧1+n
X

ij

✓
f (n)
i ⌦ f (n)

j ⌦ �̂ij,EFT

z1+n

◆
(⌧) , (3.6)

where

f (n)
i (z) ⌘ fi(z)

zn
. (3.7)

For n = 0, we recover precisely the usual QCD factorization formula. For n 6= 0, however,

eq. (3.6) is a deformed, but equally valid and equivalent, formulation of the usual QCD

factorization formula (2.1). Indeed, it is easy to check that the hadronic cross-section �EFT

is independent of the arbitrary parameter n. Expanding �̂ij,EFT /z1+n into a series around

– 8 –

Convergence of the expansion

• We can use the spread of the cross section with n as a 
quantifier for the convergence.

Figure 5: The dependence of the cross-section on the renormalization scale for a fixed value of the
factorization scale.

To summarize, we have investigated the convergence of the threshold expansion at

N3LO using two di↵erent methods. Both methods confirm our expectation that the thresh-

old expansion provides a very good approximation to the exact result. The result of our

analysis can be quantified by assigning a (conservative) uncertainty estimate to the trun-

cation of the threshold expansion. We assign an uncertainty due to the truncation of the

threshold expansion which is as large as3.

�(trunc) = 10⇥ �(3)
EFT (37)� �(3)

EFT (27)

�N3LO
EFT

= 0.37% . (3.10)

The factor 10 is a conservative estimator of the progression of the series beyond the first 37

terms. Note that the complete N3LO cross-section appears in the denominator of eq. (3.10),

i.e., the uncertainty applies to the complete N3LO result, not just the coe�cient of a5s.

3.3 Scale variation at N3LO and the omission of N3LO e↵ects in parton densities

Having established that the threshold expansion provides a reliable estimate of the N3LO

cross-section, we proceed to study the dependence of the cross-section on the renormaliza-

tion and factorization scales µR and µF .

In Fig. 5 we fix the factorization scale to µF = mH/2 and vary the renormalization

scale. We observe that the perturbative series in the strong coupling converges faster for

3In the estimate of the various components of the theoretical uncertainty that we carry out in these

sections, we always give numerical results for Setup I. When considering di↵erent parameters (Higgs mass

or collider energy, for example), we re-assess these uncertainties. For example, �(trunc) increases from

0.11% at 2 TeV to 0.38% at 14 TeV.
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• Estimated truncation uncertainty:
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Figure 1: The numerical e↵ect in Setup 1 (see Tab. 1) of the N3LO corrections in the gluon-gluon
channel as a function of the truncation order of the threshold expansion and for various values of
the parameter n in eq. (3.6).
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Convergence of the expansion
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Figure 2: The numerical e↵ect in Setup 1 (see Tab. 1) of the N3LO corrections as a function of the
truncation order of the threshold expansion and for various values of the parameter n in eq. (3.6).
All channels are included.

z = 1, however, introduces a dependence on n order by order in the expansion, which only

cancels once infinitely many terms in the series are summed up. Hence, if a truncated

series is used to evaluate �̂ij,EFT /z1+n, the result will in general depend on n, and we can

use the spread of the n-dependence as a quantifier for the convergence of the series. In

Fig. 1 we show the N3LO contribution to the hadronic cross-section from the gg�channel.

We observe that the hadronic cross-section is very stable with respect to the choice of the

arbitrary parameter n after the first ⇠ 5 terms in the threshold expansion. In ref. [53]

we observed a mild growth of the cross-section at high orders of the threshold expansion

(see inlay of Fig. 1 in ref. [53]). This is attributed to the presence of log z terms [49] (and

for n > �1 also global factors of 1/zn) which, after threshold expansion and convolution

with the parton distributions, yield a small part of the cross-section. In Fig. 2 we show

the convergence of the total cross-section, including all partonic channels, for a variety of

di↵erent values of n, from the 20th term onwards in the expansion. While we observe

good apparent convergence for n > �1, there remains a relatively large spread between

the di↵erent curves for n  �1. The qualitative di↵erence between these two cases can be

understood as follows: For n > �1, we absorb additional factors of 1/z into the partonic

cross-sections and expand them around z = 1. This may result in a slower convergence

of the partonic threshold expansion for small values of z. At the same time, however,

the luminosities are multiplied with powers of z which suppress the contribution from the

region z ⇠ 0 in the convolution (3.6). The net e↵ect is then a fast apparent convergence

for n > �1. This has to be contrasted with the case n  �1, where the luminosities are

multiplied by factors of 1/z, which enhance the contribution from the region z ⇠ 0 in

– 9 –

Spread: ~0.1pb

Convergence of the expansion



• This is consistent with known exact results for logarithms:

�(3)
EFT = f0(z) + f1(z) log(1� z) + f2(z) log

2
(1� z) + f3(z) log

3
(1� z) + f4(z) log

4
(1� z) + f5(z) log

5
(1� z)

�(3)
EFT = f0(z) + f1(z) log(1� z) + f2(z) log

2
(1� z) + f3(z) log

3
(1� z) + f4(z) log

4
(1� z) + f5(z) log

5
(1� z) Known exactly

•                       The threshold expansion gives a reliable result for 
the N3LO cross section!

Figure 4: The ratios of eq. (3.8) for the convergence for the threshold expansion at N3LO for
individual partonic channels, as well as for the full hadronic cross-section. The qq and qq0 channels
are negligible and are not shown in the plot.

total cross-section and the convergence rate of the threshold expansion are dominated by

the gluon-gluon channel. This enables us to obtain a reliable estimate of the cross-section

for Higgs production via gluon fusion, even though we have only included a finite number of

terms in the threshold expansion. We remark, however, that for quark-initiated processes

such as Drell-Yan production a computation in closed form will most likely be necessary.

Besides studying the n-dependence of the truncated power series, we have another way

to assess the convergence of the expansion. In ref. [82] it was shown that the knowledge of

the single-emission contributions at N3LO [64, 65, 63, 62] and the three-loop splitting func-

tions [57, 58] is su�cient to determine the coe�cients ⌘(3,m)
ij in the N3LO cross-section (3.5)

exactly form = 5, 4, 3. Recently, also the double-emission contribution at one-loop has been

computed in closed form [90]. Using a similar analysis as for m = 5, 4, 3 in ref. [82], it has

now been possible to determine also the coe�cients with m = 2, 1 exactly for all par-

tonic subchannels. As a consequence, we know all the logarithmically-enhanced terms in

eq. (3.5) in closed form, and we only need to resort to a truncated threshold expansion for

the constant term, m = 0. We can thus study the convergence of the threshold expansion

for the coe�cients of ⌘(3,m)
ij , m � 1. In particular, the use of the exact expressions instead

of a truncated expansion for the logarithmically-enhanced contributions changes the N3LO

correction to the cross-section by

�(3)
EFT

���
expansion

� �(3)
EFT

���
full logs

= 0.004 pb . (3.9)

Hence, the di↵erence between exact expressions or truncated power series for the coe�cients

with m � 1 in eq. (3.5) is at the sub-per mille level, and thus completely negligible.
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Conclusion:

Convergence of the expansion



Phenomenology at 
N3LO

Scale variation 
& 

higher orders in QCD



Higgs @ N3LO

• We can now for the first time study the N3LO phenomenology 
of a QCD cross section at a hadron collider!

• Interesting questions to ask:

➡ How much does the cross section still depend on the 
arbitrary renormalisation and factorisation scales?

➡ Is there a preferred scale choice?

➡ How well does the perturbative QCD series converge?

➡ What is the uncertainty on the value of the Higgs cross 
section at N3LO, and what are the dominant sources of 
uncertainty?



Scale variation

carefully analyse the residual uncertainty associated to all of these contributions. In this

way we obtain the most precise theoretical prediction for the Higgs production cross section

available to date.

We conclude this section by summarizing, for later convenience, the default numerical

values of the input parameters used in our numerical studies, as well as concrete choices

for PDFs and quark mass schemes. In particular, we investigate three di↵erent setups,

which are summarized in Tab. 1–3. Note that we use NNLO PDFs even when we refer

to lower order terms of the cross section, unless stated otherwise. The values for the

quark masses used are in accordance with the recommendations of the Higgs Cross Section

Working Group [82], wherein the top quark mass was selected to facilitate comparisons

with existing experimental analyses at LHC, Run 11.

Table 1: Setup 1

p
S 13TeV

mh 125GeV
PDF PDF4LHC15 nnlo 100

as(mZ) 0.118
mt(mt) 162.7 (MS)
mb(mb) 4.18 (MS)

mc(3GeV ) 0.986 (MS)
µ = µR = µF 62.5 (= mh/2)

Table 2: Setup 2

p
S 13TeV

mh 125GeV
PDF PDF4LHC15 nnlo 100

as(mZ) 0.118
mt 172.5 (OS)
mb 4.92 (OS)
mc 1.67 (OS)

µ = µR = µF 62.5 (= mh/2)

Table 3: Setup 3

p
S 13TeV

mh 125GeV
PDF abm12lhc 5 nnlo

as(mZ) 0.113
mt(mt) 162.7 (MS)
mb(mb) 4.18 (MS)

mc(3GeV ) 0.986 (MS)
µ = µR = µF 62.5 (= mh/2)

3. The cross-section through N3LO in the infinite top-quark limit

3.1 The partonic cross section at N3LO in the heavy-top limit

In this section we discuss the contribution �̂ij,EFT in eq. (2.4) from the e↵ective theory

where the top quark is infinitely heavy. This contribution can be expanded into a pertur-

bative series in the strong coupling constant,

�̂ij,EFT

z
=

⇡ |C|2
8V

1X

n=0

⌘(n)ij (z) ans , (3.1)

where V ⌘ N2
c � 1 is the number of adjoint SU(Nc) colours, as ⌘ ↵s/⇡ denotes the strong

coupling constant evaluated at a scale µ and C is the Wilson coe�cient introduced in

eq. (2.5), which admits itself a perturbative expansion in the strong coupling [17, 18, 19],

C = a2s

1X

n=0

Cn a
n
s . (3.2)

Here both the coe�cients Cn and the strong coupling are functions of a common scale µ.

At LO in as only the gluon-gluon initial state contributes, and we have

⌘(0)ij (z) = �ig �jg �(1� z) . (3.3)

1Note that the current world average mOS
t = 173.2 is within the recommended uncertainty of 1GeV

from the proposed mOS
t = 172.5 that we use here.
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Figure 8: The dependence of the cross-section on a common renormalization and factorization
scale µ = µF = µR.

�scale
EFT,k

LO (k = 0) ±14.8%

NLO (k = 1) ±16.6%

NNLO (k = 2) ±8.8%

N3LO (k = 3) ±1.9%

Table 5: Scale variation of the cross-section as defined in eq. (3.11) for a common renormalization
and factorization scale µ = µF = µR.

the treatment of both infrared and ultraviolet singularities. For a physical process such

as inclusive Higgs production, where one cannot identify very disparate physical scales,

large separations between the renormalization from the factorization scale entail the risk

of introducing unnecessarily large logarithms. In Fig. 8 we present the dependence of the

cross-section on a common renormalization and factorization scale µ = µR = µF . Through

N3LO, the behaviour is very close to the scale-variation pattern observed when varying

only the renormalization scale with the factorization scale held fixed. More precisely, using

the same quantifier as introduced in eq. (3.11) for the variation of the renormalization scale

only, the variation of the cross-section in the range [mH/4,mH ] for the common scale µ

is shown in Tab. 5. We observe that the scale variation with µR = µF is slightly reduced

compared to varying only the renormalization scale at NLO and NNLO, and this di↵erence

becomes indeed imperceptible at N3LO.

The scale variation is the main tool for estimating the theoretical uncertainty of a

cross-section in perturbative QCD, and it has been successfully applied to a multitude of

– 16 –



Scale variation
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mb 4.92 (OS)
mc 1.67 (OS)

µ = µR = µF 62.5 (= mh/2)

Table 3: Setup 3

p
S 13TeV

mh 125GeV
PDF abm12lhc 5 nnlo

as(mZ) 0.113
mt(mt) 162.7 (MS)
mb(mb) 4.18 (MS)

mc(3GeV ) 0.986 (MS)
µ = µR = µF 62.5 (= mh/2)

3. The cross-section through N3LO in the infinite top-quark limit

3.1 The partonic cross section at N3LO in the heavy-top limit

In this section we discuss the contribution �̂ij,EFT in eq. (2.4) from the e↵ective theory

where the top quark is infinitely heavy. This contribution can be expanded into a pertur-

bative series in the strong coupling constant,

�̂ij,EFT

z
=

⇡ |C|2
8V

1X

n=0

⌘(n)ij (z) ans , (3.1)

where V ⌘ N2
c � 1 is the number of adjoint SU(Nc) colours, as ⌘ ↵s/⇡ denotes the strong

coupling constant evaluated at a scale µ and C is the Wilson coe�cient introduced in

eq. (2.5), which admits itself a perturbative expansion in the strong coupling [17, 18, 19],

C = a2s

1X

n=0

Cn a
n
s . (3.2)

Here both the coe�cients Cn and the strong coupling are functions of a common scale µ.

At LO in as only the gluon-gluon initial state contributes, and we have

⌘(0)ij (z) = �ig �jg �(1� z) . (3.3)

1Note that the current world average mOS
t = 173.2 is within the recommended uncertainty of 1GeV

from the proposed mOS
t = 172.5 that we use here.
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Figure 6: The dependence of the cross-section on the factorization scale for a fixed value of the
renormalization scale.

Figure 7: The e↵ect of using NLO or NNLO PDFs for the NNLO cross-section in the e↵ective
theory as a function of the factorization scale and for a fixed value of the renormalization scale. A
shift is observed which varies little with the factorization scale.

P (2) in the DGLAP evolution is consistent in fixed-order perturbation theory, since this

is the highest-order splitting function term appearing in the mass factorization contribu-

tions. Including the P (3) corrections would be merely a phenomenological improvement
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Scale variation
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Figure 9: The dependence of the cross-section on a common renormalization and factorization
scale µ = µF = µR per partonic channel.

processes. However, in Higgs production via gluon fusion it underestimates the uncertainty

both at LO and NLO. It is therefore a critical question to assess whether the scale variation

uncertainty is a reliable estimate of the true uncertainty due to missing higher orders in

perturbative QCD. We believe that this is most likely the case, because, at least for natural

choices of the scales in the interval [mH/4,mH ], the N3LO cross-section takes values within

the corresponding range of cross-section values at NNLO. Therefore, the progression of the

perturbative series from NNLO to N3LO corroborates the uncertainty obtained by the scale

variation. Indeed, for the central scale µ = mH/2 the N3LO cross-section is only ⇠ 3.1%

higher than at NNLO, i.e., the shift from NNLO to N3LO is of the same size as the scale

variation uncertainty at N3LO. We will therefore take the scale variation uncertainty as

our uncertainty estimate for missing higher-order QCD corrections at N4LO and beyond.

In Section 4, we will also discuss the e↵ect of missing higher orders through resummation

methods. This will give additional support to our claim that the scale variation at N3LO

provides a reliable estimate of missing higher orders beyond N3LO.

So far we have only discussed the scale variation for the total hadronic cross-section.

It is also interesting and instructive to analyze the scale dependence of the cross-section

for individual partonic channels. In Fig. 9 we present the scale dependence at N3LO of the

gluon-gluon channel, the quark-gluon channel and the total cross-section. The quark-quark

and quark-antiquark channels are very small and are not shown explicitly in the plot. We

see that, while the gluon-gluon channel dominates over the quark-gluon channel, the latter

is important in stabilizing the scale dependence of the total cross-section. Indeed, with the

exception of extremely small values of µ, the quark-gluon channel has the opposite slope as

the gluon-gluon channel, and therefore a somewhat larger scale variation of the gluon-gluon
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Scale variation

• Scale variation at N3LO almost entirely due to renormalisation 
scale.

• Scale uncertainty                             per order:µ 2 [mH/4,mH ]

Figure 4: The dependence of the cross-section on the factorization scale for a fixed value of the
renormalization scale.

small values of the renormalization scale. It is well known that the scale variation is very

large at LO and NLO, and it is still significant at NNLO. To emphasize this point, we

indicate in Fig. 3 by horizontal lines the range of predictions for the cross-section at each

perturbative order when µR varies in the interval [mH
4 ,mH ]. This interval seems to capture

the characteristic physical scales of the process, as indicated by the convergence pattern of

the series. We quantify the renormalization scale variation by looking at the spread around

the average value of the cross-section in this interval3, i.e., we define

�scale
EFT,k = ±�max

EFT,k � �min
EFT,k

�max
EFT,k + �min

EFT,k

100% , (3.11)

with

�max
EFT,k = max

µR2[mH/4,mH ]
�NkLO
EFT (µR) , (3.12)

and similarly for �min
EFT,k. We find

�scale
EFT,k

LO (k = 0) ±22.0%

NLO (k = 1) ±19.2%

NNLO (k = 2) ±9.5%

N3LO (k = 3) ±1.9%

Before we move on to study the dependence of the cross section on the factorisation scale,

we note that we evolve the strong coupling ↵s(µR) at N3LO, and we use and NNLO parton

densities at all perturbative orders. The scale variation di↵ers quantitatively from the

above table and the convergence of the perturbative series is faster than what is displayed

in Fig. 3 if one uses LO or NLO PDFs and ↵s evolution at the corresponding orders.

Let us now turn to the study of the factorisation scale dependence of the N3LO cross

section. In Fig. 4 we fix the renormalisation scale to µR = mH
2 and we vary the factorization

scale. We observe that at all pertubative orders the variation of the factorization scale is

much smaller than the corresponding variation of the renormalization scale. At N3LO, the

factorization scale dependence is practically constant over a wide range of values of µF .

A comment is in order concerning the self-consistency of the factorization scale varia-

tion at N3LO. Traditionally, in a LO computation of a hadronic cross-section the parton-

densities are not taken to be constant, but they are evolved with the one-loop Altarelli-

Parisi splitting functions P (0). Similarly, at NLO and NNLO the P (1) and P (2) corrections

to the splitting functions are included. Following this approach, one would be compelled

to include the yet unknown P (3) corrections to the splitting function in the evolution of

3not with respect to the central scale µR = mH
2
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• Important question: Is scale variation a reliable estimator of 
missing higher-order corrections?

➡ We know that it is not at low orders!

• For                             the N3LO band is nicely contained inside 
the NNLO band. 

µ 2 [mH/4,mH ]

Figure 8: The dependence of the cross-section on a common renormalization and factorization
scale µ = µF = µR.

�scale
EFT,k

LO (k = 0) ±14.8%

NLO (k = 1) ±16.6%

NNLO (k = 2) ±8.8%

N3LO (k = 3) ±1.9%

Table 5: Scale variation of the cross-section as defined in eq. (3.11) for a common renormalization
and factorization scale µ = µF = µR.

the treatment of both infrared and ultraviolet singularities. For a physical process such

as inclusive Higgs production, where one cannot identify very disparate physical scales,

large separations between the renormalization from the factorization scale entail the risk

of introducing unnecessarily large logarithms. In Fig. 8 we present the dependence of the

cross-section on a common renormalization and factorization scale µ = µR = µF . Through

N3LO, the behaviour is very close to the scale-variation pattern observed when varying

only the renormalization scale with the factorization scale held fixed. More precisely, using

the same quantifier as introduced in eq. (3.11) for the variation of the renormalization scale

only, the variation of the cross-section in the range [mH/4,mH ] for the common scale µ

is shown in Tab. 5. We observe that the scale variation with µR = µF is slightly reduced

compared to varying only the renormalization scale at NLO and NNLO, and this di↵erence

becomes indeed imperceptible at N3LO.

The scale variation is the main tool for estimating the theoretical uncertainty of a

cross-section in perturbative QCD, and it has been successfully applied to a multitude of
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Missing higher orders
• We estimate the effect of missing higher orders in different ways.

• In particular, in the limit where the final-state QCD radiation is 
soft, the dominant effect of the radiation can be predicted to all 
orders.
➡ Leading soft-gluon effects can be resummed into an 

exponential.

➡ Threshold resummation.
[Collins, Soper, Stermann; Catani, 

Mangano, Nason, Trentadue]

• There are different formalisms for doing this:

➡ They all exponentiate the same leading soft effects.

➡ They differ by the inclusion of subleading effects. 



Threshold resummation

NNLO

N3LO

N3LO+N3LL
NN3LO+N3LL AP2
NN3LO+N3LL PSI
NN3LO+N3LL PSI+AP2
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Figure 12: Scale variation with µ = µR = µF of the N3LO+N3LL cross-section within Setup 1
for di↵erent resummation schemes. The fixed-order cross-sections are shown for comparison.

All these schemes are formally equivalent resummation schemes, because they agree in

the large-N limit. However, the formally subleading corrections can have a significant

numerical impact. In Fig. 12 we show the cross-section predictions for the four di↵erent

resummation schemes discussed in this section. We observe that within our preferred range

of scales, µ 2 [mH/4,mH ], all four schemes considered in this paper give results that agree

within the fixed-order scale variation at N3LO, giving further support to our claim that the

scale variation at N3LO provides a reliable estimate of the remaining missing perturbative

orders. We note, however, that outside this range of scales the di↵erent prescriptions may

di↵er widely, and we know of no compelling argument why any one of these schemes should

be more correct or reliable than the others. Based on these two observations, we are led to

conclude that threshold resummation does not modify our result beyond its nominal theory

error interval over the fixed-order N3LO prediction when the scales are chosen in the range

[mH/4,mH ], and we will therefore not include the e↵ects of threshold resummation in

Mellin space into our final cross-section prediction.

4.3 Threshold and ⇡2-resummation in Soft-Collinear E↵ective Theory

In this section we discuss an alternative way to represent the soft-virtual cross-section

in Higgs production, based on ideas from Soft-Collinear E↵ective Theory (SCET) [30,

31, 96, 97, 98]. Just like in the case of threshold resummation in Mellin space, we start

by introducing the necessary terminology and review the main ideas, in particular the
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Soft-collinear effective theory

Figure 13: The Higgs boson production cross-section computed for the LHC using Setup 2 at
LO (green), NLO (orange), NNLO (blue), N3LO (red). Solid lines correspond to fixed-order (FO)
predictions and dashed lines to SCET predictions.

Unfortunately, not all anomalous dimensions required for the evolution of the N3LO

cross-section are known at this point. We therefore truncate all anomalous dimensions

at the maximally known order. Note that already at NNLO the unknown four-loop cusp

anomalous dimension would be required. We checked that the numerical dependence of

the result on the four-loop cusp anomalous dimension is small and insignificant for phe-

nomenological purposes.

In Fig. 13 we show the hadronic cross-section as a function of a common scale µ = µR =

µF . We observe that at lower orders there are significant di↵erences between fixed-order

and SCET-resummed cross-sections. At N3LO, the scale dependence of the resummed

cross-section is flat over a wide range of scales. The dependence of the SCET-resummed

cross-section on unphysical scales is reduced overall. This can be regarded as a means to find

an optimal central value for our prediction. Comparing fixed-order and SCET-resummed

cross-section predictions at N3LO we find perfect agreement for µ = mH/2, which supports

our preferred choice for the central scale. The upward bound of the uncertainty interval

obtained by means of scale variation is comparable to the one obtained for the fixed-order

cross-section. The lower bound of SCET-resummed cross-section scale variation interval is

well contained within the fixed-order interval.

To conclude the analysis, we also need to assess the stability of our result under a

variation of the soft, hard and top scales. We do this by varying these scales independently.

The top-quark scale µt and the hard scale µh are varied by a factor of two up and down

around their respective central values, while the soft scale is varied in the interval µs 2
[µs(mH/4,mH), µs(mH ,mH)]. The e↵ect of the variation of the hard, soft and top-quark
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• We seem to have good perturbative control on the Higgs cross 
section:

➡ Residual scale dependence ~1.9% (~10% @ NNLO).

➡ Estimation of higher-order effects through resummation 
methods indicates that scale variation is a reliable estimator 
for missing perturbative orders.

Higgs @ N3LO

➡ For                             there is good apparent convergence of 
the perturbative series. 

µ 2 [mH/4,mH ]

• We are in a good shape!

➡ But need to be careful not to neglect any other source of 
uncertainty that may challenge the 1.9%!



Other corrections

PDFs, 
Quark masses &

Electroweak corrections



Other uncertainties

� = ⌧
X

ij

Z 1

⌧

dz

z
Lij(⌧/z)

�̂ij(z)

z
↵s(mZ) = 0.118

• What are the residual uncertainties on the partonic cross sections    
a     and the parton luminosities       ?�̂ij Lij

• Other effects entering the perturbative partonic cross sections:

➡ Finite quark mass effects: so far we have considered the top-
quark infinitely heavy and all other quarks massless.

➡ Electroweak effects: so far we have only discussed QCD 
corrections.



Quark-mass effects
• At LO and NLO, we know the exact result including all quark 

mass effects.

➡ EFT known to work well if rescaled by the LO ratio.

where H is the Higgs boson field, Ga
µ⌫ is the gluon field strength tensor and LSM,5 denotes

the SM Lagrangian with Nf = 5 massless quark flavours. C is the Wilson coe�cient

obtained by matching the e↵ective theory to the full SM in the limit where the top quark

is infinitely heavy. QCD corrections to the production cross section �̂ij,EFT in the heavy-

top limit have been computed at NLO [] and NNLO []. Recently also the N3LO corrections

have become available []. One of the main goals of this work is to combine the N3LO

corrections in the large-mt limit with other e↵ects that can provide corrections at a similar

level of accuracy, in particular finite quark-mass e↵ects and electroweak corrections. We

also investigate the impact of the resummation of threshold logarithms up to next-to-next-

to-next-to-leading logarithmic accuracy (N3LL).

While the production cross section is known to high accuracy in the framework of

heavy-quark e↵ective theory, reaching a similar level of accuracy when including finite-

quark mass e↵ects (also from bottom and charm quarks) is currently beyond our technical

capabilities. Nonetheless, various quarks-mass e↵ects have been computed, which we con-

sistently include into our prediction (2.4). First, it was already observed at LO and NLO []

that the validity of the e↵ective theory can be greatly enhanced by rescaling the e↵ective

theory with the exact LO result. We therefore rescale the cross section �̂ij,EFT in the

e↵ective theory by the ratio

RLO ⌘ �LO
ex;t

�LO
EFT

, (2.6)

where �LO
ex;t denotes the exact (hadronic) LO cross section in the SM with a massive top

quark and Nf = 5 massless quarks. Moreover, at LO and NLO we know the exact result

for the production cross section in the SM, including all mass e↵ects from top, bottom and

charm quarks. We include these corrections into our prediction via the terms ��̂(N)LO
ij,ex;t,b,c

in eq. (2.4), consistently matched to the contributions from the e↵ective theory to avoid

double counting. As a consequence, eq. (2.4) agrees with the exact SM cross section (with

massless u, d and s quarks) through NLO in QCD. Beyond NLO, we only know the value

of the cross section in the heavy-top e↵ective theory. We can however include subleading

corrections at NNLO in the e↵ective theory as an expansion in the inverse top-mass [].

These e↵ects are taken into account through the term �t�̂NNLO
ij,EFT in eq. (2.4), rescaled by

RLO.

Finally, we also include electroweak corrections to the gluon fusion cross section through

the term �̂ij,EW in eq. (2.4). Unlike QCD corrections, electroweak corrections have only

been computed through NLO in the electromagnetic coupling constant ↵ []. Moreover,

mixed QCD-electroweak corrections, i.e., corrections proportional to ↵↵3
s, are known in an

e↵ective theory [], valid in the limit where not only the top quark but also the electroweak

bosons are much heavier than the Higgs boson. In this limit the interaction of the Higgs

boson with the W and Z bosons is described via a point-like vertex coupling the gluons

to the Higgs boson. Higher-order corrections in this limit can thus be included into the

Wilson coe�cient in front of the dimension-five operator in eq. (2.5).

In the remainder of this paper we give a detailed account of all the ingredients that

enter our best prediction for the inclusive gluon-fusion cross section. In addition, we
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of large perturbative corrections to the Higgs boson cross-section, and hence on its own

this procedure of predicting higher orders does not provide reliable estimates of the missing

dominant corrections.

5. Quark-mass e↵ects

So far we have only considered QCD corrections to the e↵ective theory where the top quark

is infinitely heavy. In this section we discuss e↵ects that are not captured by the e↵ective

theory, but that can still give rise to sizeable contributions. In particular, we discuss

the inclusion of quark-mass e↵ects from top, bottom and charm quarks, to the extent

that these corrections are available in the literature. We start by discussing the e↵ect of

quark masses at LO and NLO, where it is possible to obtain exact results including all

quark-mass e↵ects. In order to stress the importance of including these e↵ects, we remind

that the cross-section changes by +6.3% already at LO if the exact top-mass dependence

is taken into account. The exact mass dependence of the cross-section is also known at

NLO [5, 6, 7, 8, 9, 10, 11, 12, 40], and we can thus include all e↵ects from top, bottom

and charm quarks up to that order. The value of the cross-section through NLO as we

add quark-mass e↵ects for the parameters of Setup 1 (cf. Tab. 1) is summarized in Tab. 6.

Beyond NLO finite quark-mass e↵ects are in general unknown, and they can at best be

included in an approximate fashion.

Table 6: Quark-mass e↵ects for the parameters of Setup 1.

�LO
EFT 15.05 pb �NLO

EFT 34.66 pb

RLO �LO
EFT 16.00 pb RLO �NLO

EFT 36.84 pb

�LO
ex;t 16.00 pb �NLO

ex;t 36.60 pb

�LO
ex;t+b 14.94 pb �NLO

ex;t+b 34.96 pb

�LO
ex;t+b+c 14.83 pb �NLO

ex;t+b+c 34.77 pb

Let us start by analyzing finite top-mass e↵ects. The exact NLO cross-section is ap-

proximated well by rescaling the EFT cross-section at NLO by the leading-order ratio RLO

defined in eq. (2.6). For example, within Setup 1 we have RLO = 1.063, and we see from

Tab. 6 that the rescaled NLO cross-section in the e↵ective theory, RLO �NLO
EFT , reproduces

the NLO cross-section �NLO
ex;t with full top-mass dependence within 0.65%. Because of this,

it has become standard to multiply the EFT cross-section at NNLO by RLO, and we follow

this prescription also for the N3LO coe�cient.

In addition to this rescaling, in ref. [20, 21, 44, 45] top-mass corrections at NNLO

were computed as an expansion in mH/mt, after factorizing the exact LO cross-section.

We include these corrections into our prediction via the term �t�̂NNLO
ij,EFT in eq. (2.4). In

particular, we include the contribution from the subleading 1/mt terms for the numerically

significant gg and qg channels [45]. The gg channel increases the rescaled EFT cross-

section at NNLO by roughly +0.8%, while the qg channel leads to a negative contribution

of �0.1%, so that the total net e↵ect is of the order of +0.7%. Note that the small size
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• Scale uncertainty in rescaled EFT is 1.6% (vs. 1.9% in EFT) 
(because          runs in the        scheme).

where H is the Higgs boson field, Ga
µ⌫ is the gluon field strength tensor and LSM,5 denotes

the SM Lagrangian with Nf = 5 massless quark flavours. C is the Wilson coe�cient

obtained by matching the e↵ective theory to the full SM in the limit where the top quark

is infinitely heavy. QCD corrections to the production cross section �̂ij,EFT in the heavy-

top limit have been computed at NLO [] and NNLO []. Recently also the N3LO corrections

have become available []. One of the main goals of this work is to combine the N3LO

corrections in the large-mt limit with other e↵ects that can provide corrections at a similar

level of accuracy, in particular finite quark-mass e↵ects and electroweak corrections. We

also investigate the impact of the resummation of threshold logarithms up to next-to-next-

to-next-to-leading logarithmic accuracy (N3LL).

While the production cross section is known to high accuracy in the framework of

heavy-quark e↵ective theory, reaching a similar level of accuracy when including finite-

quark mass e↵ects (also from bottom and charm quarks) is currently beyond our technical

capabilities. Nonetheless, various quarks-mass e↵ects have been computed, which we con-

sistently include into our prediction (2.4). First, it was already observed at LO and NLO []

that the validity of the e↵ective theory can be greatly enhanced by rescaling the e↵ective

theory with the exact LO result. We therefore rescale the cross section �̂ij,EFT in the

e↵ective theory by the ratio

RLO ⌘ �LO
ex;t

�LO
EFT

, (2.6)

where �LO
ex;t denotes the exact (hadronic) LO cross section in the SM with a massive top

quark and Nf = 5 massless quarks. Moreover, at LO and NLO we know the exact result

for the production cross section in the SM, including all mass e↵ects from top, bottom and

charm quarks. We include these corrections into our prediction via the terms ��̂(N)LO
ij,ex;t,b,c

in eq. (2.4), consistently matched to the contributions from the e↵ective theory to avoid

double counting. As a consequence, eq. (2.4) agrees with the exact SM cross section (with

massless u, d and s quarks) through NLO in QCD. Beyond NLO, we only know the value

of the cross section in the heavy-top e↵ective theory. We can however include subleading

corrections at NNLO in the e↵ective theory as an expansion in the inverse top-mass [].

These e↵ects are taken into account through the term �t�̂NNLO
ij,EFT in eq. (2.4), rescaled by

RLO.

Finally, we also include electroweak corrections to the gluon fusion cross section through

the term �̂ij,EW in eq. (2.4). Unlike QCD corrections, electroweak corrections have only

been computed through NLO in the electromagnetic coupling constant ↵ []. Moreover,

mixed QCD-electroweak corrections, i.e., corrections proportional to ↵↵3
s, are known in an

e↵ective theory [], valid in the limit where not only the top quark but also the electroweak

bosons are much heavier than the Higgs boson. In this limit the interaction of the Higgs

boson with the W and Z bosons is described via a point-like vertex coupling the gluons

to the Higgs boson. Higher-order corrections in this limit can thus be included into the

Wilson coe�cient in front of the dimension-five operator in eq. (2.5).

In the remainder of this paper we give a detailed account of all the ingredients that

enter our best prediction for the inclusive gluon-fusion cross section. In addition, we
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MS

• Parametric dependence on the quark masses is negligible.

• There is a strong dependence on the renormalisation scheme at 
NLO for light quarks (~30% at NLO for the b quark).

[Djouadi, Graudenz, Spira, Zerwas; 
Anastasiou, Beerli, Bucherer, Daleo, Kunszt]



Quark-mass effects

• At NNLO, we do not know any quark mass effects exactly. 

➡ Beyond our technical capabilities at this point.

➡ We do not know t-b interference at NNLO.

[Harlander, Mantler, Marzani, Ozeren]
• NNLO top-mass effects have been computed as an expansion in 

the inverse top-mass.

➡ Give a contribution of ~+1%, with an uncertainty of ~1%.

• At NLO, the bottom quark contributed a substantial negative 
contribution to the cross section.

of these e↵ects corroborates the hypothesis that the cross-section in the e↵ective theory

rescaled by RLO gives a very good approximation of the exact result.

Despite the fact that the approximation is good, these contributions come with an

uncertainty of their own: the 1/mt expansion is in fact an expansion in s/m2
t , and con-

sequently it needs to be matched to the high-energy limit of the cross-section, known to

leading logarithmic accuracy from kt-factorization. The high-energy limit corresponds to

the contribution from small values of z to the convolution integral in eq. (2.1). Since this

region is suppressed by the luminosity, a lack of knowledge of the precise matching term is

not disastrous and induces an uncertainty of roughly 1%, which is of the order of magnitude

of the net contribution. In conclusion, following the analysis of ref. [45], whose conclusions

were confirmed by ref. [21], we assign an overall uncertainty of 1% due to the unknown

top-quark e↵ects at NNLO.

So far we have only discussed the e↵ect of including top mass e↵ects at NNLO. Despite

their suppressed Yukawa couplings, the bottom and charm quarks also contribute to the

Higgs cross-section, mainly through interference with the top quark. Indeed, we can easily

see from Tab. 6 that the inclusion of bottom-quark e↵ects at LO and NLO leads to sizeable

negative contributions to the cross-section, and hence it is not unreasonable to expect this

trend to continue at NNLO. Unlike the case of the top quark, however, the contributions of

the bottom and charm quarks at NNLO are entirely unknown. We estimate the uncertainty

of the missing interference between the top and light quarks within the MS as:

�(tbc)MS = ±
�����
��NLO

ex;t � ��NLO
ex;t+b+c

��NLO
ex;t

����� (RLO��
NNLO
EFT + �t�̂

NNLO
gg+qg,EFT ) ' ±0.31 pb , (5.1)

where

��NLO
X ⌘ �NLO

X � �LO
X and ��NNLO

X ⌘ �NNLO
X � �NLO

X . (5.2)

With respect to the NNLO cross-section with the exact top e↵ects described in the previous

paragraph, this uncertainty is at the level of 0.6%, but it becomes slightly larger at lower

energies. For example, at a 2 TeV proton-proton collider it increases to 1.1%.

So far, we have assumed that all quark masses are given in the MS-scheme. We now

analyze how our predictions are a↵ected if we use the on-shell (OS) scheme. In Tab. 7 we

summarize the values of the NLO cross-sections with the quark masses of Setup 1 (MS)

and Setup 2 (OS) for a common scale choice µF = µR = mH/2. Moreover, the ratio RLO

as well as the Wilson coe�cient multiplying the cross-section are functions of the top mass,

and so they are a↵ected by the choice of the renormalization scheme.

First, let us comment on the use of the OS-scheme for the top-quark mass on the

Wilson coe�cient. The analytic expression for the Wilson coe�cient in the two schemes is

the same through NNLO but di↵ers at N3LO (see Appendix A). However, this di↵erence

is compensated by the di↵erent values of the top-quark mass in the two schemes and the

numerical value of the Wilson coe�cient in the two schemes at N3LO agrees to better than

a per mille (see penultimate line of Tab. 7). Next, let us turn to the scheme-dependence

of RLO. For the top mass of Setup 1 (MS), the value of this ratio is RLO = 1.063, while

for the top mass of Setup 2 (OS), we find RLO = 1.066, i.e., the scheme dependence of the

rescaled EFT prediction is at the level of 0.3%.
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large
~100%

Electroweak corrections

• Exact NLO EW corrections are known. [Actis, Passarino, Sturm, Uccirati]

• There is an ambiguity of how to combine the QCD and 
electroweak interactions:

1 + ↵s �QCD + ↵EW �EW +O(↵s↵EW ) = (1 + ↵s �QCD)(1 + ↵EW �EW ) +O(↵s↵EW )

large
~100%

➡ Formally, these two expressions are equivalent in 
perturbation theory.

• Complete factorisation approach:
➡ Gives rise to an increase of ~5%.



Electroweak corrections

• Mixed EW-QCD corrections are only known as an EFT where 
the weak bosons are integrated out.

Table 6: Dependence on the renormalization scheme for the quark masses, setup 1 vs. setup 2

MS OS

�LO
ex;t+b+c 14.90[1] �LO

ex;t+b+c 16.12[1]

�NLO
ex;t 36.76[1] �NLO

ex;t 36.80[1]

�NLO
ex;t+b 35.09[1] �NLO

ex;t+b 34.63[1]

�NLO
ex;t+b+c 34.91[1] �NLO

ex;t+b+c 34.15 [1]

dependence of the EFT on the top quark mass is, as observed above, extremely mild, we

will focus on the exact QCD corrections, including the light quarks. The range of variation

is the one recommended by the internal note of the HXSWG [], which either conforms to

the PDG recommendation or is more conservative than that.

Table 7: Top quark

�mt = 1GeV �NLO
ex;t+b+c 34.91[1]

mt + �mt �NLO
ex;t+b+c 34.85[1]

mt � �mt �NLO
ex;t+b+c 34.93[1]

Table 8: Bottom quark

�mb = 0.03GeV �NLO
ex;t+b+c 34.91[1]

mb + �mb �NLO
ex;t+b+c 34.89[1]

mb � �mb �NLO
ex;t+b+c 34.92[1]

Table 9: Charm quark

�mc = 0.026 �NLO
ex;t+b+c 34.91[1]

mc + �mc �NLO
ex;t+b+c 34.90[1]

mc � �mc �NLO
ex;t+b+c 34.91[1]

We see clearly that the parametric uncertainties are entirely negligible, at the level of

0.17% or below. Even if we tripled the top quark mass uncertainty to 3GeV, the parametric

uncertainty on the NLO cross section would still be below 0.35%. One might worry that the

rescaling coe�cient defined in section 5.1 also depends on the top mass value, but in this

case too the parametric uncertainty doesn’t exceed 0.1%, and even with 3GeV variation

on the top mass, the e↵ect is still below 0.2%.

5.4 Electroweak corrections

The electroweak corrections to the LO gluon fusion cross-section have been computed in

[41]. For mh = 125GeV they amount to 5.2% of the LO cross section. The electroweak

corrections to the NLO gluon fusion cross-section, also known as mixed QCD-EW correc-

tions, are at present unknown. The contribution from light quarks, which at O(aewa2s)

is the dominant one accounting for 80% of the total EW corrections at that order), was

computed at [43], within an e↵ective field theory approach where the W,Z bosons are

integrated out. The corresponding Wilson coe�cient modifies the QCD Wilson coe�cient

CQCD ! CQCD + �EW (1 + C1was + C2wa
2
s + . . .) (5.3)

with

C1w =
7

6
(5.4)

The numerical e↵ect of such a correction is very similar to that of the approached termed

as ‘complete factorization’ in [41], bringing the EW contributions to the level of 5.1% of

the NLO cross section. Adopting the modification of the Wilson coe�cient also for higher
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➡ Modified Wilson coefficient.
NLO EW EW-QCD in EFT approach

[Anastasiou, Boughezal, Petriello]

• The factorisation issue could be settled by an exact computation 
of mixed QCD-EW corrections.

➡ Numerical impact is similar to ‘complete factorisation’ for EW 
corrections, ~5.1%.

➡ EFT approach misses threshold effects at                 , but the 
leading EW threshold effects should already be captured by 
NLO-EW.

O(↵s↵EW )



Other uncertainties

� = ⌧
X

ij

Z 1

⌧

dz

z
Lij(⌧/z)

�̂ij(z)

z
↵s(mZ) = 0.118

• What are the residual uncertainties on the partonic cross sections    
a     and the parton luminosities       ?�̂ij Lij

• Uncertainties affecting the parton luminosities and the strong 
coupling constant:

➡ Parton densities functions (PDFs) are not calculable from first 
principles but need to be extracted from data.

➡ Extraction and parametrisation of the PDFs introduce 
uncertainties

➡ So far, PDFs have only been extracted from NNLO data.



PDF + aS uncertainty
• We follow the PDF4LHC recommendation:

➡ PDF and      error are added in quadrature↵s

➡   aa    obtained by using Hessian or Monte Carlo methods.�PDF

For example, at a 2 TeV proton-proton collider the most conservative estimate of the

uncertainty is 0.8%.

7. PDF comparison

So far we have only discussed perturbative higher-order corrections to the partonic cross-

sections. The full hadronic cross-section is then obtained by convoluting the partonic

coe�cient functions by the parton distribution functions. In the last few years significant

progress has been made towards the improvement of the PDF fits, also through the inclusion

of new data from collider and fixed-target experiments. We refer to the analysis in the

latest PDF4LHC working group paper [109] for a review of the updated sets ABM12 [110],

CT14 [111], JR14 [112], MMHT2014 [113], NNPDF3.0 [114] and HERAPDF2.0 [115], which

are available through NNLO, as well as the NLO set CJ12 [116]. In this Section, we will

compare the predictions from various pdf sets using Setup 1 and the partonic cross-sections

derived in the rescaled EFT through N3LO for a factorisation and renormalisation scale

µ = mH/2.

The three sets that enter the PDF4LHC fit (CT14, MMHT14 and NNPDF3.0) and

HERAPDF2.0, are provided at the same value of the strong coupling constant as the global

PDF4LHC15 combination [109],

↵s(m
2
Z) = 0.118 . (7.1)

This value is consistent with the PDG average [117].

In Fig. 16 we compare the 68% C.L. predictions from CT14, MMHT2014 and NNPDF3.0

with those from the PDF4LHC15 combination. For comparison purposes, in this section

we combine (potentially asymmetric) PDF and ↵s uncertainties in quadrature7,

�±(PDF + ↵s) =
p
�±(PDF )2 + �±(↵s)2 . (7.2)

From Fig. 16, we observe that the predictions obtained from the three sets that enter

the PDF4LHC15 combination lie well within 1% of each other over the whole range of

center-of-mass energies from 2 to 15 TeV. In particular, MMHT2014 and NNPDF3.0 agree

at the per mille level. The combined PDF+↵s uncertainty is at the level of 3 � 4% for

LHC energies, and it captures very well the small di↵erences in the predictions among the

di↵erent sets.

Good agreement with the PDF4LHC15 predictions is also obtained for LHC energies

using the HERAPDF2.0 set (Fig. 17). HERAPDF2.0 does not enter the PDF4LHC fit,

but is given at the same central value of ↵s. However, these PDFs give a cross-section that

is about 6% lower at Tevatron energies, and increase above the PDF4LHC15 predictions

at higher center-of-mass energies.

7We note that the probabilistic interpretation of such an uncertainty combination in terms of confidence

level intervals is not straightforward, when the individual uncertainties are not symmetric [118]. For a

detailed discussion of the (PDF+↵s) uncertainty entering our final recommendation for the value of the

cross-section, see Section 8.
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➡   aauncertainty obtained by varying       up and down by 
0.00115 around PDG world average (0.118).
↵s ↵s

• There are various different PDF sets publicly available:

➡ MMHT, CTQ, NNPDF, ABM, HeraPDF,…

➡ MMHT, CTQ and NNPDF have been combined into a the 
PDF4LHC set.



PDF + aS uncertainty
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PDF + aS uncertainty

HERA
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Figure 17: Higgs production cross-section and 68% C.L. PDF+↵s uncertainty from the HERA-
PDF2.0 fit, normalized by the central value obtained with the PDF4LHC combination.

Figure 18: Higgs production cross-section and 68% C.L. PDF+↵s uncertainty from the ABM12
fit and from the CT14 set computed at ↵s = ↵ABM

s , normalized by the central value obtained with
the PDF4LHC combination.
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PDF + aS uncertaintyFigure 17: Higgs production cross-section and 68% C.L. PDF+↵s uncertainty from the HERA-
PDF2.0 fit, normalized by the central value obtained with the PDF4LHC combination.
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Figure 18: Higgs production cross-section and 68% C.L. PDF+↵s uncertainty from the ABM12
fit and from the CT14 set computed at ↵s = ↵ABM

s , normalized by the central value obtained with
the PDF4LHC combination.
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PDF + aS uncertainty

• We observe that MMHT, CTQ, NNPDf and HeraPDF give 
very similar predictions at LHC energies.

• ABM gives a rather different prediction. 

➡ ABM uses a different value of       resulting from their fit and 
different theoretical assumptions (e.g., different treatment of 
the charm-quark mass).    

↵s

• So far there are no PDF sets that have been extracted using 
N3LO input. 

➡ Inconsistent, because partonic cross section at N3LO is 
combined with NNLO PDFs.

➡ Need to estimate the uncertainty this induces.

➡ All our predictions at N3LO were made using NNLO PDFs.



Missing N3LO PDFs
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• From this, we estimate the uncertainty of using NNLO PDFs at 
N3LO

Missing N3LO PDFs
• Using NLO PDFs at NNLO results in a 2-2.5% error at NNLO.
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Figure 16: The perturbative expansion of the non-singlet structure function F2,ns up to three loops
(N3LO). On the left all curves are normalized to the leading-order result F LO

2,ns = qns given by
Eq. (5.2), on the right we show the relative effects of the two-loop and three-loop corrections.
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Figure 17: As Fig. 16, but for FL where the terms up to order αn+1
s form the NnLO approximation.

Also here the left plot is normalized to qns, facilitating a direct comparison with F2,ns.
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Photon DIS

[Moch, Vermaseren, Vogt]

• The factor 1/2 takes into account that this 
estimate is most likely overly conservative. 
➡ cf. convergence pattern of DIS.

(which is necessary for LO calculations in order to obtain qualitatively the physical energy

dependence of hadronic cross-sections) but it is not formally required. An inconsistency

may only arise due to the extraction of the parton densities from data for which there are

no N3LO predictions. In fact, this problem has already arisen at NNLO where in global

fits of parton distributions jet observables are fitted with NLO coe�cient functions. When

additional processes are computed at N3LO, it is expected that the gluon and other parton

densities will be extracted with di↵erent values. To our understanding, the uncertainties

assigned to the parton densities do not presently account for missing higher-order correc-

tions, but merely incorporate the experimental uncertainties of the data from which they

were extracted.

To assess this uncertainty we resort to the experience from the previous orders and

present in Fig. 7 the NNLO gluon-fusion cross-section using either NNLO or NLO parton

densities as a function of the factorization scale (for a fixed renormalization scale). We

notice that the shape of the two predictions is very similar, indicating that di↵erences in

the evolution kernels of the DGLAP equation beyond NLO have a small impact. However,

in the mass range [mH/4,mH ] the NNLO cross-section decreases by about 2.2 � 2.4%

when NNLO PDFs are used instead of NLO PDFs. We can attribute this shift mostly

to di↵erences in the extraction of the parameterization of the parton densities at NLO

and NNLO. Similarly, we can expect a shift to occur when the N3LO cross-section gets

evaluated in the future with N3LO parton densities rather than the currently available

NNLO sets. The magnitude of the potential shift will be determined from the magnitude

of the unknown N3LO corrections in standard candle cross-sections used in the extraction

of parton densities. Given that N3LO corrections are expected to be milder in general than

their counterparts at NNLO, we anticipate that they will induce a smaller shift than what

we observe in Fig. 7. Based on these considerations, we assign a conservative uncertainty

estimate due to missing higher orders in the extraction of the parton densities obtained as4

�(PDF� TH) =
1

2

�����
�(2),NNLO
EFT � �(2),NLO

EFT

�(2),NNLO
EFT

����� =
1

2
2.31% = 1.16% , (3.13)

where �(2),(N)NLO
EFT denotes the NNLO cross-section evaluated with (N)NLO PDFs at the

central scale µF = µR = mH/2. In the above, we assumed conservatively that the size of

the N3LO corrections is about half of the corresponding NNLO corrections. This estimate

is supported by the magnitude of the third-order corrections to the coe�cient functions for

deep inelastic scattering [92] and a related gluonic scattering process [93], which are the

only two coe�cient functions that were computed previously to this level of accuracy.

So far we have only studied the scale variation from varying µF and µR separately. The

separation into a renormalization and factorization scale is to a certain extent conventional

and somewhat artificial. Indeed, only one regulator and one common scale is required for

4An alternative way to estimate this uncertainty, based on the Cacciari-Houdeau (CH) method, was

presented in ref. [91]. The uncertainty obtained form the CH method is sizeably smaller than the uncertainty

in eq. (3.13), and we believe that the CH method may underestimate the size of the missing higher-order

e↵ects.
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Summary
• We have obtained the most precise theoretical prediction of the 

gluon-fusion cross section available to date!

➡ To be compared with

8. Recommendation for the LHC

In previous sections we have considered various e↵ects that contribute to the gluon-fusion

Higgs production cross-section at higher orders. In this section we combine all these e↵ects,

and as a result we are able to present the most precise prediction for the gluon-fusion cross-

section available to date. In particular (for the Setup 1 of Tab. 1) for a Higgs boson with

a mass mH = 125 GeV, the cross-section at the LHC with a center-of-mass energy of 13

TeV is

� = 48.58 pb+2.22 pb (+4.56%)
�3.27 pb (�6.72%) (theory)± 1.56 pb (3.20%) (PDF+↵s) . (8.1)

Equation (8.1) is one of the main results of our work. In the following, we will analyze it

in some detail.

Let us start by commenting on the central value of the prediction (8.1). Since eq. (8.1)

is the combination of all the e↵ects considered in previous sections, it is interesting to see

how the final prediction is built up from the di↵erent contributions. The breakdown of the

di↵erent e↵ects is:

48.58 pb = 16.00 pb (+32.9%) (LO, rEFT)

+20.84 pb (+42.9%) (NLO, rEFT)

� 2.05 pb (�4.2%) ((t, b, c), exact NLO)

+ 9.56 pb (+19.7%) (NNLO, rEFT)

+ 0.34 pb (+0.2%) (NNLO, 1/mt)

+ 2.40 pb (+4.9%) (EW, QCD-EW)

+ 1.49 pb (+3.1%) (N3LO, rEFT)

(8.2)

where we denote by rEFT the contributions in the large-mt limit, rescaled by the ratio

RLO of the exact LO cross-section by the cross-section in the EFT (see Section 5). All the

numbers in eq. (8.2) have been obtained by setting the renormalization and factorization

scales equal to mH/2 and using the same set of parton densities at all perturbative orders.

Specifically, the first line, (LO, rEFT), is the cross-section at LO taking into account only

the top quark. The second line, (NLO, rEFT) are the NLO corrections to the LO cross-

section in the rescaled EFT, and the third line, ((t, b, c), exact NLO), is the correction

that needs to be added to the first two lines in order to obtain the exact QCD cross-section

through NLO, including the full dependence on top, bottom and charm quark masses.

The fourth and fifth lines contain the NNLO QCD corrections to the NLO cross-section

in the rescaled EFT: (NNLO, rEFT) denotes the NNLO corrections in the EFT rescaled

by RLO, and (NNLO, 1/mt) contains subleading corrections in the top mass at NNLO

computed as an expansion in 1/mt. The sixth line, (EW, QCD-EW), contains the two-

loop electroweak corrections, computed exactly, and three-loop mixed QCD-electroweak

corrections, computed in an e↵ective theory approach. The last line, (N3LO, rEFT), is

the main addition of our work and contains the N3LO corrections to the NNLO rEFT

cross-section, rescaled by RLO. Resummation e↵ects, within the resummation frameworks

studied in Section 4, contribute at the per mille level for our choice of the central scale,

µ = mH/2, and are therefore neglected.
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uncertainty with the ABM12 set8:

�ABM12 = 45.07 pb+2.00 pb (+4.43%)
�2.88 pb (�6.39%) (theory)± 0.52 pb (1.17%) (PDF+↵s) . (8.3)

The significantly lower central value is mostly due to the smaller value of ↵s, which

however is also smaller than the world average.

It is also interesting to compare our prediction (8.1) to the value one would have

obtained without the knowledge of the N3LO corrections in the rEFT. We find

�NNLO = 47.02 pb +5.13 pb (10.9%)
�5.17 pb (11.0%) (theory)

+1.48 pb
�1.46 pb

(3.14%)
(3.11%) (PDF+↵s) . (8.4)

The central value in eq. (8.4) is obtained by summing all terms in eq. (8.2) except for

the term in the last line. Moreover, we do not include the uncertainties �(PDF-TH)

and �(trunc) from missing higher orders in the extraction of the parton densities and

from the truncation of the threshold expansion (because the NNLO cross-sections are

known in a closed analytic form). The scale variation uncertainty �(scale) at NNLO is

approximately five times larger than at N3LO. This explains the reduction by a factor

of two in the total �(theory) uncertainty by including the N3LO corrections presented in

this publication. We stress at this point that uncertainties on the NNLO cross-section

have been investigated by di↵erent groups in the past, yielding a variety of uncertainty

estimates at NNLO [46, 51, 52, 100, 119, 120, 121, 122]. Here we adopt exactly the same

prescription to estimate the uncertainty at NNLO and at N3LO, and we do not only rely

on scale variation for the NNLO uncertainty estimate, as was often done in the past.

Finally, we have also studied how our predictions change as we vary the center-of-mass

energy and the value of the Higgs mass. Our predictions for di↵erent values of the proton-

proton collision energy and a Higgs mass of mH = 125 GeV are summarized in Tab. 10.

In comparison to the o�cial recommendation of the LHC Higgs Cross-section Working

Group earlier than our work [48], our results have a larger central value by about 11%.

The di↵erence can be attributed to the choice of optimal renormalization and factorization

scale, the e↵ect of the N3LO corrections, the di↵erent sets of parton distribution functions

and value of ↵s as well as smaller di↵erences due to the treatment of finite quark-mass

e↵ects. In comparison to the earlier recommendation from some of the authors in ref. [120],

our result has a central value which is higher by 3.5%. The di↵erence can be attributed to

the e↵ect of the N3LO corrections, the di↵erent sets of parton distribution functions and

value of ↵s as well as smaller di↵erences due to the treatment of finite quark-mass e↵ects.

Additional cross-section predictions for a variety of collider energies and Higgs boson

masses can be found in Appendix E.

9. Conclusion

In this paper we have presented the most precise prediction for the Higgs boson gluon-

fusion cross-section at the LHC. In order to achieve this task, we have combined all known

8We use the abm11 5 as nlo and abm11 5 as nnlo set to estimate the �(PDF-TH): these sets are fits

with a fixed value of ↵s which allows us to compare NLO and NNLO grids for the same ↵s value. Using

this prescription �(PDF-TH)= 1.1% very similar to the corresponding uncertainty for the set.
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➡ Theoretical uncertainty reduced by roughly a factor of 2!

Next, let us analyze the uncertainties quoted in our cross-section prediction. We

present our result in eq. (8.1) with two uncertainties which we describe in the following. The

first uncertainty in eq. (8.1) is the theory uncertainty related to missing corrections in the

perturbative description of the cross-section. Just like for the central value, it is interesting

to look at the breakdown of how the di↵erent e↵ects build up the final number. Collecting

all the uncertainties described in previous sections, we find the following components:

�(scale) �(trunc) �(PDF-TH) �(EW) �(t, b, c) �(1/mt)

+0.10 pb
�1.15 pb ±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb

+0.21%
�2.37% ±0.37% ±1.16% ±1% ±0.83% ±1%

In the previous table, �(scale) and �(trunc) denote the scale and truncation uncertainties

on the rEFT cross-section, and �(PDF-TH) denotes the uncertainty on the cross-section

prediction due to our ignorance of N3LO parton densities, cf. Section 3. �(EW), �(t, b, c)

and �(1/mt) denote the uncertainties on the cross-section due to missing quark-mass e↵ects

at NNLO and mixed QCD-EW corrections. The first uncertainty in eq. (8.1) is then

obtained by adding linearly all these e↵ects. The parametric uncertainty due to the mass

values of the top, bottom and charm quarks is at the per mille level, and hence completely

negligible. We note that including into our prediction resummation e↵ects in the schemes

that we have studied in Section 4 would lead to a very small scale variation, which we

believe unrealistic and which we do not expect to capture the uncertainty due to missing

higher-order corrections at N4LO and beyond. Based on this observation, as well as on the

fact that the definition of the resummation scheme may su↵er from large ambiguities, we

prefer a prudent approach and we adopt to adhere to fixed-order perturbation theory as

an estimator of remaining theoretical uncertainty from QCD.

The second uncertainty in eq. (8.1) is the PDF+↵s uncertainty due to the determina-

tion of the parton distribution functions and the strong coupling constant, following the

PDF4LHC recommendation. When studying the correlations with other uncertainties in

Monte-Carlo simulations, it is often necessary to separate the PDF and ↵s uncertainties:

�(PDF) �(↵s)

±0.90 pb +1.27pb
�1.25pb

±1.86% +2.61%
�2.58%

Since the �(↵s) error is asymmetric, in the combination presented in eq. (8.1) we conser-

vatively add in quadrature the largest of the two errors to the PDF error.

As pointed out in Section 7, the PDF4LHC uncertainty estimate quoted above does

not cover the cross-section value as predicted by the ABM12 set of parton distribution func-

tions. For comparison we quote here the corresponding cross-section value and PDF+↵s
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• Breakdown of the uncertainties:



Summary

• Places where we can improve:

➡ top-bottom interference at NNLO in QCD.
➡ N3LO PDFs.
➡ Exact mixed QCD-EW corrections.
➡ NNLO corrections including exact top-mass dependence.

8. Recommendation for the LHC

In previous sections we have considered various e↵ects that contribute to the gluon-fusion

Higgs production cross-section at higher orders. In this section we combine all these e↵ects,

and as a result we are able to present the most precise prediction for the gluon-fusion cross-

section available to date. In particular (for the Setup 1 of Tab. 1) for a Higgs boson with

a mass mH = 125 GeV, the cross-section at the LHC with a center-of-mass energy of 13

TeV is

� = 48.58 pb+2.22 pb (+4.56%)
�3.27 pb (�6.72%) (theory)± 1.56 pb (3.20%) (PDF+↵s) . (8.1)

Equation (8.1) is one of the main results of our work. In the following, we will analyze it

in some detail.

Let us start by commenting on the central value of the prediction (8.1). Since eq. (8.1)

is the combination of all the e↵ects considered in previous sections, it is interesting to see

how the final prediction is built up from the di↵erent contributions. The breakdown of the

di↵erent e↵ects is:

48.58 pb = 16.00 pb (+32.9%) (LO, rEFT)

+20.84 pb (+42.9%) (NLO, rEFT)

� 2.05 pb (�4.2%) ((t, b, c), exact NLO)

+ 9.56 pb (+19.7%) (NNLO, rEFT)

+ 0.34 pb (+0.2%) (NNLO, 1/mt)

+ 2.40 pb (+4.9%) (EW, QCD-EW)

+ 1.49 pb (+3.1%) (N3LO, rEFT)

(8.2)

where we denote by rEFT the contributions in the large-mt limit, rescaled by the ratio

RLO of the exact LO cross-section by the cross-section in the EFT (see Section 5). All the

numbers in eq. (8.2) have been obtained by setting the renormalization and factorization

scales equal to mH/2 and using the same set of parton densities at all perturbative orders.

Specifically, the first line, (LO, rEFT), is the cross-section at LO taking into account only

the top quark. The second line, (NLO, rEFT) are the NLO corrections to the LO cross-

section in the rescaled EFT, and the third line, ((t, b, c), exact NLO), is the correction

that needs to be added to the first two lines in order to obtain the exact QCD cross-section

through NLO, including the full dependence on top, bottom and charm quark masses.

The fourth and fifth lines contain the NNLO QCD corrections to the NLO cross-section

in the rescaled EFT: (NNLO, rEFT) denotes the NNLO corrections in the EFT rescaled

by RLO, and (NNLO, 1/mt) contains subleading corrections in the top mass at NNLO

computed as an expansion in 1/mt. The sixth line, (EW, QCD-EW), contains the two-

loop electroweak corrections, computed exactly, and three-loop mixed QCD-electroweak

corrections, computed in an e↵ective theory approach. The last line, (N3LO, rEFT), is

the main addition of our work and contains the N3LO corrections to the NNLO rEFT

cross-section, rescaled by RLO. Resummation e↵ects, within the resummation frameworks

studied in Section 4, contribute at the per mille level for our choice of the central scale,

µ = mH/2, and are therefore neglected.
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Next, let us analyze the uncertainties quoted in our cross-section prediction. We

present our result in eq. (8.1) with two uncertainties which we describe in the following. The

first uncertainty in eq. (8.1) is the theory uncertainty related to missing corrections in the

perturbative description of the cross-section. Just like for the central value, it is interesting

to look at the breakdown of how the di↵erent e↵ects build up the final number. Collecting

all the uncertainties described in previous sections, we find the following components:

�(scale) �(trunc) �(PDF-TH) �(EW) �(t, b, c) �(1/mt)

+0.10 pb
�1.15 pb ±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb

+0.21%
�2.37% ±0.37% ±1.16% ±1% ±0.83% ±1%

In the previous table, �(scale) and �(trunc) denote the scale and truncation uncertainties

on the rEFT cross-section, and �(PDF-TH) denotes the uncertainty on the cross-section

prediction due to our ignorance of N3LO parton densities, cf. Section 3. �(EW), �(t, b, c)

and �(1/mt) denote the uncertainties on the cross-section due to missing quark-mass e↵ects

at NNLO and mixed QCD-EW corrections. The first uncertainty in eq. (8.1) is then

obtained by adding linearly all these e↵ects. The parametric uncertainty due to the mass

values of the top, bottom and charm quarks is at the per mille level, and hence completely

negligible. We note that including into our prediction resummation e↵ects in the schemes

that we have studied in Section 4 would lead to a very small scale variation, which we

believe unrealistic and which we do not expect to capture the uncertainty due to missing

higher-order corrections at N4LO and beyond. Based on this observation, as well as on the

fact that the definition of the resummation scheme may su↵er from large ambiguities, we

prefer a prudent approach and we adopt to adhere to fixed-order perturbation theory as

an estimator of remaining theoretical uncertainty from QCD.

The second uncertainty in eq. (8.1) is the PDF+↵s uncertainty due to the determina-

tion of the parton distribution functions and the strong coupling constant, following the

PDF4LHC recommendation. When studying the correlations with other uncertainties in

Monte-Carlo simulations, it is often necessary to separate the PDF and ↵s uncertainties:

�(PDF) �(↵s)

±0.90 pb +1.27pb
�1.25pb

±1.86% +2.61%
�2.58%

Since the �(↵s) error is asymmetric, in the combination presented in eq. (8.1) we conser-

vatively add in quadrature the largest of the two errors to the PDF error.

As pointed out in Section 7, the PDF4LHC uncertainty estimate quoted above does

not cover the cross-section value as predicted by the ABM12 set of parton distribution func-

tions. For comparison we quote here the corresponding cross-section value and PDF+↵s
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