CP-even scalar boson production via gluon fusion at the LHC

Elisabetta Furlan ETH Zurich

> In collaboration with Babis Anastasiou, Claude Duhr, Ialko Dulat, Ihomas Gehrmann, Iranz Herzog, Achilleas Lazopoulos, Bernhard Mistlberger

LHC Run II and the Precision Frontier, KITP Santa Barbara 5/19/2016

- After the discovery of the Higgs boson, many moved their hopes towards observing hints of new physics
- Many beyond-the Standard Model scenarios predict the existence of new particles that should be within the reach of the LHC...
- ... including additional scalar resonances

 (although maybe not one of the most expected, at
 least at low mass)

"Why such and an area pretiminary Data" Data "On a pretiminary Data" Data "In" ATLAS Preliminary Data "Data" Data "Data" Data" Data "Data" Data" Data"

- It surely is too early for big celebrations - the local significance is about 3.9σ in ATLAS and 3.4σ in CMS...

- It surely is too early for big celebrations - the local significance is about 3.9σ in ATLAS and 3.4σ in CMS...

- It surely is too early for big celebrations - the local significance is about 3.9σ in ATLAS and 3.4σ in CMS...

... yet, this excess is exemplary for the kind of signals that may arise from the production of an heavy scalar at the LHC

• Due to the large gluon luminosity, gluon fusion is one of the most likely production channels for an Higgs-like scalar

\sqrt{S}	$C_{b\bar{b}}$	$C_{c\bar{c}}$	$C_{s\bar{s}}$	$C_{d\bar{d}}$	$C_{u\bar{u}}$	C_{gg}	$C_{\gamma\gamma}$
$8\mathrm{TeV}$	1.07	2.7	7.2	89	158	174	11
$13\mathrm{TeV}$	15.3	36	83	627	1054	2137	54

$$\sigma(pp \to S) = \frac{1}{sM_S} \sum_{in} C_{in,in} \Gamma_{in} \qquad , in = \{g, b, c, s, u, d, \gamma\}$$

Franceschini et al., JHEP 03:144, 2016

Our approach: "agnostic"

- no assumption on the UV theory beyond the production of the new scalar *S*
- effective theory: *S* couples to the gluons through a dimension 5 effective operator

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4v} C_S \, S \, G^a_{\mu\nu} G^{\mu\nu}_a$$

 same low-energy theory as the one describing the Higgs dimension-five couplings after decoupling the top quark

• can write the production cross section as

$$\sigma_S(m_S, \Lambda_{
m UV}) = \left|C_S(\mu, \Lambda_{
m UV})
ight|^2 \eta(\mu, m_S)$$

mass scale

from dim. reg.

• can write the production cross section as

 $\sigma_S(m_S, \Lambda_{\rm UV}) = |C_S(\mu, \Lambda_{\rm UV})|^2 \eta(\mu, m_S)$

scale of new physics / cutoff scale of the effective theory description

typical mass scale of the heavy particles that have been integrated out

example: for gluon-fusion Higgs production in the light-flavour SM, $\Lambda_{UV} \sim m_t$

• can write the production cross section as

 $\sigma_S(m_S, \Lambda_{\rm UV}) = |C_S(\mu, \Lambda_{\rm UV})|^2 \eta(\mu, m_S)$

- matrix element in the effective theory
- for a CP-even, colourless scalar produced in gluon fusion, it is the same matrix element as the one for $gg \to H$
- known through N³LO, with the N³LO term computed as an expansion around the Higgs threshold

• can write the production cross section as

 $\sigma_S(m_S, \Lambda_{\rm UV}) = |C_S(\mu, \Lambda_{\rm UV})|^2 \eta(\mu, m_S)$

 derive the production cross section of S from the one for H as

 $\left|\sigma_S(m_S, \Lambda_{\rm UV}) = \left|\frac{C_S(\mu, \Lambda_{\rm UV})}{C_H(\mu, m_t)}\right|^2 \sigma_H(m_S, m_t)\right|$

• can write the production cross section as

 $\sigma_S(m_S, \Lambda_{\rm UV}) = |C_S(\mu, \Lambda_{\rm UV})|^2 \eta(\mu, m_S)$

- the factorisation of the cross section introduces terms beyond N³LO
- they are captured by the scale variation theory error if one uses

$$\mu_{\text{central}} = \frac{m_S}{2} \quad , \quad \mu \in \left[\frac{m_S}{4}, m_S\right]$$

- such choice of scales might introduces large logs
- for example, beyond NLO the SM Wilson coefficient contains terms in $\log(m_t/\mu)$
 - can be more convenient to evaluate the SM Wilson coefficient with a top mass set to a larger values, for example the scale of new physics:

$$\sigma_H(m_S, \Lambda_{\rm UV}) = \left| \frac{C_H(\mu, \Lambda_{\rm UV})}{C_H(\mu, m_t)} \right|^2 \sigma_H(m_S, m_t)$$

 for all the range of scalar masses from 10 GeV to 3 TeV (HXSWG recommendations), good convergence of the perturbative expansion at N³LO

Scale dependence

The theory error

- As in the SM calculation, the theory error includes
 - scale variation $\mu \in \left[\frac{m_S}{4}, m_S\right]$
 - truncation error from the threshold expansion $\delta(\text{trunc}) = 10 \times \frac{\sigma_{EFT}^{(3)}(37) - \sigma_{EFT}^{(3)}(27)}{\sigma_{EFT}^{N^3 \text{LO}}}$
 - missing N³LO parton distributions

$$\delta(\text{PDF} - \text{TH}) = \frac{1}{2} \begin{vmatrix} \sigma_{EFT}^{(2),NNLO} - \sigma_{EFT}^{(2),NLO} \\ \sigma_{EFT}^{(2),NNLO} \end{vmatrix}$$

The theory error

- caveat: we use the PDF set PDF4LHC15 in all the calculations but in the estimate of the PDF-TH error
 - ➡ accidental cancellation for scalar masses around 770 GeV!
 - ➡ for the PDF-TH error, take the envelope of the PDF-TH error given by CT14, NNPDF3.0 and PDF4LHC15
 - → error typically of a few % (cfr. SM, 1.1%), but rapid increase to $\mathcal{O}(10\%)$ for scalar masses below 20 GeV

- Previous result only holds for a scalar with negligible width
- Can be generalised to a narrow-width resonance as

$$\sigma_S(m_S, \Gamma_S, \Lambda_{\rm UV}) = \int dQ^2 \frac{Q\Gamma_S(Q)}{\pi} \frac{\sigma_S(Q, \Gamma_S = 0, \Lambda_{\rm UV})}{(Q^2 - m_S^2)^2 + m_S^2\Gamma^2(m_S)}$$

⇒ introduces an additional error of

$$\mathcal{O}\left(\frac{\Gamma_S(m_S)}{m_S}\right) \sim 6\%$$

for a 750 GeV scalar with a width of 45 GeV

 In many beyond-the Standard Model scenarios the width around the peak does not depend on the virtuality

 $\Gamma_S(Q \approx m_S) = \Gamma_S$

obtain the invariant mass distribution from an interpolation of the zero-width cross sections

• Can perform a parametric fit for the line-shape; for example, for a 13 TeV collider and a scalar between 0.5 and 3 TeV,

$$\sigma_S(x) \approx \left(1 - \sqrt[3]{x}\right)^{9.71562} x^{-0.0040194 \log^3 x}$$
$$x^{-0.0474683 \log^2 x - 0.240878 \log x - 1.81243} \text{ pb}$$

 $x = \frac{Q(\text{GeV})}{13 \text{ TeV}}$

• How good is the EFT if the scalar couples to "light" particles?

- Example: 750 GeV scalar coupling to a top-like quark of mass m_T
- Can compute the cross section exactly through NLO and compare it with the prediction from the effective theory,

$$\delta_{\rm EFT} = \frac{\sigma_{\rm exact}^{\rm NLO}(m_T) - \sigma_{\rm EFT}^{\rm NLO}}{\sigma_{\rm exact}^{\rm NLO}} \times 100$$

• The EFT is typically "improved" by rescaling with the exact LO cross section,

$$\sigma_{\rm rEFT}^{\rm NLO} = \frac{\sigma_{\rm exact}^{\rm LO}}{\sigma_{\rm EFT}^{\rm LO}} \, \sigma_{\rm EFT}^{\rm NLO}$$

• Much better agreement with the exact NLO result!

• The EFT is typically "improved" by rescaling with the exact LO cross section,

$$\sigma_{\rm rEFT}^{\rm NLO} = \frac{\sigma_{\rm exact}^{\rm LO}}{\sigma_{\rm EFT}^{\rm LO}} \, \sigma_{\rm EFT}^{\rm NLO}$$

• Much better agreement with the exact NLO result!

even in the presence of light new particles, can use the effective theory to compute the K-factors w.r.t. the exact LO cross section

Top-quark contributions

- In many extensions of the SM, new scalars can couple to the heavier SM particles, as the top quark (for example, to explain its large mass)
- For a light new scalar, can use an effective ggS vertex analogous to the SM one also for the top...
- ... but if the scalar is heavy, we cannot integrate the top out \rightarrow model the top-scalar interaction as

$$\mathcal{L}_{\text{eff}} = -\frac{\lambda_{\text{wc}}}{4v} C S G^a_{\mu\nu} G^{\mu\nu}_a - \lambda_t \frac{m_t}{v} S \bar{t}t$$
$$\lambda_{\text{wc}} = \frac{C_S}{C_H} \qquad \qquad \lambda_t = \frac{Y_{ttS}}{Y_{ttH}}$$

Top-quark contributions

• The NLO cross section becomes

$$\sigma_{S}^{\text{NLO}}[\lambda_{\text{wc}}, \lambda_{t}] = |\lambda_{\text{wc}}\mathcal{A}_{\text{wc}} + \lambda_{t}\mathcal{A}_{t}|^{2} \\ = \lambda_{\text{wc}}(\lambda_{\text{wc}} - \lambda_{t})\sigma_{S}^{\text{NLO}}[1, 0] \\ + \lambda_{t}(\lambda_{t} - \lambda_{\text{wc}})\sigma_{S}^{\text{NLO}}[0, 1] \\ + \lambda_{\text{wc}}\lambda_{t}\sigma_{S}^{\text{NLO}}[1, 1]$$

 $\sigma_S^{\text{NLO}}[1,0] = |\mathcal{A}_{\text{wc}}|^2 \longrightarrow \text{ cross section in the EFT}$ $\Rightarrow \text{ can use the N^3LO one}$

Top-quark contributions

• The NLO cross section becomes

$$\sigma_{S}^{\text{NLO}}[\lambda_{\text{wc}}, \lambda_{t}] = |\lambda_{\text{wc}}\mathcal{A}_{\text{wc}} + \lambda_{t}\mathcal{A}_{t}|^{2}$$

$$= \lambda_{\text{wc}}(\lambda_{\text{wc}} - \lambda_{t})\sigma_{S}^{\text{NLO}}[1, 0]$$

$$+ \lambda_{t}(\lambda_{t} - \lambda_{\text{wc}})\sigma_{S}^{\text{NLO}}[0, 1]$$

$$+ \lambda_{\text{wc}}\lambda_{t}\sigma_{S}^{\text{NLO}}[1, 1]$$

 $\sigma_{S}^{\text{NLO}}[1,0] = |\mathcal{A}_{\text{wc}}|^{2} \longrightarrow \text{ cross section in the EFT}$ $\sigma_{S}^{\text{NLO}}[0,1] = |\mathcal{A}_{\text{t}}|^{2} \longrightarrow \text{ full top-mass} \longrightarrow \text{NLO}$ $\sigma_{S}^{\text{NLO}}[1,1] = |\mathcal{A}_{\text{t}} + \mathcal{A}_{\text{wc}}|^{2} \longrightarrow \text{ dependance}$

Theory error

• Lead by the NLO terms \rightarrow evaluate it as

 $\frac{\delta\sigma^{\text{NLO}}[n_1, n_2]}{\sigma^{\text{NLO}}[n_1, n_2]} = \pm \delta_{\text{>NLO}} \left(1 + \delta_{\text{scheme}}[n_1, n_2]\right), \quad n_i \in \{0, 1\}$

with

$$\delta_{>\text{NLO}} = \left(\frac{\sigma^{\text{N}^{3}\text{LO}}[1,0] - \sigma^{\text{NLO}}[1,0]}{\sigma^{\text{NLO}}[1,0]}\right)_{\text{EFT}}$$

estimate of missing contributions beyond NLO in the effective theory

Theory error

• Lead by the NLO terms \rightarrow evaluate it as

 $\frac{\delta\sigma^{\text{NLO}}[n_1, n_2]}{\sigma^{\text{NLO}}[n_1, n_2]} = \pm \delta_{\text{>NLO}} \left(1 + \delta_{\text{scheme}}[n_1, n_2] \right), \quad n_i \in \{0, 1\}$

with

$$\delta_{>\text{NLO}} = \left(\frac{\sigma^{\text{N}^{3}\text{LO}}[1,0] - \sigma^{\text{NLO}}[1,0]}{\sigma^{\text{NLO}}[1,0]}\right)_{\text{EFT}}$$

$$\delta_{\text{scheme}}[n_1, n_2] = \frac{\left|\sigma_{\text{exact}}^{\text{NLO}, \overline{\text{MS}}}[n_1, n_2] - \sigma_{\text{exact}}^{\text{NLO}, \text{OS}}[n_1, n_2]\right|}{\sigma_{\text{exact}}^{\text{NLO}, \overline{\text{MS}}}[n_1, n_2]}$$

scheme-dependence of top-quark contributions at NLO

Cross section components

- provide the $\sigma_S^{N^{x}LO}[n_1, n_2]$ for S production with SM-like Yukawa couplings at various collider energies and scalar masses
- they can be adapted to specific models by just rescaling the interactions

$\cdot \sqrt{s}$	Component	value[fb]	δ (theory) [%]	$\delta(\mathrm{pdf}+\alpha_S)$ [%]
8 TeV	$\sigma_S^{ m N^3LO}[1,0]$	111.4	$+1.9 \\ -4.0$	6.1
	$\sigma_S^{ m NLO}[1,0]$	89.37	19.18	6.23
	$\sigma_S^{ m NLO}[0,1]$	98.92	22.3	6.22
	$\sigma_S^{ m NLO}[1,1]$	245.3	21.71	6.2
$13 { m TeV}$	$\sigma_S^{ m N^3LO}[1,0]$	496.9	$+2.0 \\ -3.7$	4.0
	$\sigma_S^{ m NLO}[1,0]$	404.6	18.3	4.5
	$\sigma_S^{ m NLO}[0,1]$	442.7	21.3	4.4
	$\sigma_S^{ m NLO}[1,1]$	1108	20.7	4.4
				$m_S = 750 \text{ Ge}$

Cross section components

• good convergence of the top component to the EFT for low values of the scalar mass

$m_S \; [\text{GeV}]$	$\sigma_{S}^{NLO}[1,1][\text{pb}]$	$\sigma_{S}^{NLO}[1,0][\text{pb}]$	$\sigma_{S}^{NLO}[0,1][\text{pb}]$
50	687.1	171.4	172.3
55	593.9	148.1	149.0
60	518.3	129.0	130.2
65	455.9	113.4	114.6
70	404.0	100.4	101.7
	XX		

 $\times 4$

 \Rightarrow can use the N³LO EFT cross section

Cross section components

- can also perform parametric fits
- example: at 13 TeV, for the PDF4LHC15 set and a scalar between 500 GeV and 1 TeV,

$$\begin{split} \sigma_S^{\rm NLO}[1,1]/\rm{pb} &= 1.0459 \times 10^8 x^2 + \frac{478.474}{x^2} - 7.72699 \times 10^7 x^2 \log x \\ &\quad - 8.14486 \times 10^7 x - \frac{2.50557 \times 10^6}{x} - 95661.5 \log^2 x \\ &\quad - \frac{71863.4 \log^2 x}{x} - 7.67177 \times 10^7 x \log x \\ &\quad - 1.27372 \times 10^7 \log x - \frac{802665 \log x}{x} - 3.08306 \times 10^7 \,, \end{split}$$

$$\sigma_S^{\rm NLO}[1,0]/\rm{pb} = \dots$$

$$\sigma_S^{\rm NLO}[0,1]/\rm{pb} = \dots$$

Production of a CP-even scalar S:

- gluon-fusion is one of the most favourable channels
- in an EFT, can compute the cross section through N³LO from the analogous result for Higgs production, choosing as central scale $\mu = m_S/2$
- in the theory error, account for scale variation, threshold truncation and missing N³LO PDFs
- for example, for a scalar of 750 GeV the theory error is about (+2%,-4%) for all relevant LHC energies

Validity of the EFT:

 for a relatively light particle mediating the production of S (expect errors around 60% in the threshold region for the-pair production of the mediator)

 can still be used to estimate the K-factors in an EFT, can compute the cross section through N³LO from the analogous result for Higgs production, choosing as central scale

Top-quark contributions:

- for an heavy scalar, can be computed only through NLO \rightarrow large theory uncertainty ($\mathcal{O}(20\%)$)
- for a light scalar, can use an EFT Wilson coefficient also for the top $\rightarrow N^3LO$ accuracy

 We provided the ingredients to compute the cross section for the production of a CP-even scalar via gluon fusion using the most precise higher order QCD corrections available, once its Wilson coefficient and the top-Yukawa coupling are known