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Statement of the problem

• Perturbation theory breaks down near resonance, because propagators become singular:

g2

s−M2
∼ 1 when s−M2 ∼MΓ ∼ (gM)

2

• Two different scales: formation/decay time 1/M , lifetime 1/Γ� 1/M

• “Dyson” resummation of self-energy insertions

1

s−M2
→

1

s−M2 − Π(s)

removes the singularity, since Im Π ∼ −MΓ.

• Issues:

– Rules for a systematic approximation (in g2 and Γ/M) of the scattering amplitu-
de/cross section

– Gauge invariance
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State of the art

• Next-to-leading order in g2 and Γ/M :

– tree including Γ/M corrections
– one-loop virtual in (double) pole approximation, leading order in Γ/M

– real corrections done “exactly” or with approximations accurate to leading order in
Γ/M

Except for pair production near threshold.

• A variety of often pragmatic approaches to deal with gauge invariance:

– fermion-loop scheme (Argyres et al.,1995)

– pinch technique (Papavassiliou et al., 1994)

– complex mass scheme (Denner et al., 1999)

– pole scheme (Stuart, 1991; Aeppli et al. 1994)

– ...

• Not clear how to extend these beyond NLO calculations.
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Motivation for further development

• Precision calculations of W , Z and top production.

• Particularly of W+W− and tt̄ production near threshold.

• Maybe the Higgs boson is heavy ...

• A problem of general interest: quantum field theory with unstable fundamental fields is
understood in principle (Veltman, 1963), but not in weak coupling expansions.
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Setup (I)

• Consider line-shape 1+2 → resonance → X

δ ≡
s−M2

M2

• Off resonance, δ ∼ 1, conventional perturbation theory applies

σ ∼ g4
f1(δ) + g

6
f2(δ) + . . .

• Near resonance, δ � 1, expand in δ and reorganize

σ ∼
∑
n

(
g2

δ

)n
× {1 (LO); g

2
, δ (NLO), . . .} = h1(g

2
/δ) + g

2
h2(g

2
/δ) + . . .

• The two approximations must be matched in an intermediate region.

• Construct the expansion resonant cross sections by integrating out the hard momentum
scales (→ effective field theory)
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Setup (II)

• Inclusive line-shape (← use optical theorem)

ν̄(q) + e
−

(p)→ X

in a toy model

L = (Dµφ)
†
D
µ
φ− M̂2

φ
†
φ+ ψ̄i 6Dψ + χ̄i/∂χ−

1

4
F
µν
Fµν −

1

2ξ
(∂µA

µ
)
2

+ yφψ̄χ+ y
∗
φ
†
χ̄ψ −

λ

4
(φ
†
φ)

2
+ Lct,

• “Economy version” of ud̄→ W− → e−ν̄:
scalar resonance, Yukawa coupling to fermions, photons
(The real process with traditional methods: (Wackeroth, Hollik, 1996; Dittmaier, Krämer, 2001;

...))
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Effective Theory (I)

• Step 1: Integrate out hard fluctuations k ∼M
The EFT contains

– soft fields k ∼ Γ: massless, scalar near resonance field φv (p = Mv + k, as in
HQET)

– hard-collinear fields (massless only) k+ ∼M,k⊥ ∼
√
MΓ, k− ∼ Γ and vice versa

– Effective interactions

� ��

� �
�

�

�����

� �

• Step 2: Integrate out hard-collinear fluctuations
which leaves

– soft fields as above
– soft-collinear fields ψn− (p = Mn−/2 + k) and χn+ (p = Mn+/2 + k)

i.e. only soft fluctuations around classical scattering trajectory.
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Effective Theory (II)

Leff = 2M̂φ
†
v

(
iv ·Ds −

∆

2

)
φv + 2M̂φ

†
v

(
(iDs>)2

2M̂
+

∆2

8M̂

)
φv

−
1

4
FsµνF

µν
s + ψ̄si 6Dsψs + χ̄si 6∂χs + ψ̄n−in−Ds

/n+

2
ψn−

+ C [y φvψ̄n−χn+ + h.c.] +
yy∗D

4M̂2
(ψ̄n−χn+)(χ̄n+ψn−) + . . .

• At NLO need

– ∆ to order g4 (two-loop on-shell self-energy)
In the pole scheme ∆ = −iΓ exactly with Γ the on-shell width

– C = 1 + . . . to one-loop
– D at tree-level, D = 1

• The unstable particle propagator is
i

2M̂(v·k −∆(1)/2)

• After deriving Leff to the required accuracy by matching calculations, calculate the
scattering amplitude in the effective theory – both is done in conventional PT

Loop Fest III, Santa Barbara, April 1, 2004 – M. Beneke (RWTH Aachen) –



9

Sample diagram

Separate hard and soft contributions to the
1-loop self-energy Π(s) = Πh(s) + Πs(s),
then expand

Πh(s) = M̂
2
∑
l

δ
l
Π

(1,l)

• The different terms are distributed as follows:

– Π(1,0) (gauge-invariant) → ∆(1) (LO)
– Π(1,1) (gauge-dependent) → C(1) (NLO)
– Π(1,2) (gauge-dependent) → D(1) (NNLO)
– Πs is reproduced by the effective theory self-energy

And so on in higher order in δ and α

• The matching procedure guarantees that the coefficients of the effective Lagrangian
are automatically gauge-invariant (because so is the Lagrangian), and that no double-
counting occurs.
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NLO line shape (I)
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i T (1)
h

= i T (0)×

2C
(1)−

[∆(1)]2

8DM̂
+

∆(2)

2D
−
D

2M̂



i T (1)
s = i T (0)× ag

4 ln
2
(−2D

µ

)
−4 ln

(−2D
µ

)
+

5π2

6



D ≡
√
s− M̂ −

∆(1)

2
.

• Leading-order line-shape T (0) has exact Breit-Wigner form

• 1/ε poles cancel when adding hard and soft contributions up to initial state collinear
divergence (standard)

• Simple (single-scale) calculations
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NLO line shape (II)
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Cross section in GeV−2 as function of
√
s/GeV, M = 100 GeV.

Left: matching off-resonant and resonant cross section
Right: LO vs NLO (pole and MS scheme)
Shown is the “partonic” cross section with initial state singularity minimally subtracted.
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Electroweak theory (massive vector bosons)

• Propagator in Rξ gauge (p = Mv + k, k soft)

i

p2 −M2

(
−gµν + (1− ξ)

pµpν

p2 − ξM2

)
→

i

2Mv·k
(−gµν + vµvν)

gauge-independent!
Describes three polarization states. Unphysical Higgs and longitudinal degree of freedom
are integrated out.

• Effective field and kinetic term

W
µ
v ≡ (−gµν + vµvν) W

µ
, Leff = 2M̂W

µ†
v

(
iv ·Ds −

∆

2

)
Wvµ + . . .

• Just as for scalar.
Non-renormalizability of massive vector boson theory is ok, because the EFT has a
cut-off of order M anyway – implemented in dimensional regularization.
The EFT contains only massless particles and the resonance field, i.e. only photons and
elecromagnetic gauge invariance.
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Extensions of the formalism

• Non-inclusive line-shapes → phase space integrals/cut diagrams also expanded.

• Large logarithms of M/Γ can be summed with renormalization group equations.

• Extension to pair production conceptually straightforward, including pair production near
threshold.
[work in progress]

• High-energy limit E �M in pair production, cf. (Chapovsky et al., 2001)
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Conclusion/Advantages of the EFT approach

• Breaks the calculation into several well-defined pieces (matching calculations, matrix
element calculations) → efficient and transparent calculation.

• It provides a systematic power-counting scheme in the small parameters (δ, couplings),
which allows for an identification of the terms relevant for achieving a prescribed
accuracy before actual calculations must be done.

• It provides a set of (Feynman) rules to compute the minimal set of terms necessary for
a given accuracy. Since one does not calculate “too much”, the calculation to a given
order is presumably technically simpler than in any other approach.

• Gauge invariance is automatic at every order.

• Can be extended to any accuracy in the expansion in δ and in couplings at the
expense of performing more complicated, but well-defined calculations. NNLO line
shape calculations are feasible in practice.
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