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Why event shapes?

‣ value of the strong coupling matters

‣ three-jet event 
shapes 
✓ are sensitive to αs 
✓ are measured extensively
✓ can be computed from first principles

          (assuming local parton-hadron duality)

3) The choice of PDFs matters

5

 What does PDF 
uncertainty include? 
How reliable it is? 

 How do we interpret the 
difference predictions 
using different PDF sets? 

 Shall we just pick a set 
out of the PDFs 
“supermarket” shelf or 
take the envelope of ALL 
predictions? 

J. Rojo’s talk 
at DIS2016



4

Why NNLO?
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Why NNLO?

‣ LO vs. NLO vs. data:

‣ three-jet event 
shapes 
✓ suffer large NLO corrections
✓ NNLL or NNNLL resummation available
✓ analytic model for hadronization available
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Figure 9: 1-σ confidence-level contours from fits to event-shape variables in a range of
schemes. (a) fits in the default schemes (normal hadron level); (b) fits in the E-scheme
(normal hadron level), with arrows indicating the motion of the contour in going from the
default to the E-scheme; (c) fits in the E-scheme at resonance level, with arrows indicating
the motion of the contour from the decay-scheme, to the hadron-level E-scheme, to the res-
onance E-scheme — here the correction to resonance level has carried out using only events
with light primary quarks; (d) fits in the E-scheme at resonance level where the correction to
resonance level now includes events with heavy primary quarks as well — the arrows indicate
the motion from the ‘uds’ resonance level.

Shapes at NLO+NLL+power corr.+had. mass
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schemes. (a) fits in the default schemes (normal hadron level); (b) fits in the E-scheme
(normal hadron level), with arrows indicating the motion of the contour in going from the
default to the E-scheme; (c) fits in the E-scheme at resonance level, with arrows indicating
the motion of the contour from the decay-scheme, to the hadron-level E-scheme, to the res-
onance E-scheme — here the correction to resonance level has carried out using only events
with light primary quarks; (d) fits in the E-scheme at resonance level where the correction to
resonance level now includes events with heavy primary quarks as well — the arrows indicate
the motion from the ‘uds’ resonance level.
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Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values for αs

which are about 10% smaller than for inclusive variables like the thrust or the mean jet
mass. This needs to be understood. It could be due to a difference in the behaviour of the
perturbation series at higher orders. But in appendix D there is evidence from Monte Carlo
simulations that hadronisation corrections for ρh have unusual characteristics: in contrast to
what is seen in more inclusive variables, the hadronisation depends strongly on the underlying
hard configuration. There is therefore a need to develop techniques allowing a more formal
approach to the study of such problems.
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A Summary of notation

For convenience we give here a summary of the definition of the various schemes introduced
in this article.

p-scheme Scheme in which the observable is defined solely in terms of particle
3-momenta.

E-scheme Scheme in which the observable is defined solely in terms of particle
energies and angles.

decay-scheme Scheme in which all massive particles are decayed isotropically into
pairs of massless particles. The observable is then calculated using
the resulting ensemble of massless particles.

We also summarise some of the other notation used and introduced in this article.

V An event-shape variable.

Vp, VE, Vdecay An event-shape variable in p, E or decay-scheme, respectively.

cV The coefficient of the ‘traditional’ power correction for the observable
V, introduced in eq. (3.5) and given for a range of observables in
table 1.

⟨δmV⟩ The non-universal mass-dependent correction to the mean value of
the observable V, cf. eq. (3.10).

δcV(m2/k2
t ) The modification to cV for a particle with a given m2/k2

t , cf. eq. (3.12).

Shapes at NLO+NLL+power corr.+had. mass
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‣ matrix elements are known for σRR and σRV for many processes
‣ σVV is known for many 0→4 parton, V+3 parton, VV+2 parton processes 

− higher multiplicities are on the horizon
‣ the three contributions are separately divergent in  d = 4 dimensions: 

- in σRR kinematical singularities as one or two partons become 
unresolved yielding ε-poles at O(ε-4, ε-3, ε-2, ε-1) after 
integration over phase space, no explicit ε-poles 

- in σRV kinematical singularities as one parton becomes unresolved 
yielding ε-poles at O(ε-2, ε-1) after integration over phase space 
+ explicit ε-poles at O(ε-2, ε-1) 

- in σVV explicit ε-poles at O (ε-4, ε-3, ε-2, ε-1)
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How to combine to obtain finite cross section?
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Sector decomposition 

Antennae subtraction 

qT-slicing 

SecToR-Improved Phase sPacE for Real radiation 
(STRIPPER) 

τN-slicing 

Completely Local SubtRactions for Fully 
Differential Predictions at NNLO (CoLoRFulNNLO) 

Approaches
!

Anastasiou, Melnikov, Petriallo et al 2004- 
!
!

Gehrmann, Gehrmann-De Ridder, Glover et al 2004- 
!
!

S. Catani, M. Grazzini et al 2007-  
!
!

Czakon et al 2010- 
!
!
!

Boughezal et al 2015- 
Gaunt et al 2015- 

!
!
!
!

ZT, Somogyi et al 2005- 

personal opinion: a completely satisfactory solution is not yet available
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Several options available - why a new one?

Our goal is to devise a subtraction scheme with

✓ fully local counter-terms                         
(efficiency and mathematically well-defined)

✓ fully differential predictions                            
(with jet functions defined in d = 4)

✓ explicit expressions including flavor and color 
(color space notation is used)

✓ completely general construction                       
(valid in any order of perturbation theory)

✓ option to constrain subtraction near singular 
regions (important check)

such schemes are known at NLO (CS-dipoles, FKS etc)
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S. Catani, S. Dittmaier,  
M.H. Seymour,ZT  
hep-ph/0201036
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How to build a local subtraction scheme?
Steps used at NLO:

✓ compute QCD factorization formulae                       
(universal)

✓ construct local subtractions on whole phase space                            
(explicit and universal in d = 4)

✓ integrate subtractions over unresolved phase space 
(once and for all)

✓ cancel IR poles                                                      
(analytically, universal)

✓ implement integration of finite part in partonic MC 
(simple user interface defines observables)
steps proven to be too difficult at NNLO:        ? 

given up

!
S. Catani, S. Dittmaier,  

M.H. Seymour,ZT  
hep-ph/0201036
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Structure

of subtractions is governed by the jet functions
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G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 

Z. Nagy, G. Somogyi, ZT hep-ph/0702273 

RR,A2 regularizes doubly-unresolved limits
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G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 
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RR,A1 regularizes singly-unresolved limits
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G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 
Z. Nagy, G. Somogyi, ZT hep-ph/0702273 

RR,A12 removes overlapping subtractions
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Structure

of subtractions is governed by the jet functions
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Use known ingredients
• Universal IR structure of QCD (squared) matrix elements 

- ε-poles of one- and two-loop amplitudes 
- soft and collinear factorization of QCD matrix 

elements
tree-level 3-parton splitting, double soft current: 

J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002

one-loop 2-parton splitting, soft gluon current: 
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 

Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000
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Z. Nagy, G. Somogyi, ZT, 2007



17

Use known ingredients
• Universal IR structure of QCD (squared) matrix elements 
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elements
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Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

• Simple and general procedure for separating overlapping 
singularities (using a physical gauge)

Z. Nagy, G. Somogyi, ZT, 2007

• Extension over whole phase space using momentum mappings 
(not unique):

{p}n+s � {p̃}n
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Momentum mappings
{p}n+s � {p̃}n

‣ implement exact momentum conservation 

‣ recoil distributed democratically 

⇒ can be generalized to any number s of 

unresolved partons 

‣ different mappings for collinear and soft limits  

- collinear limit  pi||pr: 

- soft limit  ps →0:

{p}n+1
Cir�⇥ {p̃}(ir)

n

{p}n+1
Ss�⇥ {p̃}(s)

n
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Momentum mappings
{p}n+s � {p̃}n

‣ implement exact momentum conservation 
‣ recoil distributed democratically  
‣ different mappings for collinear and soft limits  
‣ lead to phase-space factorization 
‣ can be generalized to any s trivially



20

Momentum mappings
{p}n+s � {p̃}n

‣ implement exact momentum conservation 
‣ recoil distributed democratically  
‣ different mappings for collinear and soft limits  
‣ lead to phase-space factorization 
‣ can be generalized to any s trivially
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Momentum mappings

�NNLO = �RR
m+2 + �RV

m+1 + �VV
m = �NNLO

m+2 + �NNLO
m+1 + �NNLO

m

�NNLO
m+2 =

⇤

m+2

⌃
d�RR

m+2Jm+2 � d�RR,A2
m+2 Jm �

�
d�RR,A1

m+2 Jm+1 � d�RR,A12
m+2 Jm

⇥⌥

�NNLO
m+1 =

⇤

m+1

⌃�
d�RV

m+1+
⇤

1
d�RR,A1

m+2

⇥
Jm+1�

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
m =

⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
+

⇤

1

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧⌥
Jm

define subtractions

implementation for general m in MCCSM code

!
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 

G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 
Z. Nagy, G. Somogyi, ZT hep-ph/0702273 

!
!
!

Adam Kardos 2015
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MCCSM built in checks
MCCSM

Testing the subtraction terms in all limits (even in quad 
precision):
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MCCSM built in checks
Checking subtractions locally in IR limits, e.g.triple-collinear 
limit in arbitrary phase space point:

MCCSM

Testing the subtraction terms in all limits (even in quad 
precision):
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MCCSM built in checksMCCSM
Testing the whole m+2 parton line:

Doubly unresolved

Singly unresolved:

MCCSM
Testing the whole m+2 parton line:

Doubly unresolved

Singly unresolved:

double unresolved

single unresolved
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MCCSM built in checks
Checking finiteness in singular regions, e.g. regularized RR:

MCCSM
Testing the whole m+2 parton line:

Doubly unresolved

Singly unresolved:

MCCSM
Testing the whole m+2 parton line:

Doubly unresolved

Singly unresolved:

double unresolved

single unresolved
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Kinematic singularities cancel in RR

R = subtraction/RR
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m+1 + �VV
m = �NNLO

m+2 + �NNLO
m+1 + �NNLO

m

�NNLO
m+2 =

⇤

m+2

⌃
d�RR

m+2Jm+2 � d�RR,A2
m+2 Jm �

�
d�RR,A1

m+2 Jm+1 � d�RR,A12
m+2 Jm

⇥⌥

�NNLO
m+1 =

⇤

m+1

⌃�
d�RV

m+1+
⇤

1
d�RR,A1

m+2

⇥
Jm+1�

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
m =

⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
+

⇤

1

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧⌥
Jm
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Cancellation of singularities in RV

Poles cancel vertically pairwise

m+1 m+1r −
[

m m ⊗ r + m m ⊗ r +. . .

]

+ Imm+1 m+1r −
[

Imm m ⊗ r + m m ⊗ R
r +. . .

]



�NNLO = �RR
m+2 + �RV

m+1 + �VV
m = �NNLO

m+2 + �NNLO
m+1 + �NNLO

m

�NNLO
m+2 =

⇤

m+2

⌃
d�RR

m+2Jm+2 � d�RR,A2
m+2 Jm �

�
d�RR,A1

m+2 Jm+1 � d�RR,A12
m+2 Jm

⇥⌥

�NNLO
m+1 =

⇤

m+1

⌃�
d�RV

m+1+
⇤

1
d�RR,A1

m+2

⇥
Jm+1�

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
m =

⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
+

⇤

1

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧⌥
Jm
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Cancellation of singularities in RV

Poles cancel vertically pairwise

m+1 m+1r −
[

m m ⊗ r + m m ⊗ r +. . .

]

+ Imm+1 m+1r −
[

Imm m ⊗ r + m m ⊗ R
r +. . .
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m+1 m+1r −
[

m m ⊗ r + m m ⊗ r +. . .

]

+ Imm+1 m+1r −
[

Imm m ⊗ r + m m ⊗ R
r +. . .

]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Cir ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
e+ e- -> b  b~ b  b~!
Checking pole cancellation in point 1!
iterm:    1 , g (3) -> b (3) || b~(4)!
UBorn: e+ e- -> g  b  b~!
                \->  b  b~!
!
!
Cancellation for Cir00I + Cir01:!
             Cir00I                    Cir01                     norm. sum!
O(e^-2) :    18.826825462152872       -18.826825462153515       -3.4155581733924357E-014!
O(e^-1) :    63.517133810744149       -63.517133810746685       -3.9936272537449989E-014!
!
Cancellation for CirR00 + Cir10:!
             CirR00                    Cir10                     norm. sum!
O(e^-2) :   -1.1074603213031107        1.1074603213031107       -0.0000000000000000!
O(e^-1) :    39.321998994866775       -39.321998994866760        3.6139705707884122E-016!
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�NNLO
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⇤
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⌃�
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⇤
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d�RR,A1

m+2

⇥
Jm+1�

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
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⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
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⇤

1

⌅
d�RV,A1

m+1 +
� ⇤
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Jm
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Cancellation of singularities in RV

Kinematic singularities cancel horizontally
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�NNLO = �RR
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m+1 + �VV
m = �NNLO
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�
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�NNLO
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⇤
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d�RV
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⇤
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d�RR,A1

m+2

⇥
Jm+1�
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d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
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⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
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Cancellation of singularities in RV

Kinematic singularities cancel horizontally

m+1 m+1r −
[

m m ⊗ r + m m ⊗ r +. . .

]

+ Imm+1 m+1r −
[

Imm m ⊗ r + m m ⊗ R
r +. . .

]
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Kinematic singularities cancel in RV

R = subtraction/(RV+RR,A1)
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Regularized RR and RV contributions

�NNLO = �RR
m+2 + �RV

m+1 + �VV
m = �NNLO

m+2 + �NNLO
m+1 + �NNLO

m

�NNLO
m+2 =

⇤

m+2

⌃
d�RR

m+2Jm+2 � d�RR,A2
m+2 Jm �

�
d�RR,A1

m+2 Jm+1 � d�RR,A12
m+2 Jm

⇥⌥

�NNLO
m+1 =

⇤

m+1

⌃�
d�RV

m+1+
⇤

1
d�RR,A1

m+2

⇥
Jm+1�

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
m =

⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
+

⇤

1

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧⌥
Jm
!

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 

Z. Nagy, G. Somogyi, ZT hep-ph/0702273 
!
!
!

Adam Kardos 2015

can now be computed by numerical Monte Carlo 
integrations                                

implementation for general m in MCCSM code



Difficulty
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Integrated approximate xsections
�NNLO = �RR

m+2 + �RV
m+1 + �VV

m = �NNLO
m+2 + �NNLO

m+1 + �NNLO
m

�NNLO
m+2 =

⇤

m+2

⌃
d�RR

m+2Jm+2 � d�RR,A2
m+2 Jm �

�
d�RR,A1

m+2 Jm+1 � d�RR,A12
m+2 Jm

⇥⌥

�NNLO
m+1 =

⇤

m+1

⌃�
d�RV

m+1+
⇤

1
d�RR,A1

m+2

⇥
Jm+1�

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
m =

⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
+

⇤

1

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧⌥
Jm

After integrating over unresolved momenta & summing 
over unresolved colors and  flavors, the subtraction 
terms can be written as products of insertion 
operators (in color space) and lower point cross 
sections:

Z

p
d�RR,Ap = I(0)

p ({p}n; ✏)⌦ d�B
n
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Integrated approximate xsections

 the integrated counter-terms                                       are 
!

independent of the process & observable
 ⇒ need to compute only once

Z

p
d�RR,Ap =

Z

p


d�m+2({p})

X

R

XR({p})
�

=

Z

p


d�n({p̃}(R))[dp(R)

p ]
X

R

�
8⇡↵sµ

2✏
�p

SingR(p
(R)
p )⌦ |M(0)

n ({p̃}(R)
n )|2

�

=
�
8⇡↵sµ

2✏
�p X

R

 Z

p
[dp(R)

p ]SingR(p
(R)
p )

�
⌦ d�n({p̃}(R))|M(0)

n ({p̃}(R)
n )|2

=
�
8⇡↵sµ

2✏
�p X

R

 Z

p
[dp(R)

p ]SingR(p
(R)
p )

�

| {z }

⌦ d�B
n

I(0)
p ({p}n; ✏)

[X]R /
Z

p
[dp(R)

p ]SingR(p
(R)
p )



35

Summation over unresolved flavors
‣ integrated counter-terms [X]fi… carry flavor 

indices of unresolved patrons 

⇒ need to sum over unresolved flavors:   

straightforward, though tedious, result can be 
summarized in flavor-summed integrated counter-
terms 

‣ symbolically: 

!

‣ and precisely, for instance, two-flavor sum:

⇣
X(0)

⌘(j,l)...

fi...
=

X
[X(0)](j,l)...fk...

X

{m+2}

1

S{m+2}

X

t

X

k 6=t

[X(0)
kt ]

(...)
fkft

⌘
X

{m}

1

S{m}

✓
X(0)

kt

◆(...)

!
P. Bolzoni, G. Somogyi, ZT arXiv:0905.4390
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Integrating out unresolved momenta

!
G. Somogyi, ZT arXiv:0807.0509 

U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, ZT arXiv:0807.0514 
P. Bolzoni, S. Moch, G. Somogyi, ZT arXiv:0905.4390

�NNLO = �RR
m+2 + �RV

m+1 + �VV
m = �NNLO
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m

�NNLO
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�
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m+2 Jm

⇥⌥

�NNLO
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⌃�
d�RV

m+1+
⇤

1
d�RR,A1

m+2

⇥
Jm+1�

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
m =

⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
+

⇤

1

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧⌥
Jm

two types of singly-unresolved
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Collinear integrals
convolution of the integral of AP-splitting 

function over ordinary phase space
� �0

0
d� (1� �)2d0�1

seirQ

2⌅

�
d⇧2(pi, pr; p(ir))

1
s1+⇤⇥

ir

P (⇤)
fifr

(zi, zr; ⇥) , ⇤ = 0, 1

d⇧2(pi, pr; p(ir)) =
s��

ir

8⌅

(4⌅)�

�(1� ⇤)
dsir dv ⇥

�
sir �Q2�

�
� + (1� �)x

⇥⇥

⇥ [v (1� v)]�� ⇥(1� v)⇥(v)

!
G. Somogyi, ZT arXiv:0807.0509 

U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, ZT arXiv:0807.0514 
P. Bolzoni, S. Moch, G. Somogyi, ZT arXiv:0905.4390
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Collinear integrals
convolution of the integral of AP-splitting 

function over ordinary phase space
� �0

0
d� (1� �)2d0�1

seirQ

2⌅

�
d⇧2(pi, pr; p(ir))

1
s1+⇤⇥

ir

P (⇤)
fifr

(zi, zr; ⇥) , ⇤ = 0, 1

zk+�⇥
r

s1+⇤⇥
ir

g(±)
I (zr) , zr =

�Q2 + (1� �)vseirQ

2�Q2 + (1� �)seirQ

� Function g(±)
I (z)

0 gA 1

⇤1 g(±)
B (1� z)±�

0 g(±)
C (1� z)±�

2F1(±⇥,±⇥, 1± ⇥, z)

±1 g(±)
D 2F1(±⇥,±⇥, 1± ⇥, 1� z)
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Soft integrals
convolution of the integral of eikonal factors 

over ordinary phase space

J ⇥ �
⇤ y0

0
dy (1� y)d�

0�1 Q2

2�

⇤
d⇥2(pr, K;Q)

�
sik

sirskr

⇥1+⇥�

d⌅2(pr, K;Q) =
(Q2)��

16⇤2

(4⇤)�

�(1� ⇥)
�2(1� ⇥)
�(1� 2⇥)

d⇧r ⇧1�2�
r �(y � ⇧r)

⇥ d(cos ⌃) d(cos ⌥)(sin⌃)�2�(sin⌥)�1�2�

!
G. Somogyi, ZT arXiv:0807.0509 

U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, ZT arXiv:0807.0514 
P. Bolzoni, S. Moch, G. Somogyi, ZT arXiv:0905.4390
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Computing the integrals
‣ Use algebraic and symmetry relations to reduce to a 

basic set ⇒ MI’s (but no IBP was used), not minimal 

‣ two strategies: 
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Computing the integrals
‣ Use algebraic and symmetry relations to reduce to a 

basic set ⇒ MI’s (but no IBP was used), not minimal 

‣ two strategies: 

!

!

!

!

!

5. evaluate parametric integrals of pole coefficients in 
terms of multiple polylogs, or numerically e.g. by SecDec

1.write phase space using angles 
and energies 

2. angular integrals in terms of 
MB representations 

3. resolve ε-poles by analytic 
continuation 

4.MB integrals -> Euler-type 
integrals, pole coefficients are 
finite parametric integrals

1. choose explicit parametriz-
ation of phase space 

2.write the parametric integral 
representation in chosen 
variables 

3. resolve ε-poles by sector 
decomposition 

4. pole coefficients are finite 
parametric integrals
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Status of (287) integrals

✓: pole coefficients and logarithmic terms in finite part 	
are computed analytically, power terms in finite part	
numerically, in some cases analytically

!
G. Somogyi, C. Duhr
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Structure of insertion operators
recall general form for Born sections

Z

p
d�RR,Ap = I(0)

p ({p}n; ✏)⌦ d�B
n

Insertion operators involve all possible color 
connections with given number of unresolved 

patrons with kinematic coefficients 

for 1 unresolved parton on tree SME |M(0)|2: 

!

kinematic functions contain poles starting from 
O(ε-2) for collinear and from O(ε-1) for soft

I(0)
1 ({p}m+1; ✏) =

↵s

2⇡
S✏

✓
µ2

Q2

◆✏ X

i

"
C(0)

1,fi
T 2

i +
X

k

S(0),(i,k)1 T iT k

#

!
G. Somogyi, ZT hep-ph/0609041
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Structure of insertion operators
recall general form for Born sections

Z

p
d�RR,Ap = I(0)

p ({p}n; ✏)⌦ d�B
n

for 2 unresolved patrons on tree SME |M(0)|2:
I(0)
2 ({p}m; ✏) =


↵s

2⇡
S✏

✓
µ2

Q2

◆✏ �2⇢X

i


C(0)

2,fi
T 2

i +
X

k

C(0)
2,fifk

T 2
k

�
T 2

i

+
X

j,l


S(0),(j,l)2 CA +

X

i

CS(0),(j,l)2,fi
T 2

i

�
T jT l

+
X

i,k,j,l

S(0),(i,k)(j,l)2 {T iT k,T jT l}
�

the iterated doubly-unresolved has the same 
color structure, kinematic coefficients differ!

G. Somogyi et al arXiv:0905.4390, arXiv:1301.3504, arXiv:1301.3919
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Structure of insertion operators
general form at one loop 

for 1 unresolved parton on loop SME |M(1)|2: 

!

!

!

present for m > 3 (four or more hard partons) 

Z

1
d�RV,A1

m+1 = I(0)
1 ({p}m; ✏)⌦ d�V

m + I(1)
1 ({p}m; ✏)⌦ d�B

m

I(1)
1 ({p}m; ✏) =


↵s

2⇡
S✏

✓
µ2

Q2

◆✏ �2 X

i


C(1)

1,fi
CAT

2
i +

X

k

S(1),(i,k)1 CAT iT k

+
X

k,l
k 6=l

S(1),(i,k,l)1

X

a,b,c

fabcT
a
i T

b
kT

c
l

�

G. Somogyi, ZT arXiv:0807.0509
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Structure of insertion operators
singly-unresolved integrated singly unresolved:

for 1 unresolved parton contributions on iterated I: 

!

kinematic functions contain poles starting from 
O(ε-3) only 

I(0,0)
1,1 ({p}m; ✏) =


↵s

2⇡
S✏

✓
µ2

Q2

◆✏ �2 X

i


C(0,0)

1,1,fi
CAT

2
i +

X

k

S(0,0),(i,k)1,2 CAT iT k

�

Z

1

⇣

Z

1
d�RR,A1

m+2

⌘

A1 =



1

2

n

I(0)
1 ({p}m; ✏), I(0)

1 ({p}m; ✏)
o

+ I(0,0)
1,1 ({p}m; ✏)

�

⌦ d�B
m

G. Somogyi, ZT arXiv:0807.0509
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Structure of insertion operators
‣ the color structures are independent of the 

precise definition of subtractions (momentum 
mappings), only subleading coefficients of ε-
expansion in kinematic functions may depend 

‣ we have computed all insertion operators 
analytically (defined in our subtraction scheme) up 
to O(ε-2) for arbitrary m 

‣ we have computed all insertion operators 
analytically (defined in our subtraction scheme) up 
to O(ε-0) for m=2 and up to O(ε-1) together with 
the logs of O(ε-0) for m=3 !

G. Somogyi, Z. Szőr, Z. Tulipánt, ZT 
with contributions by D. Tommasini and R. Derco 



Rewards
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Cancellation of poles
‣ we checked the cancellation of the leading and 

first subleading poles (defined in our subtraction 
scheme) for arbitrary m 

‣ for m=2,  

‣ the insertion operators are independent of the 
kinematics (momenta are back-to-back, so  
MI’s are needed at the endpoints only) 

‣ color algebra is trivial: 

‣ so can demonstrate the cancellation of poles 

‣ e.g. for H→bb  

V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano, ZT, arXiv:1501.07226

T 1T 2 = �T 2
1 = �T 2

2 = �CF
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Cancellation of poles
‣ we checked the cancellation of the leading and 

first subleading poles (defined in our subtraction 
scheme) for arbitrary m 

‣ for m=2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Phase space for

y12 = 1� y13 � y23

y 2
3

y13

e+e� ! qq̄g

y13 ' 0.758, y23 ' 0.00318
y13 ' 0.0242, y23 ' 0.0388

y13 ' 0.33, y23 ' 0.33
y13 = 0.66, y23 = 0.33

‣ for m=3, 
‣ color algebra can be 

performed explicitly: 
!

!

‣ the insertion operators 
depend on 3-jet kinematics:

T 1T 2 =
1

2
CA � CF

T 1T 3 = T 2T 3 = �1

2
CA
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Example: e+e-→ m(=3) jets at µ2 = s
�NNLO
m =

Z

m

n

d�VV
m +

Z

2

h

d�RR,A2
m+2 � d�RR,A12

m+2

i

+

Z

1

h

d�RV,A1
m+1 +

⇣

Z

1

d�RR,A1
m+2

⌘

A1
io

Jm

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich arXiv:0710.0346

Following [55], we organise the infrared pole structure of the NNLO contributions renor-

malised in the MS scheme in terms of the tree and renormalised one-loop amplitudes such

that,

Poles
(
A(2×0)

3 (1q, 3g, 2q̄) + A(1×1)
3 (1q, 3g, 2q̄)

)

= 2

[
−
(
I

(1)
qq̄g(ϵ)

)2
− β0

ϵ
I
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qq̄g(ϵ)

+e−ϵγ Γ(1 − 2ϵ)

Γ(1 − ϵ)

(
β0

ϵ
+ K

)
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]
A0
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+2 I
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qq̄g(ϵ)A(1×0)

3 (1q, 3g, 2q̄) . (4.59)

Here,

I
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qq̄g(ϵ) = N

(
I

(1)
qg (ϵ, s13) + I

(1)
qg (ϵ, s23)

)
− 1

N
I

(1)
qq̄ (ϵ, s12)

+NF

(
I

(1)
qg,F (ϵ, s13) + I

(1)
qg,F (ϵ, s23)

)
, (4.60)

with the individual I
(1)
ij defined in [32] and

H
(2)
qq̄g =

eϵγ

4 ϵΓ(1 − ϵ)

[(
4ζ3 +

589

432
− 11π2

72

)
N2 +

(
−1

2
ζ3 −

41

54
− π2

48

)

+

(
−3ζ3 −

3

16
+

π2

4

)
1

N2
+

(
−19

18
+

π2

36

)
NNF +

(
− 1

54
− π2

24

)
NF

N
+

5

27
N2

F .

]

.

(4.61)

We denote the finite contributions as,

Finite(A(2×0)
3 (1q, 3g, 2q̄)) = N2A(2×0),finite

3,N2 + A(2×0),finite
3,1 +

1

N2
A(2×0),finite

3,1/N2

+NNF A(2×0),finite
3,NNF

+
NF

N
A(2×0),finite

3,NF /N

+N2
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3,N2
F

+ NF,γ

(
4

N
− N

)
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3,NF,γ
, (4.62)

Finite(A(1×1)
3 (1q, 3g, 2q̄)) = N2A(1×1),finite

3,N2 + A(1×1),finite
3,1 +

1

N2
A(1×1),finite

3,1/N2

+NNF A(1×1),finite
3,NNF

+
NF

N
A(1×1),finite

3,NF /N

+N2
F A(1×1),finite

3,N2
F

. (4.63)

Explicit formulae for the finite remainders have been given in [18]. These are expressed

in terms of one-dimensional and two-dimensional harmonic polylogarithms (HPLs and

2dHPLs) [59,62], which are generalisations of the well-known Nielsen polylogarithms [63].

A numerical implementation, which is required for all practical applications, is available

for HPLs and 2dHPLs [64].
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I(1)
qq̄g(✏) = ReI(1)

0 (pq, pq̄, pg; ✏)

d�VV
3 = Poles

�
A

(2⇥0)
3 +A

(1⇥1)
3

�
+ Finite

�
A

(2⇥0)
3 +A

(1⇥1)
3

�
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Example: e+e-→ m(=3) jets at µ2 = s
�NNLO
m =

Z

m

n

d�VV
m +

Z

2

h

d�RR,A2
m+2 � d�RR,A12

m+2

i

+

Z

1

h

d�RV,A1
m+1 +

⇣

Z

1

d�RR,A1
m+2

⌘

A1
io

Jm

d�VV
3 = Poles

�
A

(2⇥0)
3 +A

(1⇥1)
3

�
+ Finite

�
A

(2⇥0)
3 +A

(1⇥1)
3

�

Poles

�
A

(2⇥0)
3 +A

(1⇥1)
3

�
+ Poles

XZ
d�A= 200k Mathematica lines

= zero numerically in any phase space point:
             0.         2   0. nf!
        0. + --- + 0. Nc  + ----- + 0. Nc nf!
               2             Nc!
             Nc!
Out[1]= ------------------------------------ + !
                          2!
                         e!
!
          0.          2  0. nf!
     0. + --- + 0. Nc  + ----- + 0. Nc nf!
            2              Nc!
          Nc                                          0!
----------------------------------------------- + O[e]!
                    e               !
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Example: e+e-→ m(=3) jets at µ2 = s
�NNLO
m =

Z

m

n

d�VV
m +

Z

2

h

d�RR,A2
m+2 � d�RR,A12

m+2

i

+

Z

1

h

d�RV,A1
m+1 +

⇣

Z

1

d�RR,A1
m+2

⌘

A1
io

Jm

d�VV
3 = Poles

�
A

(2⇥0)
3 +A
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�
To indicate how this cancellation takes place, we use eqs. (3.32), (3.33), (3.36) and (3.38) to
write the regularized double virtual cross section in the form

d�NNLO
3 =

n

d�VV
3 + d�B

3 ⌦
h

I(0)
2 (✏)� I(0)

12 (✏) + I(1)
1 (✏) + I(0,0)

1,1 (✏) +
1

2

�

I(0)
1 (✏), I(0)

1 (✏)
 

i

+ d�V
3 ⌦ I(0)

1 (✏)
o

J3 .
(4.25)

The insertion operators appearing in eq. (4.25) above are given in terms of kinematic functions

in eqs. (3.9), (3.34), (3.35), (3.37) and (3.39). We note that I(0)
1 appears in eq. (4.25) multiplied

by itself in the anti-commutator on the first line as well as by the virtual cross section on the
second line. Since both I(0)

1 and d�V
3 contain up to 1/✏2 poles, I(0)

1 must be calculated to O(✏2)
to correctly account for all finite parts in eq. (4.25). In order to compute just the poles, it

su�ces to expand I(0)
1 to O(✏) only, as in appendix A.

We have computed the pole parts of all insertion operators analytically, which turn out to
be very lengthy expressions already at O(✏�2). (The reader can get an idea of the complexity

by using the formulas in appendix A to compute the poles of
�

I(0)
1 (✏), I(0)

1 (✏)
 

.) However, the
✏-poles of the following combination of operators

J2 ⌘ I(0)
2 � I(0)

12 + I(1)
1 + I(0,0)

1,1 +
1

4

n

I(0)
1 , I(0)

1

o

(4.26)

form a remarkably simple expression:

J2({p}3; ✏) =
↵s

2⇡

S✏

SMS
✏

✓

µ2

Q2

◆✏ 1

2✏

✓

�0 + 2✏K � ✏2�0
⇡2

4

◆

I(0)
1 ({p}3; 2✏)

� �0I
(0)
1 ({p}3; ✏)�

↵s
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S✏

SMS
✏

✓

µ2

Q2

◆✏
⇣

2Hq(nf) +Hg(nf)
⌘

�

+O(✏0) .
(4.27)

It is easy to convince oneself that only the universal pole parts of the I(0)
1 operator (given in

eq. (3.10) for general m) enter the computation of the poles of J2. Furthermore, looking at the

explicit definition of I(0)
1 in eq. (3.9), we see that the J2 operator in eq. (4.27) can be written by

simply counting the radiating partons in the event (two quarks and one gluon in our example).
This additive nature of J2, which is also valid for two-jet production, hints that in general

J2({p}m; ✏) =
↵s
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SMS
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◆✏ 1

2✏
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�0 + 2✏K � ✏2�0
⇡2

4

◆

I(0)
1 ({p}m; 2✏)

� �0I
(0)
1 ({p}m; ✏)�

↵s

2⇡

S✏

SMS
✏

✓

µ2

Q2

◆✏ m
X

i=1

Hfi(nf)

�

+O(✏0) ,

(4.28)

although presently we do not have a proof for the validity of this formula. Using eqs. (4.16)

and (4.27) together with the explicit expressions for I(0)
1 in appendix A, it is not di�cult to
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The insertion operators appearing in eq. (4.25) above are given in terms of kinematic functions

in eqs. (3.9), (3.34), (3.35), (3.37) and (3.39). We note that I(0)
1 appears in eq. (4.25) multiplied

by itself in the anti-commutator on the first line as well as by the virtual cross section on the
second line. Since both I(0)
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to correctly account for all finite parts in eq. (4.25). In order to compute just the poles, it
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form a remarkably simple expression:
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It is easy to convince oneself that only the universal pole parts of the I(0)
1 operator (given in

eq. (3.10) for general m) enter the computation of the poles of J2. Furthermore, looking at the

explicit definition of I(0)
1 in eq. (3.9), we see that the J2 operator in eq. (4.27) can be written by

simply counting the radiating partons in the event (two quarks and one gluon in our example).
This additive nature of J2, which is also valid for two-jet production, hints that in general
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Finally, jet-cone energy fraction [89] is defined as the energy deposited within a conical shell
of the opening angle � between a particle and the thrust axis ~nT , whose direction is defined to
point from the heavy jet mass hemisphere to the light jet mass hemisphere,

d⌃JCEF
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cos�� ~pi · ~nT
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. (5.9)

In principle 0o  �  180o, but hard gluon emissions typically contribute only to the region
90o  �  180o, which is plotted in the data [90].

5.2 Event shapes revisited

In this section we present the predictions of the CoLoRFulNNLO method for the event shapes
considered also in refs. [5, 6]. To begin, we write the perturbative expansion of the di↵erential
distribution of an event shape observable O at the default renormalization scale (not to be
confused with the regularization scale of section 2.3) µ0 =

p

Q2 (the total center-of-mass
energy) as
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where ↵s = ↵s(µ0) and �0 is the leading-order perturbative prediction for the total cross section
of the process e+e� ! hadrons. The LO and NLO perturbative coe�cients A(O) and B(O)
for thrust, heavy jet mass, total and wide jet broadening, C-parameter and the jet transition
variable y23 in the Durham algorithm were computed a long time ago [91], while predictions
for the NNLO coe�cients C(O) were presented in [5, 6]3. However, experiments measure the
distributions normalized to the total hadronic cross section, �, thus physical predictions should
be normalized to that. At the default renormalization scale µ0, distributions normalized to
the total hadronic cross section can be obtained from the expansion in eq. (5.10) above by
multiplying with the inverse of
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The renormalization scale dependence of a three-jet event shape distribution normalized to the
total hadronic cross section can be computed as
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3Since these distributions have 1/O singularities, it is more convenient to present results for the quantities
OC(O) and this was done in refs. [5, 6] as well as in this paper in figures 1–3.
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FIG. 1: The NNLO coe�cient of the weighted
⌧ = 1� T distribution. The lower panels show the

predictions of ref. [6], denoted as SW, (middle panel)
and those of ref. [5], denoted as GGGH, (lower panel)
normalized to ours, as well as the relative uncertainties
of the numerical integrations (shaded band around the

line at one).

defines thrust minor, where the thrust-minor axis, ~nTm ,
is orthogonal to both the thrust and thrust-major axes.
Oblateness O is then the di↵erence of thrust major and
thrust minor [17],

O = TM � Tm . (9)

The value of the C-parameter for massless final-state
particles is

Cpar =
3

2

P

i,j |~pi||~pj | sin2 ✓ij
(
P

i |~pi|)2
, (10)

where ✓ij is the angle between ~pi and ~pj .
Finally, energy-energy correlation [18] is the nor-

malised energy-weighted cross section defined in terms
of the angle between two particles i and j in an event,
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1
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X

i,j

Z

EiEj

Q2

⇥ d�e+e�!i j+X�(cos�+ cos ✓ij) ,

(11)

where Q2 is the squared center-of-mass energy, Ei and
Ej are the particle energies, ✓ij = ⇡ � � is the angle
between the two particles and �had is the total hadronic
cross section. Experience shows that computing radiative
corrections to the distributions of C-parameter, oblate-
ness and energy-energy correlations is numerically more
challenging than for other three-jet event shapes.

As a validation of our method, we show in figs. 1 and 2
the third-order coe�cient in eq. (5) for O = ⌧ ⌘ 1 � T

FIG. 2: The same as fig. 1 for the C-parameter.

and O = Cpar. We observe a very good numerical con-
vergence of our method at NNLO: the absolute uncer-
tainties of the integrations are shown as shaded narrow
bands around the solid line on the upper panels (hardly
visible) and the relative ones around the lines at one on
the lower panels of figs. 1 and 2. We compare our results
to the predictions of refs. [5, 6] and we find agreement
over a large range of ⌧ and C-parameter. We observe
statistically significant di↵erences beyond the kinemati-
cal limits (⌧ = 1/3 and Cpar = 3/4) where the three-
particle final states vanish and the event shapes are deter-
mined by a four-jet final state. In these regions the C(O)
coe�cients are determined by the NLO corrections to
four-jet production, which have been known for long [2]
and can also be computed with modern automated tools,
such as MadGraph5 aMC@NLO [19]. We have checked that
our predictions are in complete agreement with those of
MadGraph5 aMC@NLO.

We present predictions for the distributions of oblate-
ness O and energy-energy correlation EEC at NNLO ac-
curacy in perturbative QCD for collider energy

p

Q2 =
91.2GeV in figs. 3 and 4. The bands represent the de-
pendence of the predictions on the renormalization scale
varied in the range [0.5, 2] times our default scale: the
total center-of-mass energy. We use ↵s = 0.118 for the
central value and the three-loop running of the strong
coupling for computing the scale variations. The lower
panels show the relative scale dependence of the NNLO
predictions and the relative uncertainties of the integra-
tions. Both oblateness and energy-energy correlation are
known to vanish in the dijet limit. Moreover, oblate-
ness is expected to vanish also for cylindrically symmet-
ric final states, while for three-parton events one has
0  O  1/

p
3. Indications of these features are visi-

ble in figs. 3 and 4.
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FIG. 1: The NNLO coe�cient of the weighted
⌧ = 1� T distribution. The lower panels show the

predictions of ref. [6], denoted as SW, (middle panel)
and those of ref. [5], denoted as GGGH, (lower panel)
normalized to ours, as well as the relative uncertainties
of the numerical integrations (shaded band around the

line at one).
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coe�cients are determined by the NLO corrections to
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is free of ✏-poles, although to perform the algebra for the 1/✏2 and 1/✏ poles still requires some
e↵ort. Hence eq. (4.29) is finite in four dimensions and we can compute the regularized double
virtual di↵erential cross section for any infrared-safe observable numerically.

5 Event shapes old and new

The CoLoRFulNNLO method provides a robust subtraction scheme for computing NNLO cor-
rections to processes with a colorless initial state (for the moment) and any number of final
state jets, provided all necessary matrix elements are known. We have implemented the method
in a general purpose, automated parton-level Monte Carlo code which can be used to compute
any infrared-safe observable at NNLO accuracy in e+e� ! 3 jets. To demonstrate the validity
of our code, we compute NNLO corrections to six standard event shape variables (thrust, heavy
jet mass, total jet broadening, wide jet broadening, C-parameter and the two-to-three jet tran-
sition variable y23 in the Durham algorithm) and compare our predictions to those available
in the literature [5, 6]. We also present here for the first time the computation of jet cone
energy fraction (JCEF) at NNLO accuracy. Predictions from CoLoRFulNNLO at this order
in perturbation theory for oblateness and energy-energy correlation (EEC) were presented in
ref. [7].

5.1 Definition of event shapes

Thrust [76, 77] is defined as
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, (5.1)

where the three-vectors ~pi denote the three-momenta of the partons and ~n defines the direction
of the thrust axis, ~nT , by maximizing the sum on the right-hand side. For massless particles
thrust is normalized by the center-of-mass energy,

P

i |~pi| = Q. In general 1/2  T  1, with
T = 1/2 for spherically symmetric events, and T ! 1 in the case of two back-to-back jets (the
dijet limit). For three-particle events, we have 2/3  T  1.

Heavy jet mass [78–80] is defined by dividing the event into two hemispheres, HL, HR, by a
plane orthogonal to an axis which can be chosen to be the thrust axis ~nT . Then the hemisphere
invariant mass is
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where Evis is the total visible energy measured in the event, which is equal to the center-of-mass
energy in perturbation theory with massless partons, Evis = Q. The heavy jet mass is

⇢ = max
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. (5.3)

In the dijet limit, we find ⇢ ! 0. For three-particle events we have 0  ⇢  1/3. At leading
order in perturbation theory the distributions of heavy jet mass ⇢ and ⌧ ⌘ 1� T are identical.

Jet broadening [81, 82], like heavy jet mass, is also defined through the two hemispheres
HL, HR. First, hemisphere broadening is given by

Bi =

P

j2Hi
|~pj ⇥ ~nT |

2
P

j2Hi
|~pj|

, i = L,R . (5.4)

The total and wide jet broadening are then defined as

BT = BL +BR and BW = max(BL, BR) . (5.5)

In the dijet limit, both BT and BW vanish, while for spherically symmetric events BT = 2BW =
⇡/8. For three-parton events we have BT , BW  1/(2

p
3) ' 0.288.

The C-parameter [83, 84] is defined through the eigenvalues �1,�2,�3, of the infrared-safe
momentum tensor,

⇥⇢� =
1

P

i |~pi|
X

i

p⇢i p
�
i

|~pi|
, ⇢, � = 1, 2, 3 , (5.6)

where i runs over all final state particles. As ⇥ is a symmetric non-negative tensor with unit
trace, the eigenvalues �i are real and non-negative, with

P

i �i = 1. Therefore, 0  �i  1,
with i = 1, 2, 3. The value of the C-parameter is then defined as

Cpar = 3 (�1�2 + �2�3 + �3�1) . (5.7)

In the dijet limit the C-parameter vanishes, while for spherical events Cpar = 1, so 0  Cpar  1.
For events with three-partons in the final state we have 0  Cpar  3/4.

Jet transition variables specify how an event changes from a n-jet to a (n+1)-jet configura-
tion. For example, given a jet resolution parameter ycut, the two-to-three jet transition variable
y23 [85–88] is defined as the value of ycut for which an event changes from a two-jet to a three-jet
configuration, within some jet algorithm. Here we focus on the Durham algorithm [88], which
clusters particles into jets by computing the variable,

yij =
2min(E2

i , E
2
j )(1� cos ✓ij)

E2
vis

, (5.8)

for each pair (i, j) of particles. The pair with the lowest value of yij is replaced by a pseudo-
particle whose four-momentum is computed in the E recombination scheme, i.e., it is simply
the sum of the four-momenta of particles i and j. This procedure is iterated until all pairs have
yij > ycut and the remaining pseudo-particles are the jets.

20

where Evis is the total visible energy measured in the event, which is equal to the center-of-mass
energy in perturbation theory with massless partons, Evis = Q. The heavy jet mass is

⇢ = max

✓

M2
L

s
,
M2

R

s

◆

. (5.3)

In the dijet limit, we find ⇢ ! 0. For three-particle events we have 0  ⇢  1/3. At leading
order in perturbation theory the distributions of heavy jet mass ⇢ and ⌧ ⌘ 1� T are identical.

Jet broadening [81, 82], like heavy jet mass, is also defined through the two hemispheres
HL, HR. First, hemisphere broadening is given by

Bi =

P

j2Hi
|~pj ⇥ ~nT |

2
P

j2Hi
|~pj|

, i = L,R . (5.4)

The total and wide jet broadening are then defined as

BT = BL +BR and BW = max(BL, BR) . (5.5)

In the dijet limit, both BT and BW vanish, while for spherically symmetric events BT = 2BW =
⇡/8. For three-parton events we have BT , BW  1/(2

p
3) ' 0.288.

The C-parameter [83, 84] is defined through the eigenvalues �1,�2,�3, of the infrared-safe
momentum tensor,

⇥⇢� =
1

P

i |~pi|
X

i

p⇢i p
�
i

|~pi|
, ⇢, � = 1, 2, 3 , (5.6)

where i runs over all final state particles. As ⇥ is a symmetric non-negative tensor with unit
trace, the eigenvalues �i are real and non-negative, with

P

i �i = 1. Therefore, 0  �i  1,
with i = 1, 2, 3. The value of the C-parameter is then defined as

Cpar = 3 (�1�2 + �2�3 + �3�1) . (5.7)

In the dijet limit the C-parameter vanishes, while for spherical events Cpar = 1, so 0  Cpar  1.
For events with three-partons in the final state we have 0  Cpar  3/4.

Jet transition variables specify how an event changes from a n-jet to a (n+1)-jet configura-
tion. For example, given a jet resolution parameter ycut, the two-to-three jet transition variable
y23 [85–88] is defined as the value of ycut for which an event changes from a two-jet to a three-jet
configuration, within some jet algorithm. Here we focus on the Durham algorithm [88], which
clusters particles into jets by computing the variable,

yij =
2min(E2

i , E
2
j )(1� cos ✓ij)

E2
vis

, (5.8)

for each pair (i, j) of particles. The pair with the lowest value of yij is replaced by a pseudo-
particle whose four-momentum is computed in the E recombination scheme, i.e., it is simply
the sum of the four-momenta of particles i and j. This procedure is iterated until all pairs have
yij > ycut and the remaining pseudo-particles are the jets.

20



59

Three-jet event shapes: old

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

B
W �

d
�

d
B
W

ALEPH data
GGGH

LO
NLO
NNLO

⇠R 2 [0.5, 2]
⇠R 2 [0.5, 2]
⇠R 2 [0.5, 2]

p
Q2 = 91.2GeV

↵s(Q2) = 0.118

0.95
1.0
1.05

G
G
G
H

0.0 0.05 0.1 0.15 0.2 0.25 0.3
BW

GGGH

0.95
1.0
1.05

S
W

SW

-20000

-15000

-10000

-5000

0

5000

B
W
C
(B

W
)

CoLoRFulNNLO
SW
GGGH

0.9
1.0
1.1

S
W

0.9
1.0
1.1

G
G
G
H

0.0 0.05 0.1 0.15 0.2 0.25 0.3
BW

where Evis is the total visible energy measured in the event, which is equal to the center-of-mass
energy in perturbation theory with massless partons, Evis = Q. The heavy jet mass is

⇢ = max

✓

M2
L

s
,
M2

R

s

◆

. (5.3)

In the dijet limit, we find ⇢ ! 0. For three-particle events we have 0  ⇢  1/3. At leading
order in perturbation theory the distributions of heavy jet mass ⇢ and ⌧ ⌘ 1� T are identical.

Jet broadening [81, 82], like heavy jet mass, is also defined through the two hemispheres
HL, HR. First, hemisphere broadening is given by

Bi =

P

j2Hi
|~pj ⇥ ~nT |

2
P

j2Hi
|~pj|

, i = L,R . (5.4)

The total and wide jet broadening are then defined as

BT = BL +BR and BW = max(BL, BR) . (5.5)

In the dijet limit, both BT and BW vanish, while for spherically symmetric events BT = 2BW =
⇡/8. For three-parton events we have BT , BW  1/(2

p
3) ' 0.288.

The C-parameter [83, 84] is defined through the eigenvalues �1,�2,�3, of the infrared-safe
momentum tensor,

⇥⇢� =
1

P

i |~pi|
X

i

p⇢i p
�
i

|~pi|
, ⇢, � = 1, 2, 3 , (5.6)

where i runs over all final state particles. As ⇥ is a symmetric non-negative tensor with unit
trace, the eigenvalues �i are real and non-negative, with

P

i �i = 1. Therefore, 0  �i  1,
with i = 1, 2, 3. The value of the C-parameter is then defined as

Cpar = 3 (�1�2 + �2�3 + �3�1) . (5.7)

In the dijet limit the C-parameter vanishes, while for spherical events Cpar = 1, so 0  Cpar  1.
For events with three-partons in the final state we have 0  Cpar  3/4.

Jet transition variables specify how an event changes from a n-jet to a (n+1)-jet configura-
tion. For example, given a jet resolution parameter ycut, the two-to-three jet transition variable
y23 [85–88] is defined as the value of ycut for which an event changes from a two-jet to a three-jet
configuration, within some jet algorithm. Here we focus on the Durham algorithm [88], which
clusters particles into jets by computing the variable,

yij =
2min(E2

i , E
2
j )(1� cos ✓ij)

E2
vis

, (5.8)

for each pair (i, j) of particles. The pair with the lowest value of yij is replaced by a pseudo-
particle whose four-momentum is computed in the E recombination scheme, i.e., it is simply
the sum of the four-momenta of particles i and j. This procedure is iterated until all pairs have
yij > ycut and the remaining pseudo-particles are the jets.

20

where Evis is the total visible energy measured in the event, which is equal to the center-of-mass
energy in perturbation theory with massless partons, Evis = Q. The heavy jet mass is

⇢ = max

✓

M2
L

s
,
M2

R

s

◆

. (5.3)

In the dijet limit, we find ⇢ ! 0. For three-particle events we have 0  ⇢  1/3. At leading
order in perturbation theory the distributions of heavy jet mass ⇢ and ⌧ ⌘ 1� T are identical.

Jet broadening [81, 82], like heavy jet mass, is also defined through the two hemispheres
HL, HR. First, hemisphere broadening is given by

Bi =

P

j2Hi
|~pj ⇥ ~nT |

2
P

j2Hi
|~pj|

, i = L,R . (5.4)

The total and wide jet broadening are then defined as

BT = BL +BR and BW = max(BL, BR) . (5.5)

In the dijet limit, both BT and BW vanish, while for spherically symmetric events BT = 2BW =
⇡/8. For three-parton events we have BT , BW  1/(2

p
3) ' 0.288.

The C-parameter [83, 84] is defined through the eigenvalues �1,�2,�3, of the infrared-safe
momentum tensor,

⇥⇢� =
1

P

i |~pi|
X

i

p⇢i p
�
i

|~pi|
, ⇢, � = 1, 2, 3 , (5.6)

where i runs over all final state particles. As ⇥ is a symmetric non-negative tensor with unit
trace, the eigenvalues �i are real and non-negative, with

P

i �i = 1. Therefore, 0  �i  1,
with i = 1, 2, 3. The value of the C-parameter is then defined as

Cpar = 3 (�1�2 + �2�3 + �3�1) . (5.7)

In the dijet limit the C-parameter vanishes, while for spherical events Cpar = 1, so 0  Cpar  1.
For events with three-partons in the final state we have 0  Cpar  3/4.

Jet transition variables specify how an event changes from a n-jet to a (n+1)-jet configura-
tion. For example, given a jet resolution parameter ycut, the two-to-three jet transition variable
y23 [85–88] is defined as the value of ycut for which an event changes from a two-jet to a three-jet
configuration, within some jet algorithm. Here we focus on the Durham algorithm [88], which
clusters particles into jets by computing the variable,

yij =
2min(E2

i , E
2
j )(1� cos ✓ij)

E2
vis

, (5.8)

for each pair (i, j) of particles. The pair with the lowest value of yij is replaced by a pseudo-
particle whose four-momentum is computed in the E recombination scheme, i.e., it is simply
the sum of the four-momenta of particles i and j. This procedure is iterated until all pairs have
yij > ycut and the remaining pseudo-particles are the jets.

20



60

Three-jet event shapes: old

-20000

-15000

-10000

-5000

0

y 2
3
C
(y

23
)

CoLoRFulNNLO
SW
GGGH

0.8
1.0
1.2

S
W

0.8
1.0
1.2

G
G
G
H

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

ln y23

y23 = ycut that separates the event from being considered as  
2 or 3 jet event using Durham clustering



60

Three-jet event shapes: old

-20000

-15000

-10000

-5000

0

y 2
3
C
(y

23
)

CoLoRFulNNLO
SW
GGGH

0.8
1.0
1.2

S
W

0.8
1.0
1.2

G
G
G
H

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

ln y23

0.1

0.2

0.3

0.4

0.5

1 �
d
�

d
y 2

3

ALEPH data
SW
GGGH

LO
NLO
NNLO

⇠R 2 [0.5, 2]
⇠R 2 [0.5, 2]
⇠R 2 [0.5, 2]

p
Q2 = 91.2GeV

↵s(Q2) = 0.118

0.95
1.0
1.05

G
G
G
H

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
ln y23

GGGH

0.95
1.0
1.05

S
W

SW

y23 = ycut that separates the event from being considered as  
2 or 3 jet event using Durham clustering



61

Three-jet event shapes: old

τ = 1-T

check explicitly that the combination

d�NNLO
3 =



d�VV
3 + d�B

3 ⌦
✓

J2({p}3; ✏) +
1

4

n

I(0)
1 ({p}3; ✏), I

(0)
1 ({p}3; ✏)

o

◆

+ d�V
3 ⌦ I(0)

1 ({p}3; ✏)
�

J3 ,

(4.29)

is free of ✏-poles, although to perform the algebra for the 1/✏2 and 1/✏ poles still requires some
e↵ort. Hence eq. (4.29) is finite in four dimensions and we can compute the regularized double
virtual di↵erential cross section for any infrared-safe observable numerically.

5 Event shapes old and new

The CoLoRFulNNLO method provides a robust subtraction scheme for computing NNLO cor-
rections to processes with a colorless initial state (for the moment) and any number of final
state jets, provided all necessary matrix elements are known. We have implemented the method
in a general purpose, automated parton-level Monte Carlo code which can be used to compute
any infrared-safe observable at NNLO accuracy in e+e� ! 3 jets. To demonstrate the validity
of our code, we compute NNLO corrections to six standard event shape variables (thrust, heavy
jet mass, total jet broadening, wide jet broadening, C-parameter and the two-to-three jet tran-
sition variable y23 in the Durham algorithm) and compare our predictions to those available
in the literature [5, 6]. We also present here for the first time the computation of jet cone
energy fraction (JCEF) at NNLO accuracy. Predictions from CoLoRFulNNLO at this order
in perturbation theory for oblateness and energy-energy correlation (EEC) were presented in
ref. [7].

5.1 Definition of event shapes

Thrust [76, 77] is defined as

T = max
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, (5.1)

where the three-vectors ~pi denote the three-momenta of the partons and ~n defines the direction
of the thrust axis, ~nT , by maximizing the sum on the right-hand side. For massless particles
thrust is normalized by the center-of-mass energy,

P

i |~pi| = Q. In general 1/2  T  1, with
T = 1/2 for spherically symmetric events, and T ! 1 in the case of two back-to-back jets (the
dijet limit). For three-particle events, we have 2/3  T  1.

Heavy jet mass [78–80] is defined by dividing the event into two hemispheres, HL, HR, by a
plane orthogonal to an axis which can be chosen to be the thrust axis ~nT . Then the hemisphere
invariant mass is
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is free of ✏-poles, although to perform the algebra for the 1/✏2 and 1/✏ poles still requires some
e↵ort. Hence eq. (4.29) is finite in four dimensions and we can compute the regularized double
virtual di↵erential cross section for any infrared-safe observable numerically.

5 Event shapes old and new

The CoLoRFulNNLO method provides a robust subtraction scheme for computing NNLO cor-
rections to processes with a colorless initial state (for the moment) and any number of final
state jets, provided all necessary matrix elements are known. We have implemented the method
in a general purpose, automated parton-level Monte Carlo code which can be used to compute
any infrared-safe observable at NNLO accuracy in e+e� ! 3 jets. To demonstrate the validity
of our code, we compute NNLO corrections to six standard event shape variables (thrust, heavy
jet mass, total jet broadening, wide jet broadening, C-parameter and the two-to-three jet tran-
sition variable y23 in the Durham algorithm) and compare our predictions to those available
in the literature [5, 6]. We also present here for the first time the computation of jet cone
energy fraction (JCEF) at NNLO accuracy. Predictions from CoLoRFulNNLO at this order
in perturbation theory for oblateness and energy-energy correlation (EEC) were presented in
ref. [7].
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where the three-vectors ~pi denote the three-momenta of the partons and ~n defines the direction
of the thrust axis, ~nT , by maximizing the sum on the right-hand side. For massless particles
thrust is normalized by the center-of-mass energy,
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i |~pi| = Q. In general 1/2  T  1, with
T = 1/2 for spherically symmetric events, and T ! 1 in the case of two back-to-back jets (the
dijet limit). For three-particle events, we have 2/3  T  1.
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plane orthogonal to an axis which can be chosen to be the thrust axis ~nT . Then the hemisphere
invariant mass is

M2
i

s
=

1

E2
vis

✓

X

j2Hi

pj

◆2

, i = L,R , (5.2)

19

where Evis is the total visible energy measured in the event, which is equal to the center-of-mass
energy in perturbation theory with massless partons, Evis = Q. The heavy jet mass is
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In the dijet limit, we find ⇢ ! 0. For three-particle events we have 0  ⇢  1/3. At leading
order in perturbation theory the distributions of heavy jet mass ⇢ and ⌧ ⌘ 1� T are identical.

Jet broadening [81, 82], like heavy jet mass, is also defined through the two hemispheres
HL, HR. First, hemisphere broadening is given by
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The total and wide jet broadening are then defined as

BT = BL +BR and BW = max(BL, BR) . (5.5)

In the dijet limit, both BT and BW vanish, while for spherically symmetric events BT = 2BW =
⇡/8. For three-parton events we have BT , BW  1/(2

p
3) ' 0.288.

The C-parameter [83, 84] is defined through the eigenvalues �1,�2,�3, of the infrared-safe
momentum tensor,
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where i runs over all final state particles. As ⇥ is a symmetric non-negative tensor with unit
trace, the eigenvalues �i are real and non-negative, with
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i �i = 1. Therefore, 0  �i  1,
with i = 1, 2, 3. The value of the C-parameter is then defined as

Cpar = 3 (�1�2 + �2�3 + �3�1) . (5.7)

In the dijet limit the C-parameter vanishes, while for spherical events Cpar = 1, so 0  Cpar  1.
For events with three-partons in the final state we have 0  Cpar  3/4.

Jet transition variables specify how an event changes from a n-jet to a (n+1)-jet configura-
tion. For example, given a jet resolution parameter ycut, the two-to-three jet transition variable
y23 [85–88] is defined as the value of ycut for which an event changes from a two-jet to a three-jet
configuration, within some jet algorithm. Here we focus on the Durham algorithm [88], which
clusters particles into jets by computing the variable,

yij =
2min(E2
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2
j )(1� cos ✓ij)

E2
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, (5.8)

for each pair (i, j) of particles. The pair with the lowest value of yij is replaced by a pseudo-
particle whose four-momentum is computed in the E recombination scheme, i.e., it is simply
the sum of the four-momenta of particles i and j. This procedure is iterated until all pairs have
yij > ycut and the remaining pseudo-particles are the jets.

20

N3LL resummation from 
Y-T. Chien, M.D. Schwartz arXiv:1005.1644
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Three-jet event shapes: old

3

FIG. 1: The NNLO coe�cient of the weighted
⌧ = 1� T distribution. The lower panels show the

predictions of ref. [6], denoted as SW, (middle panel)
and those of ref. [5], denoted as GGGH, (lower panel)
normalized to ours, as well as the relative uncertainties
of the numerical integrations (shaded band around the

line at one).

defines thrust minor, where the thrust-minor axis, ~nTm ,
is orthogonal to both the thrust and thrust-major axes.
Oblateness O is then the di↵erence of thrust major and
thrust minor [17],

O = TM � Tm . (9)

The value of the C-parameter for massless final-state
particles is

Cpar =
3

2

P

i,j |~pi||~pj | sin2 ✓ij
(
P

i |~pi|)2
, (10)

where ✓ij is the angle between ~pi and ~pj .
Finally, energy-energy correlation [18] is the nor-

malised energy-weighted cross section defined in terms
of the angle between two particles i and j in an event,

EEC(�) =
1

�had

X

i,j

Z

EiEj

Q2

⇥ d�e+e�!i j+X�(cos�+ cos ✓ij) ,

(11)

where Q2 is the squared center-of-mass energy, Ei and
Ej are the particle energies, ✓ij = ⇡ � � is the angle
between the two particles and �had is the total hadronic
cross section. Experience shows that computing radiative
corrections to the distributions of C-parameter, oblate-
ness and energy-energy correlations is numerically more
challenging than for other three-jet event shapes.

As a validation of our method, we show in figs. 1 and 2
the third-order coe�cient in eq. (5) for O = ⌧ ⌘ 1 � T

FIG. 2: The same as fig. 1 for the C-parameter.

and O = Cpar. We observe a very good numerical con-
vergence of our method at NNLO: the absolute uncer-
tainties of the integrations are shown as shaded narrow
bands around the solid line on the upper panels (hardly
visible) and the relative ones around the lines at one on
the lower panels of figs. 1 and 2. We compare our results
to the predictions of refs. [5, 6] and we find agreement
over a large range of ⌧ and C-parameter. We observe
statistically significant di↵erences beyond the kinemati-
cal limits (⌧ = 1/3 and Cpar = 3/4) where the three-
particle final states vanish and the event shapes are deter-
mined by a four-jet final state. In these regions the C(O)
coe�cients are determined by the NLO corrections to
four-jet production, which have been known for long [2]
and can also be computed with modern automated tools,
such as MadGraph5 aMC@NLO [19]. We have checked that
our predictions are in complete agreement with those of
MadGraph5 aMC@NLO.

We present predictions for the distributions of oblate-
ness O and energy-energy correlation EEC at NNLO ac-
curacy in perturbative QCD for collider energy

p

Q2 =
91.2GeV in figs. 3 and 4. The bands represent the de-
pendence of the predictions on the renormalization scale
varied in the range [0.5, 2] times our default scale: the
total center-of-mass energy. We use ↵s = 0.118 for the
central value and the three-loop running of the strong
coupling for computing the scale variations. The lower
panels show the relative scale dependence of the NNLO
predictions and the relative uncertainties of the integra-
tions. Both oblateness and energy-energy correlation are
known to vanish in the dijet limit. Moreover, oblate-
ness is expected to vanish also for cylindrically symmet-
ric final states, while for three-parton events one has
0  O  1/

p
3. Indications of these features are visi-

ble in figs. 3 and 4.
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cos�Finally, jet-cone energy fraction [89] is defined as the energy deposited within a conical shell
of the opening angle � between a particle and the thrust axis ~nT , whose direction is defined to
point from the heavy jet mass hemisphere to the light jet mass hemisphere,
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In principle 0o  �  180o, but hard gluon emissions typically contribute only to the region
90o  �  180o, which is plotted in the data [90].

5.2 Event shapes revisited

In this section we present the predictions of the CoLoRFulNNLO method for the event shapes
considered also in refs. [5, 6]. To begin, we write the perturbative expansion of the di↵erential
distribution of an event shape observable O at the default renormalization scale (not to be
confused with the regularization scale of section 2.3) µ0 =

p

Q2 (the total center-of-mass
energy) as
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where ↵s = ↵s(µ0) and �0 is the leading-order perturbative prediction for the total cross section
of the process e+e� ! hadrons. The LO and NLO perturbative coe�cients A(O) and B(O)
for thrust, heavy jet mass, total and wide jet broadening, C-parameter and the jet transition
variable y23 in the Durham algorithm were computed a long time ago [91], while predictions
for the NNLO coe�cients C(O) were presented in [5, 6]3. However, experiments measure the
distributions normalized to the total hadronic cross section, �, thus physical predictions should
be normalized to that. At the default renormalization scale µ0, distributions normalized to
the total hadronic cross section can be obtained from the expansion in eq. (5.10) above by
multiplying with the inverse of
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The renormalization scale dependence of a three-jet event shape distribution normalized to the
total hadronic cross section can be computed as

1

�

d�(µ)

dO
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↵s(µ)

2⇡

◆2

B̄(O;µ) +

✓

↵s(µ)
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s (µ

2)) , (5.13)

3Since these distributions have 1/O singularities, it is more convenient to present results for the quantities
OC(O) and this was done in refs. [5, 6] as well as in this paper in figures 1–3.
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FIG. 1: The NNLO coe�cient of the weighted
⌧ = 1� T distribution. The lower panels show the

predictions of ref. [6], denoted as SW, (middle panel)
and those of ref. [5], denoted as GGGH, (lower panel)
normalized to ours, as well as the relative uncertainties
of the numerical integrations (shaded band around the

line at one).

defines thrust minor, where the thrust-minor axis, ~nTm ,
is orthogonal to both the thrust and thrust-major axes.
Oblateness O is then the di↵erence of thrust major and
thrust minor [17],

O = TM � Tm . (9)

The value of the C-parameter for massless final-state
particles is

Cpar =
3

2
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i,j |~pi||~pj | sin2 ✓ij
(
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i |~pi|)2
, (10)

where ✓ij is the angle between ~pi and ~pj .
Finally, energy-energy correlation [18] is the nor-

malised energy-weighted cross section defined in terms
of the angle between two particles i and j in an event,

EEC(�) =
1

�had
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⇥ d�e+e�!i j+X�(cos�+ cos ✓ij) ,

(11)

where Q2 is the squared center-of-mass energy, Ei and
Ej are the particle energies, ✓ij = ⇡ � � is the angle
between the two particles and �had is the total hadronic
cross section. Experience shows that computing radiative
corrections to the distributions of C-parameter, oblate-
ness and energy-energy correlations is numerically more
challenging than for other three-jet event shapes.

As a validation of our method, we show in figs. 1 and 2
the third-order coe�cient in eq. (5) for O = ⌧ ⌘ 1 � T

FIG. 2: The same as fig. 1 for the C-parameter.

and O = Cpar. We observe a very good numerical con-
vergence of our method at NNLO: the absolute uncer-
tainties of the integrations are shown as shaded narrow
bands around the solid line on the upper panels (hardly
visible) and the relative ones around the lines at one on
the lower panels of figs. 1 and 2. We compare our results
to the predictions of refs. [5, 6] and we find agreement
over a large range of ⌧ and C-parameter. We observe
statistically significant di↵erences beyond the kinemati-
cal limits (⌧ = 1/3 and Cpar = 3/4) where the three-
particle final states vanish and the event shapes are deter-
mined by a four-jet final state. In these regions the C(O)
coe�cients are determined by the NLO corrections to
four-jet production, which have been known for long [2]
and can also be computed with modern automated tools,
such as MadGraph5 aMC@NLO [19]. We have checked that
our predictions are in complete agreement with those of
MadGraph5 aMC@NLO.

We present predictions for the distributions of oblate-
ness O and energy-energy correlation EEC at NNLO ac-
curacy in perturbative QCD for collider energy

p

Q2 =
91.2GeV in figs. 3 and 4. The bands represent the de-
pendence of the predictions on the renormalization scale
varied in the range [0.5, 2] times our default scale: the
total center-of-mass energy. We use ↵s = 0.118 for the
central value and the three-loop running of the strong
coupling for computing the scale variations. The lower
panels show the relative scale dependence of the NNLO
predictions and the relative uncertainties of the integra-
tions. Both oblateness and energy-energy correlation are
known to vanish in the dijet limit. Moreover, oblate-
ness is expected to vanish also for cylindrically symmet-
ric final states, while for three-parton events one has
0  O  1/

p
3. Indications of these features are visi-

ble in figs. 3 and 4.
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Figure 10: Contours of 2σ and 5σ confidence in the simultaneous fit of αs and a non-
perturbative shift parameter ΛNP to the thrust and heavy jet mass aleph data from 91.2
to 206 GeV. The combined fit is also shown.

Event Shape αs(mZ) ΛNP (GeV) χ2/d.o.f.

Thrust 0.1101 0.821 66.9/47

Heavy Jet Mass 0.1017 3.17 60.4/43

Combined 0.1236 -0.621 453/92

Table 3: Best fit values including leading power correction. The χ2 is calculated using both
statistical and experimental systematic uncertainties.

shapes would remove the ambiguity, but this does not happen. Second, we see that while the
perturbative fit has αs lower for thrust than for heavy jet mass, with the power corrections,
the value of αs is higher for thrust, as found in previous studies [17, 18]. However, when we
perform a simultaneous fit to all of the thrust and heavy jet mass degrees of freedom, we get a
value for αs that is larger than each one separately. The best fit for thrust, heavy jet mass, and
the combined fit are shown in Table 3. The fact that the thrust and heavy jet mass contours
do not overlap indicate that a better handling of non-perturbative effects is required.

We conclude that neither correcting the theory curves with a Monte Carlo simulation nor
using a minimal shape function approach for the leading power correction is satisfactory. The
shape function approach is improvable, while the Monte Carlo approach is limited by the
perturbative accuracy of the parton shower, which will be limited to leading-log resummation
in at least the near future (although SCET may eventually help go beyond LL [34, 35]). To
improve the shape function fit, a number of additional ingredients should be included. First
of all, the renormalon ambiguity in separating the perturbative and non-perturbative parts of

21

!
Y-T. Chien, M.D. Schwartz  

arXiv:1005.1644

R. Albers, ZT  in progress 
with help of M.D.Schwartz
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MCCSM performance
Approximate timing without binning on one core

(Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz)
B V R V V RV RR

# of PS points 100M 100M 100M 10M 10M 10M

Timing 12min 8.3h 3.5h 7.5h 22h 5.5h
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MCCSM performance
Approximate timing without binning on one core

(Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz)

✓ Regularized double-real contribution is smooth using 15B 
phase space points: in 27.5 hs on 300 cores

✓ Regularized real-virtual contribution is smooth using 1.5B 
phase space points: in 11 hs on 300 cores

✓ Regularized double-virtual contribution is smooth using 
50M phase space points: in 7.5 min one 300 cores

B V R V V RV RR

# of PS points 100M 100M 100M 10M 10M 10M

Timing 12min 8.3h 3.5h 7.5h 22h 5.5h
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Conclusions
✓ Defined a general subtraction scheme for computing 

NNLO fully differential jet cross sections (presently only 
for processes with no colored particles in the initial state)
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Conclusions
✓ Defined a general subtraction scheme for computing 

NNLO fully differential jet cross sections (presently only 
for processes with no colored particles in the initial state)

✓ Subtractions are

✓ fully local

✓ exact and explicit in color and flavor (using color 
state formalism)

✓ Demonstrated the cancellation of ε-poles for m=2 and 3

✓ Numerical implementation in MCCSM: converges well
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Conclusions
✓ Defined a general subtraction scheme for computing 

NNLO fully differential jet cross sections (presently only 
for processes with no colored particles in the initial state)

✓ Subtractions are

✓ fully local

✓ exact and explicit in color and flavor (using color 
state formalism)

✓ Demonstrated the cancellation of ε-poles for m=2 and 3

✓ Numerical implementation in MCCSM: converges well

✓ Precise (NNLO+N3LL+LPC) predictions for three-jet event 
shapes in progress
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Pole-cancelation: H→bb at µ = mH
_
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Example: H→bb

Scale dependence of the inclusive decay rate Γ(H -> bb)

−

!
analytic: K.G. Chetyrkin hep-ph/9608318
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Example: H→bb at µ = mH

Energy spectrum of the leading jet in the rest frame of the Higgs 
boson. Jets are clustered using the JADE algorithm with ycut = 0.1

−

!
AHL = C. Anastasiou, F. Herzog, A. Lazopoulos arXiv:0111.2368
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Example: H→bb

 rapidity distribution      energy spectrum  
of the leading jet in the rest frame of the Higgs boson.  

jets are clustered using the Durham algorithm with ycut = 0.05
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Can constrain subtractions
Constrained subtractions

We can constrain subtractions to near singular regions: α0 ∈ (0, 1]

! poles cancel numerically (α0 = 0.1)
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We can constrain subtractions near singular regions (α0<1) 
E.g. H → bb: poles cancel numerically (α0 = 0.1) 
!
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rapidity distribution of the leading 
jet in the rest frame of the Higgs 
boson. jets are clustered using the 
Durham algorithm (flavour blind) 
with ycut = 0.05
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Subtractions may help efficiency
  

We can constrain subtractions near singular regions (α0<1), 
leading to fewer calls of subtractions: 
!
!
!
!
!
⟨Nsub⟩ is the average number of subtraction calls

Constrained subtractions

We can constrain subtractions to near singular regions: α0 ∈ (0, 1]

! improved efficiency

α0 1 0.1
timing (rel.) 1 0.40

⟨Nsub⟩ 52 14.5

⟨Nsub⟩ is the average number of subtraction terms computed
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