

I. Two-Loop Form Factor and Sudakov Logarithms

Large logarithmic corrections to exclusive electroweak processes at high energies: $Q^2 >> M^2$

- NNLL terms for four-fermion processes were evaluated
- Large subleading corrections were observed
- \Rightarrow Next step: N^3LL for 4-fermion processes

Important ingredients:

A) Complete two-loop result for Form Factors in massive Abelian theory

$$\mathcal{F}(\alpha, M, Q) = 1 + \left(\frac{\alpha}{4\pi}\right) f^{(1)} + \left(\frac{\alpha}{4\pi}\right)^2 f^{(2)} + \cdots$$

Drop power suppressed terms; define $\mathcal{L} = \ln(Q^2/M^2)$;

$$f^{(1)} = -\mathcal{L}^2 + 3\mathcal{L} - \frac{7}{2} - \frac{2}{3}\pi^2$$

Explicit two-loop calculation (Feucht, Penin, Smirnov) *via* expansion by region (Smirnov,...)

$$f^{(2)} = \frac{1}{2}\mathcal{L}^4 - 3\mathcal{L}^3 + \left(8 + \frac{2}{3}\pi^2\right)\mathcal{L}^2 - \left(9 + 4\pi^2 - 24\zeta(3)\right)\mathcal{L} + \frac{25}{2} + \frac{52}{3}\pi^2 + 80\zeta(3) - \frac{52}{15}\pi^4 - \frac{32}{3}\pi^2\ln^2 2 + \frac{32}{3}\ln^4 2 + 256\operatorname{Li}_4\left(\frac{1}{2}\right)$$

Large subleading terms $(\mathcal{L}^3, \mathcal{L}^2)$ in agreement with earlier results. Remaining terms suppressed.

B) Complete two-loop result for theory with mass gap $(Q^2 >> M^2 >> \lambda^2)$ and two couplings, α, α' :

$$\mathcal{F}(\alpha, \alpha', \lambda, M, Q) = \tilde{\mathcal{F}}(\alpha, \alpha', M, Q) \cdot \mathcal{F}_{\alpha'}(\lambda, Q) + O(\lambda^2/M^2)$$

where:

 $\mathcal{F}_{lpha'}(\lambda, Q)$ contains all infrared divergencies ;

$$\tilde{\mathcal{F}}(\alpha, \alpha', M, Q) = 1 + \left(\frac{\alpha}{4\pi}\right) f^{(1)} + \left(\frac{\alpha}{4\pi}\right)^2 f^{(2)} + \frac{\alpha \alpha'}{(4\pi)^2} f^{(1,1)}$$

 $f^{\left(1
ight)},f^{\left(2
ight)}$ as above ;

$$f^{(1,1)} = \left(3 - 4\pi^2 + 48\zeta(3)\right)\mathcal{L} - 2 + \frac{20}{3}\pi^2 - 84\zeta(3) - \frac{7}{45}\pi^4$$

 \Rightarrow main ingredients for 4-fermion processes up to N^3LL .

II. Four-Loop Tadpoles

A) Motivation

One-scale tadpoles (+ expansions) lead to analytic results for many important observables

- e.g. @ three-loop:
- top contribution to $\delta \rho$ in order $G_F m_t^2 \alpha_s^2$, $(G_F m_t^2)^2 \alpha_s$, $(G_F m_t^2)^3$
 - (\Rightarrow *m*_t from precision e.w. data)
- R(s) for massive quarks in $O(\alpha_s^2)$
- charm and bottom mass from moments

Moments:
$$\mathcal{M}_n^{\text{th}} \equiv \frac{12\pi^2}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}q^2}\right)^n \Pi_c(q^2) \bigg|_{q^2=0} = \frac{9}{4} Q_c^2 \left(\frac{1}{4m_c^2}\right)^n \bar{C}_n$$

 \bar{C}_n depend on the charm quark mass through

$$\begin{split} l_{m_c} &\equiv \ln(m_c^2(\mu)/\mu^2) \\ \bar{C}_n &= \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \left(\bar{C}_n^{(10)} + \bar{C}_n^{(11)} l_{m_c} \right) \\ &+ \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \left(\bar{C}_n^{(20)} + \bar{C}_n^{(21)} l_{m_c} + \bar{C}_n^{(22)} l_{m_c}^2 \right) \end{split}$$

Dispersion Relation: $\Pi_c(q^2) = \frac{q^2}{12\pi^2} \int ds \, \frac{R_c(s)}{s(s-q^2)} + \text{subtraction}$

$$\Rightarrow \quad \mathcal{M}_n^{\exp} = \int \frac{\mathrm{d}s}{s^{n+1}} R_c(s) \qquad \Rightarrow \quad \mathcal{M}_n^{\exp} = \mathcal{M}_n^{\mathrm{th}} \qquad \Rightarrow \quad m_c$$

All three-loop (NNLO) – one-scale tadpole amplitudes can be calculated with "arbitrary" power of propagators (Broadhurst; Chetyrkin, JK, Steinhauser); FORM-program MATAD (Steinhauser)

Three-loop diagrams contributing to $\Pi_l^{(2)}$ (inner quark massless) and $\Pi_F^{(2)}$ (both quarks with mass *m*).

Purely gluonic contribution to $O(\alpha_s^2)$

Results (Steinhauser, JK)

 $m_c(m_c) = 1.304 (27) GeV$

 $m_b(m_b) = 4.19 (5) GeV$

analysis relies on lowers (n = 1, 2) moments;

n = 3,4 have a smaller experimental error, but larger theoretical uncertainty;

 \Rightarrow 4-loop Tadpoles

B) Toward an Analytical Solution (Chetyrkin, Mastrolia, Sturm)

Ingredients:

- generation of diagrams (QGRAPH) simple
- classification of diagrams \Rightarrow standard representation

(detect symmetries, massless tadpoles, factorized topologies)

! reduction to Master Integrals in progress

Integration-by-Parts identities:

explicit solution, like MATAD, impossible

 \Rightarrow huge number of linear equations, $\mathcal{O}(100\ 000)$,

SOLVE (Remiddi) or variants

 n_l^2 -terms just obtained:

$$\frac{35794}{729} - \frac{992}{27}\zeta(3) + \frac{q^2}{4m^2} \left(\frac{2699072}{32805} - \frac{7168}{135}\zeta(3)\right)$$

Idea:perform the integration over 3 loop-momentaanalytically and the 4th numerically

Diagramatically:

$$(4 \text{ loop}) = (q 31) \propto \int dq \quad \stackrel{q}{\longrightarrow} \quad 31 \quad \rightarrow = \int dq F(q^2)$$

resulting problem: find the function $F(q^2)$ up to three-loop level

Reconstruction of $F(q^2)$

Three-loop two-point function with one internal mass scale! algebraic programs:

- asymptotic expansion: EXP (Seidensticker)
- algebraic evaluation of tadpoles: MATAD (Steinhauser)
- massless propagators: MINCER (Larin, Tkachov, Vermaseren)
- high and low energy expansion of $F(q^2)$

 \Rightarrow reconstruction of $F(q^2)$ through Padé

Test Example:

(scalar, massive propagators)

Result available with high precision

Laporta hep-ph/0210336

The two options lead to to the following 3-loop propagator diagrams:

Difference between Laporta's and our result

Laporta's: 1.34894 80217 09708 ...

Result for cut 1:

$\times 10^{-5}$		high energy input							
~10		3	4	5	6	7	8		
low energy input	3	-191.42436	-6.01348	0.44044	0.09165	0.00151	-0.01738		
	4	-5.15001	1.94591	-0.10397	-0.00344	0.00052	0.00029		
	5	-16.06059	0.74717	0.01367	-0.00101	0.00388	-0.00025		

Result for cut 2:

×10 ⁻⁵		high energy input							
		3	4	5	6	7	8		
low energy input	3	-579.78184	8.92004	-0.08593	0.01259	0.00456	0.00010		
	4	-186.75432	1.21461	-0.04923	-0.00242	-0.00008	-0.00004		
	5	-41.00154	0.53958	-0.10894	0.00332	0.00009	-0.00002		
		-		-					

III. Massless Propagators

 $R(e^+e^-)$ and $R_{ au}$ at order $lpha_s^4$

 R_{τ} : analysis uses estimates of the α_s^4 -term, based on PMS etc.

 $R(e^+e^-)$: "gold plated" determination of α_s (inclusive, NNLO); but:

- LEP: theory-uncertainty comparable with experimental error
- GIGA-Z: theory error dominant
- B-factory: millions of events;

10 GeV \Rightarrow larger sensitivity to α_s larger sensitivity to higher order

Strategy

 α_s^4 requires absorptive part of 5-loop correlator

- $\widehat{=}$ divergent part $(1/\epsilon)$ of 5-loop correlator
 - fi nite part of 4-loop \Rightarrow div. part of 5-loop

systematic, automatized algorithm (Chetyrkin)

div —
$$\widehat{} = \int dq^2 - q q$$
 requires

3 fi nite part of 4-loop massless propagators diffi cult!

compare 3- and 4-loop calculation

MINCER: 3-loop (Larin, Tkatchov, Vermaseren)

recursion relations based on integration by parts identities!

reduction algorithm and program constructed "manually" for 14 topologies.

4-loop:

more complicated identities

 \sim 150 topologies . . .

straightforward generalization of MINCER diffi cult

 \Rightarrow fully automatized construction of program; new concept?

Baikov: recursion relations can be solved "mechanically" in the limit of large dimension d:

consider amplitude f:

f(topology, power of prop, d) $=\sum_{\alpha=\text{masters}} C^{(\alpha)}$ (topology, power of prop, d) $\star f^{(\alpha)}(d)$ $f^{(\alpha)}$: 28 masters, analytically or numerically solvable $C^{(\alpha)}$: rational function $\frac{P^n(d)}{Q^m(d)}$, to be calculated expand $C^{(\alpha)}$: $C^{(\alpha)} = \sum_{k} c_{\iota}^{(\alpha)}$ (topology, power of prop) $(1/d)^{k} + \dots$ sufficiently many terms $c_k^{(\alpha)} \Rightarrow C^{(\alpha)}$ *m*, *n* depend on power of propagators!

evaluation of $c_k^{(\alpha)}$: handling of polynomials of 9 variables of degree k $\frac{(9+k)!}{9!k!}$ terms $k = 40 \Rightarrow 2 \cdot 10^9$ terms $k = 24 \Rightarrow 4 \cdot 10^7$ terms (4 GB disk \rightarrow 40 GB)

weeks of runtime

addition information on structure of $P^n(d)$, $Q^m(d)$ may lead to drastic reduction of hardware requirements

NEW Complete 4-loop mass correction

Defi ne

$$\Pi_{\mu\nu} = (-g_{\mu\nu} q^2 + q_{\mu}q_{\nu})\Pi(q^2)$$

$$\Pi(q^2) = \Pi_0(q^2) + \frac{m^2}{q^2}\Pi_2(q^2)$$

finite part of Π_2 in $O(\alpha_s^n) + RG$

 $\Rightarrow \log \text{ part in } O(\alpha_s^{n+1})$

 \Rightarrow *Im* part in $O(\alpha_s^{n+1})$

$$\begin{aligned} \text{Result for constant part in } \Pi_2 \\ \Pi_2 &= -8 \quad - \quad \frac{64}{3} a_s + a_s^2 \left\{ \frac{95}{9} n_f + -\frac{18923}{54} - \frac{784}{27} \zeta_3 + \frac{4180}{27} \zeta_5 \right\} \\ &+ \quad a_s^3 \left\{ \left[-\frac{5161}{1458} - \frac{8}{27} \zeta_3 \right] n_f^2 + \left[\frac{62893}{162} + \frac{424}{27} \zeta_3^2 - \frac{4150}{243} \zeta_3 \right. \\ &+ \frac{20}{3} \zeta_4 - \frac{28880}{243} \zeta_5 \right] n_f + k_{2,0}^{[V]3} \right\} \\ k^{[V]3} &= -\frac{10499303}{1944} + \frac{66820}{81} \zeta_3 - \frac{7225}{27} \zeta_3^2 + \frac{281390}{81} \zeta_5 - \frac{1027019}{648} \zeta_7 \\ \text{Numerically,} \\ \Pi_2 &= -8 - 21.333 a_s + a_s^2 \left(10.56 n_f - 224.80 \right) \\ &+ a_s^3 \left(-3.896 n_f^2 + 274.37 n_f - 2791.81 \right) \end{aligned}$$

Result for r_2^V Define $R(s) = 3\left\{r_0^V + \frac{m^2}{s}r_2^V\right\} + \dots = 3\left\{\sum_{i>0}a_s^i\left(r_0^{V,i} + \frac{m^2}{s}r_2^{V,i}\right)\right\} + \dots$ $r_2^V = 12 a_s + a_s^2 (-4.3333 n_f + 126.5) + a_s^3 (1.2182 n_f^2 - 104.167 n_f + 1032.14)$ $+a_{s}^{4}\left(-0.20345 n_{f}^{3}+49.0839 n_{f}^{2}+r_{2,1}^{V,4} n_{f}+r_{2,0}^{V,4}\right)$ For, say, $n_f = 4$ we get $r_2^V/12 \text{ (exact)} = a_s + 9.09722a_s^2 + 52.913a_s^3 + 128.499a_s^4$ $r_2^V/12 \text{ (PMS)} = a_s + 9.09722a_s^2 + 52.913a_s^3 + 177a_s^4$ $r_2^V/12$ (FAC) = $a_s + 9.09722a_s^2 + 52.913a_s^3 + 197a_s^4$

Summary/Outlook

• Sudakov Logarithms

maybe important in the TeV-range subleading terms are large N^4LL is available for Form Factors N^3LL is in sight for 4-fermion processes

• 4-loop Massive Tadpoles

will lead to an excellent determination of quark masses and open the door to many other applications

• 4-loop Massless Propagators

first (partial) results available

will lead to the most precise and theoretically safe result for α_s