Three-jet event shapes: old and new

Zoltán Trócsányi

University of Debrecen and MTA-DE Particle Physics Research Group in collaboration with

V. Del Duca, C. Duhr, A. Kardos, G. Somogyi,
Z. Szőr, Z. Tulipánt based on arXiv:1606.03453

LHC Run II and the Precision Frontier workshop, KITP June 15, 2016

Outline

Why event shapes?

- Why NNLO?
- Our CoLoRFulNNLO method: recipe in a nut-shell with historical remarks
- Main difficulty
- Rewards of solution
- Event shapes: old and new
- Conclusions

Why event shapes?

Higgs+tt̄ production, LHC 13 TeV

Why event shapes?

value of the strong coupling matters
Higgs+tt production, LHC 13 TeV

Why event shapes?

value of the strong coupling matters
Higgs+tt̄ production, LHC 13 TeV

\checkmark are sensitive to a_{s}
\checkmark are measured extensively
\checkmark can be computed from first principles (assuming local parton-hadron duality)

Why NNLO?

Why NNLO?

- LO vs. NLO vs. data:

Why NNLO?

- LO vs. NLO vs. data:
- three-jet event
 shapes
\checkmark suffer large NLO corrections
\checkmark NNLL or NNNLL resummation available
\checkmark analytic model for hadronization available

Shapes at NLO+NLL+power corr.+had. mass

D. Wicke, G. Salam hep-ph/0102343

Shapes at NLO+NLL+power corr.+had. mass

Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values for α_{s} which are about 10% smaller than for inclusive variables like the thrust or the mean jet mass. This needs to be understood. It could be due to a difference in the behaviour of the perturbation series at higher orders. But in appendix D there is evidence from Monte Carlo
$0.1 \begin{array}{ccccc} & & & \ldots & \ldots \\ 0.110 & 0.115 & 0.120 & 0.125 & 0.130 \\ & & \alpha_{s}\left(\mathrm{M}_{\mathrm{Z}}\right) & & \end{array}$

Problem

$$
\begin{aligned}
\sigma_{m}^{\mathrm{NNLO}} & =\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}} \\
& \equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

Problem

$$
\begin{aligned}
\sigma_{m}^{\mathrm{NNLO}} & =\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}} \\
& \equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

- matrix elements are known for $\sigma^{R R}$ and $\sigma^{R V}$ for many processes

Problem

$$
\begin{aligned}
\sigma_{m}^{\mathrm{NNLO}} & =\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}} \\
& \equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

- matrix elements are known for $\sigma^{R R}$ and $\sigma^{R V}$ for many processes
- σ^{VV} is known for many $0 \rightarrow 4$ parton, $\mathrm{V}+3$ parton, $\mathrm{VV}+2$ parton processes
- higher multiplicities are on the horizon

Problem

$$
\begin{aligned}
\sigma_{m}^{\mathrm{NNLO}} & =\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}} \\
& \equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

- matrix elements are known for $\sigma^{R R}$ and $\sigma^{R V}$ for many processes
- σ^{VV} is known for many $0 \rightarrow 4$ parton, $\mathrm{V}+3$ parton, $\mathrm{VV}+2$ parton processes
- higher multiplicities are on the horizon
- the three contributions are separately divergent in $d=4$ dimensions:
- in $\sigma^{R R}$ kinematical singularities as one or two partons become unresolved yielding ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space, no explicit ϵ-poles
- in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space + explicit ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$
- in $\sigma^{\vee V}$ explicit ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$

Problem

$$
\begin{aligned}
\sigma_{m}^{\mathrm{NNLO}} & =\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}} \\
& \equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

- matrix elements are known for $\sigma^{R R}$ and $\sigma^{R V}$ for many processes
- σ^{VV} is known for many $0 \rightarrow 4$ parton, $\mathrm{V}+3$ parton, $\mathrm{VV}+2$ parton processes
- higher multiplicities are on the horizon
- the three contributions are separately divergent in $d=4$ dimensions:
- in $\sigma^{R R}$ kinematical singularities as one or two partons become unresolved yielding ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space, no explicit ϵ-poles
- in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space + explicit ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$
- in $\sigma^{\vee V}$ explicit ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$

How to combine to obtain finite cross section?

Approaches

- Sector decomposition

Anastasiou, Melnikov, Petriallo et al 2004-

- Antennae subtraction

Gehrmann, Gehrmann-De Ridder, Glover et al 2004-

- qт-slicing
S. Catani, M. Grazzini et al 2007-
- SecToR-Improved Phase sPacE for Real radiation (STRIPPER)

Czakon et al 2010-

- TN-slicing

Boughezal et al 2015-
Gaunt et al 2015-

- Completely Local SubtRactions for Fully Differential Predictions at NNLO (CoLoRFulNNLO)

ZT, Somogyi et al 2005-
personal opinion: a completely satisfactory solution is not yet available

Several options available - why a new one?

Several options available - why a new one?
Our goal is to devise a subtraction scheme with

Several options available - why a new one?
Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms
(efficiency and mathematically well-defined)

Several options available - why a new one?

Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms
(efficiency and mathematically well-defined)
\checkmark fully differential predictions
(with jet functions defined in $d=4$)

Several options available - why a new one?

Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms
(efficiency and mathematically well-defined)
\checkmark fully differential predictions
(with jet functions defined in $d=4$)
\checkmark explicit expressions including flavor and color (color space notation is used)

Several options available - why a new one?

Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms
(efficiency and mathematically well-defined)
\checkmark fully differential predictions
(with jet functions defined in $d=4$)
\checkmark explicit expressions including flavor and color (color space notation is used)
\checkmark completely general construction (valid in any order of perturbation theory)

Several options available - why a new one?

Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms
(efficiency and mathematically well-defined)
\checkmark fully differential predictions
(with jet functions defined in $d=4$)
\checkmark explicit expressions including flavor and color (color space notation is used)
\checkmark completely general construction (valid in any order of perturbation theory)
\checkmark option to constrain subtraction near singular regions (important check)

Several options available - why a new one?

Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms
(efficiency and mathematically well-defined)
\checkmark fully differential predictions
(with jet functions defined in $d=4$)
\checkmark explicit expressions including flavor and color (color space notation is used)
\checkmark completely general construction (valid in any order of perturbation theory)
\checkmark option to constrain subtraction near singular regions (important check)
such schemes are known at NLO (CS-dipoles, FKS etc)

How to build a local subtraction scheme?

S. Catani, S. Dittmaier,
M.H. Seymour,ZT
hep-ph/0201036

How to build a local subtraction scheme?

Steps used at NLO:

S. Catani, S. Dittmaier,
M.H. Seymour, ZT
hep-ph/0201036

How to build a local subtraction scheme?

Steps used at NLO:
\checkmark compute QCD factorization formulae (universal)

S. Catani, S. Dittmaier, M.H. Seymour, ZT hep-ph/0201036

How to build a local subtraction scheme?

 Steps used at NLO:\checkmark compute QCD factorization formulae (universal)
\checkmark construct local subtractions on whole phase space (explicit and universal in $\mathrm{d}=4$)

How to build a local subtraction scheme?

Steps used at NLO:

\checkmark compute QCD factorization formulae (universal)
S. Catani, S. Dittmaier, M.H. Seymour,ZT hep-ph/0201036
\checkmark construct local subtractions on whole phase space (explicit and universal in $\mathrm{d}=4$)
\checkmark integrate subtractions over unresolved phase space (once and for all)

How to build a local subtraction scheme?

Steps used at NLO:

\checkmark compute QCD factorization formulae (universal)
S. Catani, S. Dittmaier, M.H. Seymour, ZT hep-ph/0201036
\checkmark construct local subtractions on whole phase space (explicit and universal in $\mathrm{d}=4$)
\checkmark integrate subtractions over unresolved phase space (once and for all)
\checkmark cancel IR poles
(analytically, universal)

How to build a local subtraction scheme?

Steps used at NLO:

\checkmark compute QCD factorization formulae (universal)
S. Catani, S. Dittmaier, M.H. Seymour, ZT hep-ph/0201036
\checkmark construct local subtractions on whole phase space (explicit and universal in $\mathrm{d}=4$)
\checkmark integrate subtractions over unresolved phase space (once and for all)
\checkmark cancel IR poles
(analytically, universal)
\checkmark implement integration of finite part in partonic MC (simple user interface defines observables)

How to build a local subtraction scheme?

 Steps used at NLO:\checkmark compute QCD factorization formulae (universal)
\checkmark construct local subtractions on whole phase space (explicit and universal in $d=4$)
\checkmark integrate subtractions over unresolved phase space (once and for all)
\checkmark cancel IR poles
(analytically, universal)
\checkmark implement integration of finite part in partonic MC (simple user interface defines observables) steps proven to be too difficult at NNLO:

Structure

of subtractions is governed by the jet functions

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
& \sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR} \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR} \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR} \mathrm{~A}_{12}} J_{m}\right)\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d}_{m+2}^{\mathrm{RR}} \mathrm{~A}_{1}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}} \mathrm{~A}_{1}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR} \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(d \sigma_{m+2}^{\mathrm{RR} A_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR} \mathrm{~A}_{12}}\right)+\int_{1}\left[d \sigma_{m+1}^{\mathrm{RV} \mathrm{~A}_{1}}+\left(\int_{1} d \sigma_{m+2}^{\mathrm{RR} \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right\} J_{m}\right.
\end{aligned}
$$

Structure

of subtractions is governed by the jet functions

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
& \sigma_{m+2}^{\mathrm{NNLO}}= \int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}= \int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\iint_{1}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RRR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}= \int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right\} J_{m}\right.
\end{aligned}
$$

RR, A_{2} regularizes doubly-unresolved limits
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Structure

of subtractions is governed by the jet functions

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, 1_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right]\right)
\end{gathered}
$$

$R R, A_{1}$ regularizes singly-unresolved limits
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Structure

of subtractions is governed by the jet functions

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
& \sigma_{m+2}^{\mathrm{NNLO}}= \int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}= \int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}= \int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right\} J_{m}\right.
\end{aligned}
$$

RR, A_{12} removes overlapping subtractions
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Structure

of subtractions is governed by the jet functions

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{gathered}
$$

RV, A1 regularizes singly-unresolved limits
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Use known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
tree-level 3-parton splitting, double soft current:
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

Use known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
tree-level 3-parton splitting, double soft current:
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000
- Simple and general procedure for separating overlapping singularities (using a physical gauge)
Z. Nagy, G. Somogyi, ZT, 2007

Use known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
tree-level 3-parton splitting, double soft current:
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000
- Simple and general procedure for separating overlapping singularities (using a physical gauge)
Z. Nagy, G. Somogyi, ZT, 2007
- Extension over whole phase space using momentum mappings (not unique):

$$
\{p\}_{n+s} \rightarrow\{\tilde{p}\}_{n}
$$

Momentum mappings

$$
\{p\}_{n+s} \rightarrow\{\tilde{p}\}_{n}
$$

- implement exact momentum conservation
- recoil distributed democratically
\Rightarrow can be generalized to any number s of unresolved partons
- different mappings for collinear and soft limits
- collinear limit pillpr: $\{p\}_{n+1} \xrightarrow{C_{i r}}\{\tilde{p}\}_{n}^{(i r)}$
- soft limit $p_{s} \rightarrow 0$:

$$
\{p\}_{n+1} \xrightarrow{\mathrm{~S}_{s}}\{\tilde{p}\}_{n}^{(s)}
$$

Momentum mappings

$$
\{p\}_{n+s} \rightarrow\{\tilde{p}\}_{n}
$$

- implement exact momentum conservation
- recoil distributed democratically
- different mappings for collinear and soft limits
- lead to phase-space factorization
- can be generalized to any s trivially

Momentum mappings

$$
\{p\}_{n+s} \rightarrow\{\tilde{p}\}_{n}
$$

- implement exact momentum conservation
- recoil distributed democratically
- different mappings for collinear and soft limits
- lead to phase-space factorization
- can be generalized to any s trivially

Momentum mappings

define subtractions

$$
\begin{array}{r}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}= \\
\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right]\right\} J_{m} \\
\text { G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 }
\end{array}
$$ implementation for general m in MCCSM code

Adam Kardos 2015

MCCSM built in checks

MCCSM built in checks

Checking subtractions locally in IR limits, e.g.triple-collinear

 limit in arbitrary phase space point:

MCCSM built in checks

double unresolved

single unresolved

Cir: b (3)	$->$	b (3)	g
iter no.	1	scale no.	1
itid			
iter no.	2	scale no.	1
1.00602959209786220837235112804777			

MCCSM built in checks

Checking finiteness in singular regions, e.g. regularized RR:

single unresolved

Kinematic singularities cancel in RR

$R=$ subtraction/RR

Cancellation of singularities in RV

Poles cancel vertically pairwise

$$
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right] J_{m}\right\}
$$

Cancellation of singularities in RV

Poles cancel vertically pairwise

$$
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1} J_{m}\right\}
$$

Cancellation of singularities in RV

Kinematic singularities cancel horizontally

$$
\left.\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}-\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right] J_{m}\right\}
$$

Cancellation of singularities in RV

Kinematic singularities cancel horizontally

$$
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1 \mathrm{RV}}^{\mathrm{RV}} \int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+}-\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1}^{\left.\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}} J_{m}\right\}\right.
$$

Kinematic singularities cancel in RV

$R=$ subtraction $/\left(R V+R R, A_{1}\right)$

Regularized RR and RV contributions

can now be computed by numerical Monte Carlo integrations

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

$$
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\}
$$

$$
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right] J_{m}\right\}
$$

$$
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
$$

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, G. Somogyi, ZT hep-ph/0702273 implementation for general m in MCCSM code

Adam Kardos 2015

Integrated approximate xsections

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{gathered}
$$

After integrating over unresolved momenta \& summing over unresolved colors and flavors, the subtraction terms can be written as products of insertion operators (in color space) and lower point cross sections:

$$
\int_{p} \mathrm{~d} \sigma^{\mathrm{RR}, \mathrm{~A}_{p}}=I_{p}^{(0)}\left(\{p\}_{n} ; \epsilon\right) \otimes \mathrm{d} \sigma_{n}^{\mathrm{B}}
$$

Integrated approximate xsections

$$
\begin{aligned}
& \int_{p} \mathrm{~d} \sigma^{\mathrm{RR}, \mathrm{~A}_{p}}=\int_{p}\left[\mathrm{~d} \phi_{m+2}(\{p\}) \sum_{R} \mathcal{X}_{R}(\{p\})\right] \\
&=\int_{p}\left[\mathrm{~d} \phi_{n}\left(\{\tilde{p}\}^{(R)}\right)\left[\mathrm{d} p_{p}^{(R)}\right] \sum_{R}\left(8 \pi \alpha_{\mathrm{s}} \mu^{2 \epsilon}\right)^{p} \operatorname{Sing}_{R}\left(p_{p}^{(R)}\right) \otimes\left|\mathcal{M}_{n}^{(0)}\left(\{\tilde{p}\}_{n}^{(R)}\right)\right|^{2}\right] \\
&=\underbrace{\left(8 \pi \alpha_{\mathrm{s}} \mu^{2 \epsilon}\right)^{p} \sum_{R}\left[\int_{p}\left[\mathrm{~d} p_{p}^{(R)}\right] \operatorname{Sing} g_{R}\left(p_{p}^{(R)}\right)\right]}_{\boldsymbol{I}_{p}^{(0)}\left(\{p\}_{n} ; \epsilon\right)} \otimes \mathrm{d} \phi_{n}\left(\{\tilde{p}\}^{(R)}\right)\left|\mathcal{M}_{n}^{(0)}\left(\{\tilde{p}\}_{n}^{(R)}\right)\right|^{2} \\
&=\underbrace{\left(8 \pi \alpha_{\mathrm{s}} \mu^{2 \epsilon}\right)^{p} \sum_{R}\left[\int_{p}\left[\mathrm{~d} p_{p}^{(R)}\right] \operatorname{Sing}_{R}\left(p_{p}^{(R)}\right)\right]} \otimes \mathrm{d} \sigma_{n}^{\mathrm{B}}
\end{aligned}
$$

the integrated counter-terms $[X]_{R} \propto \int_{p}\left[\mathrm{~d} p_{p}^{(R)}\right] \operatorname{Sing}_{R}\left(p_{p}^{(R)}\right)$ are
independent of the process \& observable \Rightarrow need to compute only once

Summation over unresolved flavors

- integrated counter-terms [X]fi... carry flavor indices of unresolved patrons
\Rightarrow need to sum over unresolved flavors:
straightforward, though tedious, result can be summarized in flavor-summed integrated counterterms
P. Bolzoni, G. Somogyi, ZT arXiv:0905.4390
- symbolically:

$$
\left(X^{(0)}\right)_{f_{i} \ldots}^{(j, l) \ldots}=\sum\left[X^{(0)}\right]_{f_{k} \cdots}^{(j, l) \ldots}
$$

- and precisely, for instance, two-flavor sum:

$$
\sum_{\{m+2\}} \frac{1}{S_{\{m+2\}}} \sum_{t} \sum_{k \neq t}\left[X_{k t}^{(0)}\right]_{f_{k} f_{t}}^{(\ldots)} \equiv \sum_{\{m\}} \frac{1}{S_{\{m\}}}\left(X_{k t}^{(0)}\right)^{(\ldots)}
$$

Integrating out unresolved momenta

two types of singly-unresolved

$$
\begin{array}{r}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right]\right\} J_{m} \\
\text { G. Somogyi, ZT arXiv:0807.0509 } \\
\text { U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, ZT arXiv:0807.0514 } \\
\text { P. Bolzoni, S. Moch, G. Somogyi, ZT arXiv:0905.4390 }
\end{array}
$$

Collinear integrals

convolution of the integral of AP-splitting
 function over ordinary phase space

$$
\begin{aligned}
\int_{0}^{\alpha_{0}} \mathrm{~d} \alpha(1-\alpha)^{2 d_{0}-1} & \frac{s_{i \tilde{r} Q}^{2 \pi}}{2 \pi}\left(\mathrm{~d} \phi_{2}\left(p_{i}, p_{r} ; p_{(i r)}\right) \frac{1}{s_{i r}^{1+\kappa \epsilon}} P_{f_{i} f_{r}}^{(\kappa)}\left(z_{i}, z_{r} ; \epsilon\right), \quad \kappa=0,1\right. \\
\mathrm{d} \phi_{2}\left(p_{i}, p_{r} ; p_{(i r)}\right) & =\frac{s_{i r}^{-\epsilon}}{8 \pi} \frac{(4 \pi)^{\epsilon}}{\Gamma(1-\epsilon)} \mathrm{d} s_{i r} \mathrm{~d} v \delta\left(s_{i r}-Q^{2} \alpha(\alpha+(1-\alpha) x)\right) \\
& \times[v(1-v)]^{-\epsilon} \Theta(1-v) \Theta(v)
\end{aligned}
$$

G. Somogyi, ZT arXiv:0807.0509
U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, ZT arXiv:0807.0514
P. Bolzoni, S. Moch, G. Somogyi, ZT arXiv:0905.4390

Collinear integrals

convolution of the integral of AP-splitting
 function over ordinary phase space

$$
\begin{gathered}
\int_{0}^{\alpha_{0}} \mathrm{~d} \alpha(1-\alpha)^{2 d_{0}-1} \frac{s_{i r} \tilde{r}}{2 \pi} \int\left(\mathrm{~d} \phi_{2}\left(p_{i}, p_{r} ; p_{(i r)}\right) \frac{1}{s_{i r}^{1+\kappa \epsilon}} P_{f_{i} f_{r}}^{(\kappa)}\left(z_{i}, z_{r} ; \epsilon\right), \quad \kappa=0,1\right. \\
\frac{z_{r}^{k+\delta \epsilon}}{s_{i r}^{1+\kappa \epsilon}} g_{I}^{(\pm)}\left(z_{r}\right), \quad z_{r}=\frac{\alpha Q^{2}+(1-\alpha) v s_{\widetilde{i r} Q}}{2 \alpha Q^{2}+(1-\alpha) s_{\widetilde{i r} Q}}
\end{gathered}
$$

δ	Function	$g_{I}^{(\pm)}(z)$
0	g_{A}	1
∓ 1	$g_{B}^{(\pm)}$	$(1-z)^{ \pm \epsilon}$
0	$g_{C}^{(\pm)}$	$(1-z)^{ \pm \epsilon}{ }_{2} F_{1}(\pm \epsilon, \pm \epsilon, 1 \pm \epsilon, z)$
± 1	$g_{D}^{(\pm)}$	${ }_{2} F_{1}(\pm \epsilon, \pm \epsilon, 1 \pm \epsilon, 1-z)$

Soft integrals

convolution of the integral of eikonal factors over ordinary phase space

$$
\begin{gathered}
\mathcal{J} \propto-\int_{0}^{y_{0}} \mathrm{~d} y(1-y)^{d_{0}^{\prime}-1} \frac{Q^{2}}{2 \pi} \int \mathrm{~d} \phi_{2}\left(p_{r}, K ; Q\right)\left(\frac{s_{i k}}{s_{i r} s_{k r}}\right)^{1+\kappa \epsilon} \\
\mathrm{d} \phi_{2}\left(p_{r}, K ; Q\right)=\frac{\left(Q^{2}\right)^{-\epsilon}}{16 \pi^{2}} \frac{(4 \pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)} \mathrm{d} \varepsilon_{r} \varepsilon_{r}^{1-2 \epsilon} \delta\left(y-\varepsilon_{r}\right) \\
\times \mathrm{d}(\cos \vartheta) \mathrm{d}(\cos \varphi)(\sin \vartheta)^{-2 \epsilon}(\sin \varphi)^{-1-2 \epsilon}
\end{gathered}
$$

G. Somogyi, ZT arXiv:0807.0509
U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, ZT arXiv:0807.0514
P. Bolzoni, S. Moch, G. Somogyi, ZT arXiv:0905.4390

Computing the integrals

- Use algebraic and symmetry relations to reduce to a basic set \Rightarrow MI's (but no IBP was used), not minimal
- two strategies:

Computing the integrals

- Use algebraic and symmetry relations to reduce to a basic set \Rightarrow MI's (but no IBP was used), not minimal
- two strategies:

1. write phase space using angles and energies
2. angular integrals in terms of

MB representations
3. resolve ϵ-poles by analytic continuation
4. MB integrals -> Euler-type integrals, pole coefficients are finite parametric integrals

Computing the integrals

- Use algebraic and symmetry relations to reduce to a basic set \Rightarrow MI's (but no IBP was used), not minimal
- two strategies:

1. write phase space using angles and energies
2. angular integrals in terms of MB representations
3. resolve ϵ-poles by analytic continuation
4. MB integrals -> Euler-type integrals, pole coefficients are finite parametric integrals
5. choose explicit parametrization of phase space
6. write the parametric integral representation in chosen variables
7. resolve ϵ-poles by sector decomposition
8. pole coefficients are finite parametric integrals

Computing the integrals

- Use algebraic and symmetry relations to reduce to a basic set \Rightarrow MI's (but no IBP was used), not minimal
- two strategies:

1. write phase space using angles and energies
2. angular integrals in terms of MB representations
3. resolve ϵ-poles by analytic continuation
4. MB integrals -> Euler-type integrals, pole coefficients are finite parametric integrals
5. choose explicit parametrization of phase space
6. write the parametric integral representation in chosen variables
7. resolve ϵ-poles by sector decomposition
8. pole coefficients are finite parametric integrals
9. evaluate parametric integrals of pole coefficients in terms of multiple polylogs, or numerically e.g. by SecDec

Status of (287) integrals

Int	status	lnt	status	Int	status	Int	status	lnt	status
$\mathcal{I}_{1 \mathrm{cc}, 0}^{(k)}$	\checkmark	$\bar{I}_{1 S, 0}$	\checkmark	$\bar{I}_{1 G S, 0}$	\checkmark		\checkmark	$\mathcal{I}_{2 S, 1}$	\checkmark
$\mathcal{I}_{1 c_{1}^{(k)}}^{\text {(k) }}$	\checkmark	$\mathcal{I}_{1 s, 1}$	\checkmark	$\mathcal{I}_{10 s, 1}$	\checkmark	$I_{1}^{12, t,)^{2}}$	\checkmark	$\mathcal{I}_{2 S, 2}$	\checkmark
$\mathrm{I}_{1\left(\mathrm{Cl},{ }^{(k)}\right.}$	\checkmark	$\mathcal{I}_{1(k)}$	$(m>3) \cdot$	$\tau_{16,2}^{(k)}$	\checkmark	${ }_{1}^{1(2)}$	\checkmark	$\mathcal{I}_{2 S, 3}$	\checkmark
	\checkmark		v	$\mathcal{I}_{\mathcal{I}_{10 s, 3}}$	v		\checkmark	$\mathrm{I}_{\text {I2S,4 }}$	\checkmark
$\mathrm{I}_{1 \mathrm{c}, 4}^{(k)}$	\checkmark		v	$\mathcal{I}_{11 c s, 4}$	\checkmark		\checkmark	$\mathcal{I}_{2 s, 6}$ $\mathcal{L}_{2 s, 5}$	\checkmark
$\mathcal{I}_{1 \sim}^{(k, 1)}$	\checkmark	$\mathcal{I}_{1 s, 6}$	\checkmark			$I_{122,6}^{(k)}$	\checkmark	$\mathcal{I}_{2 S, 7}$	\checkmark
$\mathcal{I}_{12,1 / 6}^{(k, l)}$	\checkmark	$\mathcal{I}_{1 s, 7}$	\checkmark			${ }_{I_{12,}^{(k)}, 7}$	\checkmark	$\mathcal{I}_{2 s, 8}$	v
$\mathcal{I}_{12,7}^{(k)}$	\checkmark					$I_{122,8}^{(k)}$	\checkmark	$\mathcal{I}_{2 S, 9}$	v
$\mathcal{I}_{1 c, 8}$	\checkmark					${ }_{I_{122}^{(k)}, 9}^{I_{\text {k }}}$	\checkmark	${ }_{\text {I }}^{\mathcal{I}_{2 S, 11}}$	V
						$\tau_{122,10}^{(k)}$	\checkmark	$\mathcal{I}_{2 S, 12}$	\checkmark
								$\mathrm{I}_{25,13}$	
Int	status	Int	status	Int		status Int	status	$\mathcal{L}_{2 S, 14}$	
$\overline{1}_{12 S, 1}^{(k)}$	\checkmark	$\chi_{12}^{(k)}$	\checkmark	$L_{2 C, 1}^{U G, k, 1,}$		$I_{2 c, 1}^{(k)}$	\checkmark	(${ }_{\text {L2S,16 }}$	\checkmark
$I_{12 s, 2}^{(k)}$	\checkmark	$\mathcal{I}_{12 \times 6,2}$	\checkmark	$L_{2 c}^{4, k, k, t, m}$		$I_{2 c ̧, 2}^{(k)}$	\checkmark	$\mathcal{I}_{2 S, 17}$	v
$I_{12 S, 3}^{(k)}$	\checkmark	$\mathcal{I}_{12 \mathrm{CL}, 3}$	\checkmark			$\mathcal{I}_{2(1), 2}^{(2)}$	\checkmark	$\mathcal{I}_{2 S, 18}$	\checkmark
$I_{12 S, 4}^{(k)}$	\checkmark					$\mathcal{I}_{2(1), 3}^{(k)}$	\checkmark	$\mathrm{I}_{\text {I2S,19 }} \mathrm{I}_{23}$	\checkmark
$\mathcal{I}_{128,5}^{(k)}$	\checkmark			$\pm_{2 C, 5}^{(t, 1,-1}$	-1,-1)	$\mathcal{I}_{2 C, 4}^{(k)}$	\checkmark	${ }_{\text {L }}^{\mathcal{I}_{2 S, 20}}$	V
$\mathcal{I}_{12 s, 6}$	\checkmark			$\mathcal{I}_{2 C, 6}^{(k, 1)}$		$\mathcal{I}_{2 \text { ce, }}^{(k)}$	v	$\mathcal{I}_{2 S, 22}$	\checkmark
$\mathcal{I}_{12 S, 7}$	\checkmark							$\mathcal{I}_{2 S, 23}$	\checkmark
$\mathcal{I}_{12 s, 8}$	\checkmark								
$\mathcal{I}_{12 s, 9}$	\checkmark								
$\mathcal{I}_{122,10}^{\mathcal{I}_{12 s}}$	\checkmark	\checkmark :pole coefficients and logarithmic terms in finite part are computed analytically, power terms in finite part numerically, in some cases analytically G. Somogyi, C. Duhr							
	v								
$\mathcal{I}_{12 s, 13}$	v								

Structure of insertion operators

 recall general form for Born sections$$
\int_{p} \mathrm{~d} \sigma^{\mathrm{RR}, \mathrm{~A}_{p}}=\boldsymbol{I}_{p}^{(0)}\left(\{p\}_{n} ; \epsilon\right) \otimes \mathrm{d} \sigma_{n}^{\mathrm{B}}
$$

Insertion operators involve all possible color connections with given number of unresolved patrons with kinematic coefficients
for 1 unresolved parton on tree SME $\left|M^{(0)}\right|^{2}$:

$$
\boldsymbol{I}_{1}^{(0)}\left(\{p\}_{m+1} ; \epsilon\right)=\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon} \sum_{i}\left[\mathrm{C}_{1, f_{i}}^{(0)} \boldsymbol{T}_{i}^{2}+\sum_{k} \mathrm{~S}_{1}^{(0),(i, k)} \boldsymbol{T}_{i} \boldsymbol{T}_{k}\right]
$$

kinematic functions contain poles starting from
$O\left(\epsilon^{-2}\right)$ for collinear and from $O\left(\epsilon^{-1}\right)$ for soft
G. Somogyi, ZT hep-ph/0609041

Structure of insertion operators

recall general form for Born sections

$$
\int_{p} \mathrm{~d} \sigma^{\mathrm{RR}, \mathrm{~A}_{p}}=\boldsymbol{I}_{p}^{(0)}\left(\{p\}_{n} ; \epsilon\right) \otimes \mathrm{d} \sigma_{n}^{\mathrm{B}}
$$

for 2 unresolved patrons on tree SME $\left|M^{(0)}\right|^{2}$:

$$
\begin{aligned}
\boldsymbol{I}_{2}^{(0)}\left(\{p\}_{m} ; \epsilon\right)=\left[\frac{\alpha_{s}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{\epsilon} & \left\{\sum_{i}\left[\mathrm{C}_{2, f_{i}}^{(0)} \boldsymbol{T}_{i}^{2}+\sum_{k} \mathrm{C}_{2, f_{i} f_{k}}^{(0)} \boldsymbol{T}_{k}^{2}\right] \boldsymbol{T}_{i}^{2}\right. \\
& +\sum_{j, l}\left[\mathrm{~S}_{2}^{(0),(j, l)} C_{\mathrm{A}}+\sum_{i} \mathrm{CS}_{2, f_{i}}^{(0)(j, l)} \boldsymbol{T}_{i}^{2}\right] \boldsymbol{T}_{j} \boldsymbol{T}_{l} \\
& \left.+\sum_{i, k, j, l} \mathrm{~S}_{2}^{(0),(i, k)(j, l)}\left\{\boldsymbol{T}_{i} \boldsymbol{T}_{k}, \boldsymbol{T}_{j} \boldsymbol{T}_{l}\right\}\right\}
\end{aligned}
$$

the iterated doubly-unresolved has the same color structure, kinematic coefficients differ
G. Somogyi et al arXiv:0905.4390, arXiv:1301.3504, arXiv:1301.3919

Structure of insertion operators

 general form at one loop$$
\int_{1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}=\boldsymbol{I}_{1}^{(0)}\left(\{p\}_{m} ; \epsilon\right) \otimes \mathrm{d} \sigma_{m}^{\mathrm{V}}+\boldsymbol{I}_{1}^{(1)}\left(\{p\}_{m} ; \epsilon\right) \otimes \mathrm{d} \sigma_{m}^{\mathrm{B}}
$$

for 1 unresolved parton on loop SME $\left|M^{(1)}\right|^{2}$:
$\boldsymbol{I}_{1}^{(1)}\left(\{p\}_{m} ; \epsilon\right)=\left[\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} \sum_{i}\left[\mathrm{C}_{1, f_{i}}^{(1)} C_{\mathrm{A}} \boldsymbol{T}_{i}^{2}+\sum_{k} \mathrm{~S}_{1}^{(1),(i, k)} C_{\mathrm{A}} \boldsymbol{T}_{i} \boldsymbol{T}_{k}\right.$

present for $m>3$ (four or more hard partons)
G. Somogyi, ZT arXiv:0807.0509

Structure of insertion operators

singly-unresolved integrated singly unresolved:
$\int_{1}\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}=\left[\frac{1}{2}\left\{\boldsymbol{I}_{1}^{(0)}\left(\{p\}_{m} ; \epsilon\right), \boldsymbol{I}_{1}^{(0)}\left(\{p\}_{m} ; \epsilon\right)\right\}+\boldsymbol{I}_{1,1}^{(0,0)}\left(\{p\}_{m} ; \epsilon\right)\right] \otimes \mathrm{d} \sigma_{m}^{\mathrm{B}}$
for 1 unresolved parton contributions on iterated I:

$$
\boldsymbol{I}_{1,1}^{(0,0)}\left(\{p\}_{m} ; \epsilon\right)=\left[\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} \sum_{i}\left[\mathrm{C}_{1,1, f_{i}}^{(0,0)} C_{\mathrm{A}} \boldsymbol{T}_{i}^{2}+\sum_{k} \mathrm{~S}_{1,2}^{(0,0),(i, k)} C_{\mathrm{A}} \boldsymbol{T}_{i} \boldsymbol{T}_{k}\right]
$$

kinematic functions contain poles starting from $O\left(\epsilon^{-3}\right)$ only

Structure of insertion operators

- the color structures are independent of the precise definition of subtractions (momentum mappings), only subleading coefficients of ϵ expansion in kinematic functions may depend
- we have computed all insertion operators analytically (defined in our subtraction scheme) up to $O\left(\epsilon^{-2}\right)$ for arbitrary m
- we have computed all insertion operators analytically (defined in our subtraction scheme) up to $O\left(\epsilon^{-0}\right)$ for $m=2$ and up to $O\left(\epsilon^{-1}\right)$ together with the logs of $O\left(\epsilon^{-0}\right)$ for $m=3$
G. Somogyi, Z. Szőr, Z. Tulipánt, ZT with contributions by D. Tommasini and R. Derco

Rewards

Cancellation of poles

- we checked the cancellation of the leading and first subleading poles (defined in our subtraction scheme) for arbitrary m
- for $m=2$,
- the insertion operators are independent of the kinematics (momenta are back-to-back, so MI's are needed at the endpoints only)
- color algebra is trivial:

$$
\boldsymbol{T}_{1} \boldsymbol{T}_{2}=-\boldsymbol{T}_{1}^{2}=-\boldsymbol{T}_{2}^{2}=-C_{\mathrm{F}}
$$

- so can demonstrate the cancellation of poles
- e.g. for $H \rightarrow b b$
V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano, ZT, arXiv:1501.07226

Cancellation of poles

- we checked the cancellation of the leading and first subleading poles (defined in our subtraction scheme) for arbitrary m
- for $m=2$
- for $m=3$,
- color algebra can be performed explicitly:

$$
\begin{aligned}
& \boldsymbol{T}_{1} \boldsymbol{T}_{2}=\frac{1}{2} C_{\mathrm{A}}-C_{\mathrm{F}} \\
& \boldsymbol{T}_{1} \boldsymbol{T}_{3}=\boldsymbol{T}_{2} \boldsymbol{T}_{3}=-\frac{1}{2} C_{\mathrm{A}}
\end{aligned}
$$

- the insertion operators depend on 3-jet kinematics:

Example: $e^{+} e^{-} \rightarrow m(=3)$ jets at $\mu^{2}=s$

$$
\begin{gathered}
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m} \\
\mathrm{~d} \sigma_{3}^{\mathrm{VV}}=\operatorname{Poles}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{F} \text { inite }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)
\end{gathered}
$$

$$
\begin{align*}
& \text { Poles }\left(A_{3}^{(2 \times 0)}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right)+A_{3}^{(1 \times 1)}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right)\right) \\
& =2\left[-\left(\boldsymbol{I}_{q \bar{q} g}^{(1)}(\epsilon)\right)^{2}-\frac{\beta_{0}}{\epsilon} \boldsymbol{I}_{q \bar{q} g}^{(1)}(\epsilon) \quad \boldsymbol{I}_{q \bar{q} g}^{(1)}(\epsilon)=\mathcal{R} e \boldsymbol{I}_{0}^{(1)}\left(p_{q}, p_{\bar{q}}, p_{g} ; \epsilon\right)\right. \\
& \left.\quad+e^{-\epsilon \gamma} \frac{\Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)}\left(\frac{\beta_{0}}{\epsilon}+K\right) \boldsymbol{I}_{q \bar{q} g}^{(1)}(2 \epsilon)+\boldsymbol{H}_{q \bar{q} g}^{(2)}\right] A_{3}^{0}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right) \\
& \quad+2 \boldsymbol{I}_{q \bar{q} g}^{(1)}(\epsilon) A_{3}^{(1 \times 0)}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right) . \tag{4.59}
\end{align*}
$$

$$
\begin{align*}
\boldsymbol{H}_{q q 9}^{(2)}= & \frac{e^{\epsilon \gamma}}{4 \epsilon \Gamma(1-\epsilon)}\left[\left(4 \zeta_{3}+\frac{589}{432}-\frac{11 \pi^{2}}{72}\right) N^{2}+\left(-\frac{1}{2} \zeta_{3}-\frac{41}{54}-\frac{\pi^{2}}{48}\right)\right. \\
& \left.+\left(-3 \zeta_{3}-\frac{3}{16}+\frac{\pi^{2}}{4}\right) \frac{1}{N^{2}}+\left(-\frac{19}{18}+\frac{\pi^{2}}{36}\right) N N_{F}+\left(-\frac{1}{54}-\frac{\pi^{2}}{24}\right) \frac{N_{F}}{N}+\frac{5}{27} N_{F}^{2} .\right] . \tag{4.61}
\end{align*}
$$

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich arXiv:0710.0346

Example: $e^{+} e^{-} \rightarrow m(=3)$ jets at $\mu^{2}=s$

$$
\begin{gathered}
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m} \\
\mathrm{~d} \sigma_{3}^{\mathrm{VV}}=\operatorname{Poles}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{F} \text { inite }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)
\end{gathered}
$$

$\mathcal{P o l e s}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{P o l e s} \sum \int \mathrm{d} \sigma^{\mathrm{A}}=200 \mathrm{k}$ Mathematica lines = zero numerically in any phase space point:

Example: $e^{+} e^{-} \rightarrow m(=3)$ jets at $\mu^{2}=s$

$$
\begin{gathered}
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m} \\
\mathrm{~d} \sigma_{3}^{\mathrm{VV}}=\operatorname{Poles}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{F} \text { inite }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right) \\
\mathrm{d} \sigma_{3}^{\mathrm{NNLO}}=\left\{\mathrm{d} \sigma_{3}^{\mathrm{VV}}+\mathrm{d} \sigma_{3}^{\mathrm{B}} \otimes\left[\boldsymbol{I}_{2}^{(0)}(\epsilon)-\boldsymbol{I}_{12}^{(0)}(\epsilon)+\boldsymbol{I}_{1}^{(1)}(\epsilon)+\boldsymbol{I}_{1,1}^{(0,0)}(\epsilon)+\frac{1}{2}\left\{\boldsymbol{I}_{1}^{(0)}(\epsilon), \boldsymbol{I}_{1}^{(0)}(\epsilon)\right\}\right]\right. \\
\left.+\mathrm{d} \sigma_{3}^{\mathrm{V}} \otimes \boldsymbol{I}_{1}^{(0)}(\epsilon)\right\} J_{3} . \\
\boldsymbol{J}_{2} \equiv \boldsymbol{I}_{2}^{(0)}-\boldsymbol{I}_{12}^{(0)}+\boldsymbol{I}_{1}^{(1)}+\boldsymbol{I}_{1,1}^{(0,0)}+\frac{1}{4}\left\{\boldsymbol{I}_{1}^{(0)}, \boldsymbol{I}_{1}^{(0)}\right\} \\
\boldsymbol{J}_{2}\left(\{p\}_{3} ; \epsilon\right)=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{S_{\epsilon}}{S_{\epsilon}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon} \frac{1}{2 \epsilon}\left[\left(\beta_{0}+2 \epsilon K-\epsilon^{2} \beta_{0} \frac{\pi^{2}}{4}\right) \boldsymbol{I}_{1}^{(0)}\left(\{p\}_{3} ; 2 \epsilon\right)\right. \\
\left.-\beta_{0} \boldsymbol{I}_{1}^{(0)}\left(\{p\}_{3} ; \epsilon\right)-\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{S_{\epsilon}}{S_{\epsilon}^{\overline{\mathrm{MS}}}}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\left(2 H_{q}\left(n_{\mathrm{f}}\right)+H_{g}\left(n_{\mathrm{f}}\right)\right)\right] \\
\end{gathered}
$$

Example: $e^{+} e^{-} \rightarrow m(=3)$ jets at $\mu^{2}=s$

$$
\begin{gathered}
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m} \\
\mathrm{~d} \sigma_{3}^{\mathrm{VV}}=\operatorname{Poles}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{F} \text { inite }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)
\end{gathered}
$$

$\mathcal{P o l e s}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{P o l e s} \sum \int \mathrm{d} \sigma^{\mathrm{A}}=200 \mathrm{k}$ Mathematica lines = zero analytically using symbol techniques (C. Duhr)

$$
\begin{gathered}
\text { Message: } \\
\sigma_{3}^{\mathrm{NNLO}}=\int_{3}\left\{\mathrm{~d} \sigma_{3}^{\mathrm{VV}}+\sum \int \mathrm{d} \sigma^{\mathrm{A}}\right\}_{\epsilon=0}^{J_{3}} \\
\text { indeed finite in } \mathrm{d}=4 \text { dimensions }
\end{gathered}
$$

Application

Three-jet event shapes: old

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} O} & =\frac{\alpha_{\mathrm{s}}}{2 \pi} A(O)+\left(\frac{\alpha_{\mathrm{s}}}{2 \pi}\right)^{2} B(O)+\left(\frac{\alpha_{\mathrm{s}}}{2 \pi}\right)^{3} C(O)+\mathrm{O}\left(\alpha_{\mathrm{s}}^{4}\right) \\
C_{\mathrm{par}} & =\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right| \vec{p}_{j} \mid \sin ^{2} \theta_{i j}}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
\end{aligned}
$$

Three-jet event shapes: old

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} O} & =\frac{\alpha_{\mathrm{s}}}{2 \pi} A(O)+\left(\frac{\alpha_{\mathrm{s}}}{2 \pi}\right)^{2} B(O)+\left(\frac{\alpha_{\mathrm{s}}}{2 \pi}\right)^{3} C(O)+\mathrm{O}\left(\alpha_{\mathrm{s}}^{4}\right) \\
C_{\mathrm{par}} & =\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2} \theta_{i j}}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
\end{aligned}
$$

Three-jet event shapes: old

$$
\tau=1-T \quad T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\vec{n} \cdot \vec{p}_{i}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right)
$$

Three-jet event shapes: old

$B_{i}=\frac{\sum_{j \in H_{i}}\left|\overrightarrow{p_{j}} \times \vec{n}_{T}\right|}{2 \sum_{j \in H_{i}}\left|\overrightarrow{p_{j}}\right|}, \quad i=L, R$.
$B_{T}=B_{L}+B_{R}$

Three-jet event shapes: old

$B_{i}=\frac{\sum_{j \in H_{i}}\left|\overrightarrow{p_{j}} \times \vec{n}_{T}\right|}{2 \sum_{j \in H_{i}}\left|\overrightarrow{p_{j}}\right|}$,
$i=L, R$.
$B_{W}=\max \left(B_{L}, B_{R}\right)$

Three-jet event shapes: old

$y_{23}=y_{c u t}$ that separates the event from being considered as 2 or 3 jet event using Durham clustering

Three-jet event shapes: old

$y_{23}=y_{c u t}$ that separates the event from being considered as 2 or 3 jet event using Durham clustering

Three-jet event shapes: old

$$
\tau=1-T
$$

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\vec{n} \cdot \overrightarrow{p_{i}}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right)
$$

N^{3} LL resummation from
T. Becher, M.D. Schwartz arXiv:0803.0343

Three-jet event shapes: old

$$
\frac{M_{i}^{2}}{s}=\frac{1}{E_{\mathrm{vis}}^{2}}\left(\sum_{j \in H_{i}} p_{j}\right)^{2}, \quad i=L, R \quad \rho=\max \left(\frac{M_{L}^{2}}{s}, \frac{M_{R}^{2}}{s}\right)
$$

N^{3} LL resummation from
Y-T. Chien, M.D. Schwartz arXiv:1005.1644

Three-jet event shapes: old

$$
C_{\mathrm{par}}=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2} \theta_{i j}}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

N^{3} LL resummation from
A. Hoang et al arXiv:1411.6633

Three-jet event shapes: new

$\frac{\mathrm{d} \Sigma_{\mathrm{JCEF}}}{\mathrm{d} \cos \chi}=\sum_{i} \int \frac{E_{i}}{Q} \mathrm{~d} \sigma_{e^{+} e^{-} \rightarrow i+X} \delta\left(\cos \chi-\frac{\vec{p}_{i} \cdot \vec{n}_{T}}{\left|\vec{p}_{i}\right|}\right)$

$$
\begin{aligned}
\mathrm{EEC}(\chi)= & \frac{1}{\sigma_{\mathrm{had}}} \sum_{i, j} \int \frac{E_{i} E_{j}}{Q^{2}} \\
& \quad \times \mathrm{d} \sigma_{e^{+} e^{-} \rightarrow i j+X} \delta\left(\cos \chi+\cos \theta_{i j}\right)
\end{aligned}
$$

In progress

R. Albers, ZT in progress

In progress

α_{s}
R. Albers, ZT in progress

MCCSM performance

MCCSM performance

Approximate timing without binning on one core
(Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz)

	B	V	R	$V V$	$R V$	$R R$
\# of PS points	100 M	100 M	100 M	10 M	10 M	10 M
Timing	12 min	8.3 h	3.5 h	7.5 h	22 h	5.5 h

MCCSM performance

Approximate timing without binning on one core
(Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz)

	B	V	R	$V V$	$R V$	$R R$
\# of PS points	100 M	100 M	100 M	10 M	10 M	10 M
Timing	12 min	8.3 h	3.5 h	7.5 h	22 h	5.5 h

\checkmark Regularized double-real contribution is smooth using 15B phase space points: in 27.5 hs on 300 cores
\checkmark Regularized real-virtual contribution is smooth using 1.5B phase space points: in 11 hs on 300 cores
\checkmark Regularized double-virtual contribution is smooth using 50M phase space points: in 7.5 min one 300 cores

Conclusions

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)
\checkmark Subtractions are
\checkmark fully local
\checkmark exact and explicit in color and flavor (using color state formalism)
\checkmark Demonstrated the cancellation of ϵ-poles for $m=2$ and 3
\checkmark Numerical implementation in MCCSM: converges well

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)
\checkmark Subtractions are
\checkmark fully local
\checkmark exact and explicit in color and flavor (using color state formalism)
\checkmark Demonstrated the cancellation of ϵ-poles for $m=2$ and 3
\checkmark Numerical implementation in MCCSM: converges well
\checkmark Precise (NNLO $\left.+N^{3} L L+L P C\right)$ predictions for three-jet event shapes in progress

Pole-cancelation: $\mathrm{H}^{-} \rightarrow \mathrm{bb}$ a $\dagger=\mathrm{m}_{\mathrm{H}}$

$$
\begin{aligned}
\sigma_{m}^{\mathrm{NNLO}}= & \int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m} \\
\mathrm{~d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{VV}} & =\left(\frac{\alpha_{\mathrm{s}}\left(\mu^{2}\right)}{2 \pi}\right)^{2} \mathrm{~d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{B}}\left\{+\frac{2 C_{\mathrm{F}}^{2}}{\epsilon^{4}}+\left(\frac{11 C_{\mathrm{A}} C_{\mathrm{F}}}{4}+6 C_{\mathrm{F}}^{2}-\frac{C_{\mathrm{F}} n_{\mathrm{f}}}{2}\right) \frac{1}{\epsilon^{3}}\right. \\
& +\left[\left(\frac{8}{9}+\frac{\pi^{2}}{12}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(\frac{17}{2}-2 \pi^{2}\right) C_{\mathrm{F}}^{2}-\frac{2 C_{\mathrm{F}} n_{\mathrm{f}}}{9}\right] \frac{1}{\epsilon^{2}} \\
& \left.+\left[\left(-\frac{961}{216}+\frac{13 \zeta_{3}}{2}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(\frac{109}{8}-2 \pi^{2}-14 \zeta_{3}\right) C_{\mathrm{F}}^{2}+\frac{65 C_{\mathrm{F}} n_{\mathrm{f}}}{108}\right] \frac{1}{\epsilon}\right\}
\end{aligned}
$$

C. Anastasiou, F. Herzog, A. Lazopoulos, arXiv:0111.2368

$$
\begin{aligned}
\sum \int \mathrm{d} \sigma^{\mathrm{A}} & =\left(\frac{\alpha_{\mathrm{s}}\left(\mu^{2}\right)}{2 \pi}\right)^{2} \mathrm{~d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{B}}\left\{-\frac{2 C_{\mathrm{F}}^{2}}{\epsilon^{4}}-\left(\frac{11 C_{\mathrm{A}} C_{\mathrm{F}}}{4}+6 C_{\mathrm{F}}^{2}+\frac{C_{\mathrm{F}} n_{\mathrm{f}}}{2}\right) \frac{1}{\epsilon^{3}}\right. \\
& -\left[\left(\frac{8}{9}+\frac{\pi^{2}}{12}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(\frac{17}{2}-2 \pi^{2}\right) C_{\mathrm{F}}^{2}-\frac{2 C_{\mathrm{F}} n_{\mathrm{f}}}{9}\right] \frac{1}{\epsilon^{2}} \\
& \left.-\left[\left(-\frac{961}{216}+\frac{13 \zeta_{3}}{2}\right) C_{\mathrm{A}} C_{\mathrm{F}}+\left(\frac{109}{8}-2 \pi^{2}-14 \zeta_{3}\right) C_{\mathrm{F}}^{2}+\frac{65 C_{\mathrm{F}} n_{\mathrm{f}}}{108}\right] \frac{1}{\epsilon}\right\}
\end{aligned}
$$

V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano, Z. Trócsányi, arXiv:1501.07226

Example: $\mathrm{H} \rightarrow \mathrm{bb}$

$$
\Gamma_{H \rightarrow b \bar{b}}^{\mathrm{NNLO}}\left(\mu=m_{H}\right)=\Gamma_{H \rightarrow b \bar{b}}^{\mathrm{LO}}\left(\mu=m_{H}\right)\left[1-\left(\frac{\alpha_{s}}{\pi}\right) 5.666667-\left(\frac{\alpha_{s}}{\pi}\right)^{2} 29.149+\mathcal{O}\left(\alpha_{s}^{3}\right)\right]
$$

Scale dependence of the inclusive decay rate $\Gamma(H->b \bar{b})$

Example: $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ at $\mu=\mathrm{m}_{H}$

Energy spectrum of the leading jet in the rest frame of the Higgs boson. Jets are clustered using the JADE algorithm with $y_{c u t}=0.1$

AHL = C. Anastasiou, F. Herzog, A. Lazopoulos arXiv:0111.2368

Example: $\mathrm{H} \rightarrow \mathrm{bb}$

rapidity distribution
energy spectrum of the leading jet in the rest frame of the Higgs boson. jets are clustered using the Durham algorithm with $y_{\text {cut }}=0.05$

Can constrain subtractions

We can constrain subtractions near singular regions ($\alpha_{0}<1$) E.g. $H \rightarrow b \bar{b}$: poles cancel numerically ($\alpha_{0}=0.1$)

$$
\begin{aligned}
\mathrm{d} \sigma_{H \rightarrow b \bar{b}}^{\mathrm{VV}}+\sum \int \mathrm{d} \sigma^{\mathrm{A}} & =\frac{5.4 \times 10^{-8}}{\epsilon^{4}}+\frac{3.9 \times 10^{-5}}{\epsilon^{3}}+\frac{3.3 \times 10^{-3}}{\epsilon^{2}}+\frac{6.7 \times 10^{-3}}{\epsilon}+\mathcal{O}(1) \\
\operatorname{Err}\left(\sum \int \mathrm{d} \sigma^{\mathrm{A}}\right) & =\frac{3.1 \times 10^{-5}}{\epsilon^{4}}+\frac{5.0 \times 10^{-4}}{\epsilon^{3}}+\frac{8.1 \times 10^{-3}}{\epsilon^{2}}+\frac{7.7 \times 10^{-2}}{\epsilon}+\mathcal{O}(1)
\end{aligned}
$$

Predictions remain the same:

rapidity distribution of the leading jet in the rest frame of the Higgs boson. jets are clustered using the Durham algorithm (flavour blind) with $y_{\text {cut }}=0.05$

Subtractions may help efficiency

We can constrain subtractions near singular regions ($\alpha_{0}<1$), leading to fewer calls of subtractions:

α_{0}	1	0.1
timing (rel.)	1	0.40
$\left\langle N_{\text {sub }}\right\rangle$	52	14.5

$\left\langle\mathrm{N}_{\text {sub }}\right\rangle$ is the average number of subtraction calls

