

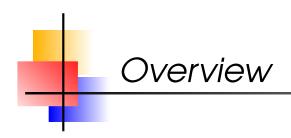
CP violation in 5D QED

hep-ph/0401232

José Wudka Bohdan Grzadkowski

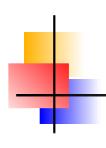
jose.wudka@ucr.edu

UC Riverside



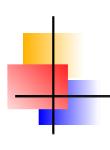
- Introduction
- ▶ A simple model

- Introduction
- ▶ A simple model
- ▶ Fourier expansions and all that



Overview

- Introduction
- A simple model
- Fourier expansions and all that
- ▶ The effective potential & CP violating vacua



Overview

- Introduction
- ▶ A simple model
- Fourier expansions and all that
- ▶ The effective potential & CP violating vacua
- Phenomenology

Overview

- Introduction
- A simple model
- Fourier expansions and all that
- ▶ The effective potential & CP violating vacua
- Phenomenology
- Conclusions and future plans

In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder

- In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder
 - Non-Abelian extensions exist, but it is difficult to include chiral fermions
 Witten, 1981

- In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder
 - Non-Abelian extensions exist, but it is difficult to include chiral fermions
 Witten, 1981
- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

 Arkani-Hamed et al., 1998

- In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder
 - Non-Abelian extensions exist, but it is difficult to include chiral fermions
 Witten, 1981
- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)

 Arkani-Hamed et al., 1998
 - Assume D-dim gravity has scale G_F

- In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder
 - Non-Abelian extensions exist, but it is difficult to include chiral fermions
 Witten, 1981
- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)
 Arkani-Hamed et al., 1998
 - lacktriangle Assume D-dim gravity has scale G_F
 - Localize SM fields to the subspace

- In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder
 - Non-Abelian extensions exist, but it is difficult to include chiral fermions
 Witten, 1981
- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)
 Arkani-Hamed et al., 1998
 - lacktriangle Assume D-dim gravity has scale G_F
 - Localize SM fields to the subspace

- In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder
 - Non-Abelian extensions exist, but it is difficult to include chiral fermions
 Witten, 1981
- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)
 Arkani-Hamed et al., 1998
 - lacktriangle Assume D-dim gravity has scale G_F
 - Localize SM fields to the subspace

$$\left[LM_{\rm Pl}^{(4)}\right]^2 = \left[LM_{\rm Pl}^{(D)}\right]^{D-2}; D=6 \rightarrow L \sim 1 {\rm mm}$$

For 2 branes + conformally flat metric Randall & Sundrum, 1999

- In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder
 - Non-Abelian extensions exist, but it is difficult to include *chiral* fermions
 Witten, 1981
- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)
 Arkani-Hamed et al., 1998
 - lacktriangle Assume D-dim gravity has scale G_F
 - Localize SM fields to the subspace

▶ For 2 branes + conformally flat metric

Randall & Sundrum, 1999

- In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder
 - Non-Abelian extensions exist, but it is difficult to include *chiral* fermions
 Witten, 1981
- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)
 Arkani-Hamed et al., 1998
 - lacktriangle Assume D-dim gravity has scale G_F
 - Localize SM fields to the subspace

$$\left[LM_{\rm Pl}^{(4)}\right]^2 = \left[LM_{\rm Pl}^{(D)}\right]^{D-2}; D=6 \rightarrow L \sim 1 {\rm mm}$$

- ▶ For 2 branes + conformally flat metric Randall & Sundrum, 1999
- Finally, one need not confine the fields to the brane:

- In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder
 - Non-Abelian extensions exist, but it is difficult to include chiral fermions
 Witten, 1981
- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)
 Arkani-Hamed et al., 1998
 - lacktriangle Assume D-dim gravity has scale G_F
 - Localize SM fields to the subspace

$$\left[LM_{\rm Pl}^{(4)}\right]^2 = \left[LM_{\rm Pl}^{(D)}\right]^{D-2}; D=6 \rightarrow L \sim 1 {\rm mm}$$

- For 2 branes + conformally flat metric Randall & Sundrum, 1999
- Finally, one need not confine the fields to the brane:
 - Momentum conservation along the 5th dimension disallows large deviations form the SM.
 Appelquist et al., 2000

- In the 1920's Kaluza & Klein showed a possible way of unifying gravity with E& M assuming space-time is a 5-dim. cylinder
 - Non-Abelian extensions exist, but it is difficult to include chiral fermions
 Witten, 1981
- Alternatively: can assume space-time has D dimensions and we live in a 4-dim subspace (brane)
 Arkani-Hamed et al., 1998
 - lacktriangle Assume D-dim gravity has scale G_F
 - Localize SM fields to the subspace

$$\left[LM_{\rm Pl}^{(4)}\right]^2 = \left[LM_{\rm Pl}^{(D)}\right]^{D-2}; D=6 \rightarrow L \sim 1 {\rm mm}$$

- For 2 branes + conformally flat metric Randall & Sundrum, 1999
- Finally, one need not confine the fields to the brane:
 - Momentum conservation along the 5th dimension disallows large deviations form the SM.
 Appelquist et al., 2000

▶ QED on a 5-dim cylinder with Lagrangian

$$\mathcal{L}_{QED} = -\frac{1}{4}F_{MN}^2 + \sum_{i=1,2} \bar{\psi}_i \left(i\gamma^M D_M - M_i \right) \psi_i + \mathcal{L}_{gf},$$

with
$$F_{MN}=\partial_M A_N-\partial_N A_M$$
 , and $D_M=\partial_M+ie_5q_iA_M$

QED on a 5-dim cylinder with Lagrangian

$$\mathcal{L}_{QED} = -\frac{1}{4}F_{MN}^2 + \sum_{i=1,2} \bar{\psi}_i \left(i\gamma^M D_M - M_i \right) \psi_i + \mathcal{L}_{gf},$$

with
$$F_{MN}=\partial_M A_N-\partial_N A_M$$
 , and $D_M=\partial_M+ie_5q_iA_M$

Boundary conditions

Scherk& Schwarz, 1979 Hosotani, 1983 (in this context)

$$\psi_i(x^{\mu}, y + L) = e^{i\alpha_i} \psi_i(x^{\mu}, y)$$
 $A^M(x^{\mu}, y + L) = A^M(x^{\mu}, y)$

QED on a 5-dim cylinder with Lagrangian

$$\mathcal{L}_{QED} = -\frac{1}{4}F_{MN}^2 + \sum_{i=1,2} \bar{\psi}_i \left(i\gamma^M D_M - M_i \right) \psi_i + \mathcal{L}_{gf},$$

with
$$F_{MN}=\partial_M A_N-\partial_N A_M$$
 , and $D_M=\partial_M+ie_5q_iA_M$

Boundary conditions

Scherk& Schwarz, 1979 Hosotani, 1983 (in this context)

$$\psi_i(x^{\mu}, y + L) = e^{i\alpha_i} \psi_i(x^{\mu}, y) \qquad A^M(x^{\mu}, y + L) = A^M(x^{\mu}, y)$$

Gauge transformations

$$\psi_i(x,y) \to e^{-ie_5 q_i \Lambda(x,y)} \psi_i(x,y), \qquad A_M(x,y) \to A_M(x,y) + \partial_M \Lambda(x,y)$$

QED on a 5-dim cylinder with Lagrangian

$$\mathcal{L}_{QED} = -\frac{1}{4}F_{MN}^2 + \sum_{i=1,2} \bar{\psi}_i \left(i\gamma^M D_M - M_i \right) \psi_i + \mathcal{L}_{gf},$$

with
$$F_{MN}=\partial_M A_N-\partial_N A_M$$
 , and $D_M=\partial_M+ie_5q_iA_M$

Boundary conditions

Scherk& Schwarz, 1979 Hosotani, 1983 (in this context)

$$\psi_i(x^{\mu}, y + L) = e^{i\alpha_i} \psi_i(x^{\mu}, y)$$
 $A^M(x^{\mu}, y + L) = A^M(x^{\mu}, y)$

Gauge transformations

$$\psi_i(x,y) \to e^{-ie_5 q_i \Lambda(x,y)} \psi_i(x,y),$$

$$A_M(x,y) \to A_M(x,y) + \partial_M \Lambda(x,y)$$

CP transformations

Shimizu, 1985 Gavela& Nepomechie, 1984

$$x^{M} \to \epsilon^{M} x^{M}, A^{M} \to -\epsilon^{M} A^{M}, \psi_{i} \to \eta_{i} \gamma^{0} \gamma^{2} \psi_{i}^{\star}, \quad |\eta_{i}| = 1, \epsilon^{0,4} = -\epsilon^{1,2,3} = +1$$

QED on a 5-dim cylinder with Lagrangian

$$\mathcal{L}_{QED} = -\frac{1}{4}F_{MN}^2 + \sum_{i=1,2} \bar{\psi}_i \left(i\gamma^M D_M - M_i \right) \psi_i + \mathcal{L}_{gf},$$

with
$$F_{MN}=\partial_M A_N-\partial_N A_M$$
 , and $D_M=\partial_M+ie_5q_iA_M$

Boundary conditions

Scherk& Schwarz, 1979 Hosotani, 1983 (in this context)

$$\psi_i(x^{\mu}, y + L) = e^{i\alpha_i} \psi_i(x^{\mu}, y)$$
 $A^M(x^{\mu}, y + L) = A^M(x^{\mu}, y)$

Gauge transformations

$$\psi_i(x,y) \to e^{-ie_5 q_i \Lambda(x,y)} \psi_i(x,y),$$

$$A_M(x,y) \to A_M(x,y) + \partial_M \Lambda(x,y)$$

CP transformations

Shimizu, 1985 Gavela& Nepomechie, 1984

$$x^{M} \to \epsilon^{M} x^{M}, A^{M} \to -\epsilon^{M} A^{M}, \psi_{i} \to \eta_{i} \gamma^{0} \gamma^{2} \psi_{i}^{\star}, \quad |\eta_{i}| = 1, \epsilon^{0,4} = -\epsilon^{1,2,3} = +1$$

Look for non-trivial CP violating vacua

Fourier expansions and all that

▶ The KK modes:

Hosotani, 1983

$$\psi_{i}(x,y) = \frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} \psi_{i,n}(x) e^{i\bar{\omega}_{i,n}y}; \quad \bar{\omega}_{in} = (2\pi n + \alpha_{i})/L$$

$$A^{M}(x,y) = \frac{1}{\sqrt{L}} \left[\sum_{n=-\infty}^{\infty} A_{n}^{M}(x) e^{i\omega_{n}y} + \frac{a}{a} \delta_{4}^{M} \right]; \quad \omega_{n} = 2\pi n/L$$

Fourier expansions and all that

▶ The KK modes:

Hosotani, 1983

$$\psi_{i}(x,y) = \frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} \psi_{i,n}(x) e^{i\bar{\omega}_{i,n}y}; \quad \bar{\omega}_{in} = (2\pi n + \alpha_{i})/L$$

$$A^{M}(x,y) = \frac{1}{\sqrt{L}} \left[\sum_{n=-\infty}^{\infty} A_{n}^{M}(x) e^{i\omega_{n}y} + \frac{a}{a} \delta_{4}^{M} \right]; \quad \omega_{n} = 2\pi n/L$$

The fermion Lagrangian

$$\mathcal{L}_{\psi} = \sum_{in} \bar{\psi}_{i,n} \left[i \gamma^{\mu} \partial_{\mu} - M_{i} + i \gamma_{5} \mu_{i,n} \right] \psi_{i,n} - e \sum_{i,l,n} q_{i} \bar{\psi}_{i,l} \left(A_{l-n} + i A_{l-n}^{4} \gamma_{5} \right) \psi_{i,n}$$

with
$$\mu_{i,n} = \bar{\omega}_{i,n} + eq_i \frac{a}{a}$$
, $e \equiv e_5/\sqrt{L} = 4$ -dim gauge coupling.

Fourier expansions and all that

▶ The KK modes:

Hosotani, 1983

$$\psi_{i}(x,y) = \frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} \psi_{i,n}(x) e^{i\bar{\omega}_{i,n}y}; \quad \bar{\omega}_{in} = (2\pi n + \alpha_{i})/L$$

$$A^{M}(x,y) = \frac{1}{\sqrt{L}} \left[\sum_{n=-\infty}^{\infty} A_{n}^{M}(x) e^{i\omega_{n}y} + \frac{a}{a} \delta_{4}^{M} \right]; \quad \omega_{n} = 2\pi n/L$$

The fermion Lagrangian

$$\mathcal{L}_{\psi} = \sum_{in} \bar{\psi}_{i,n} \left[i \gamma^{\mu} \partial_{\mu} - M_{i} + i \gamma_{5} \mu_{i,n} \right] \psi_{i,n} - e \sum_{i,l,n} q_{i} \bar{\psi}_{i,l} \left(\mathcal{A}_{l-n} + i A_{l-n}^{4} | \gamma_{5} \right) \psi_{i,n}$$

with
$$\mu_{i,n}=ar{\omega}_{i,n}+eq_i$$
 a , $e\equiv e_5/\sqrt{L}=$ 4-dim gauge coupling.

Diagonalize the fermion mass matrix

$$\psi_{i,n} \to \exp(i\gamma_5\theta_{i,n})\psi_{i,n}; \qquad \tan(2\theta_{i,n}) = \frac{\mu_{i,n}}{M_i}; \quad |\theta_{i,n}| \le \pi/4$$

Physical fermion masses:

$$m_{i,n} = \sqrt{M_i^2 + \mu_{i,n}^2}$$

Physical fermion masses:

$$m_{i,n} = \sqrt{M_i^2 + \mu_{i,n}^2}$$

Interactions:

$$\mathcal{L}_{A\psi} = -e \sum_{i} q_{i} \left\{ A_{\mu} \sum_{k} \bar{\psi}_{i,k} \gamma^{\mu} \psi_{i,k} + \sum_{k \neq l} A_{\mu k-l} \bar{\psi}_{i,k} \Gamma_{i,kl}^{(v)} \gamma^{\mu} \psi_{i,l} \right\}$$

$$\mathcal{L}_{\varphi\psi} = -e \sum_{i} q_{i} \left\{ \varphi \sum_{k} \bar{\psi}_{i,k} \Gamma_{i,k}^{(\varphi)} \psi_{i,k} + \sum_{k \neq l} A_{4 k-l} \bar{\psi}_{i,k} \Gamma_{i,kl}^{(s)} \psi_{i,l} \right\}$$

 $\varphi \equiv A_{4,n=0} = \text{physical scalar with (naively) CPV couplings}$

$$A_{\mu} \equiv A_{\mu \ 0} =$$
 4-dim. photon

and

$$\Gamma_{i,k}^{(\varphi)} \equiv -i\gamma_5 e^{2i\gamma_5\theta_{i,k}}$$
, $\Gamma_{i,kl}^{(s)} \equiv -i\gamma_5 e^{i\gamma_5(\theta_{i,k}+\theta_{i,l})}$, $\Gamma_{i,kl}^{(v)} \equiv e^{i\gamma_5(\theta_{i,k}-\theta_{i,l})}$

Gauge fixing:

$$\mathcal{L}_{gf} = -\frac{\xi}{2} \left(\partial^{\mu} A_{\mu} - \xi^{-1} \partial_{y} A_{4} \right)^{2}$$

$$\mathcal{L}_{A} + \mathcal{L}_{gf} = \frac{1}{2} \sum_{n} \left\{ A_{n}^{\mu} \left[(\Box + \omega_{n}^{2}) g_{\mu\nu} - (1 - \xi) \partial_{\mu} \partial_{\nu} \right] A_{-n}^{\nu} - A_{n}^{4} (\Box + \omega_{n}^{2}/\xi) A_{-n}^{4} \right\}$$

Gauge fixing:

$$\mathcal{L}_{gf} = -\frac{\xi}{2} \left(\partial^{\mu} A_{\mu} - \xi^{-1} \partial_{y} A_{4} \right)^{2}$$

$$\mathcal{L}_{A} + \mathcal{L}_{gf} = \frac{1}{2} \sum_{n} \left\{ A_{n}^{\mu} \left[\left(\Box + \omega_{n}^{2} \right) g_{\mu\nu} - (1 - \xi) \partial_{\mu} \partial_{\nu} \right] A_{-n}^{\nu} - A_{n}^{4} \left(\Box + \omega_{n}^{2} / \xi \right) A_{-n}^{4} \right\}$$

then

 $lacksquare A_n^{\mu}, \ (n \neq 0)$ will eat A_n^4

Gauge fixing:

$$\mathcal{L}_{gf} = -\frac{\xi}{2} \left(\partial^{\mu} A_{\mu} - \xi^{-1} \partial_{y} A_{4} \right)^{2}$$

$$\mathcal{L}_{A} + \mathcal{L}_{gf} = \frac{1}{2} \sum_{n} \left\{ A_{n}^{\mu} \left[\left(\Box + \omega_{n}^{2} \right) g_{\mu\nu} - (1 - \xi) \partial_{\mu} \partial_{\nu} \right] A_{-n}^{\nu} - A_{n}^{4} \left(\Box + \omega_{n}^{2} / \xi \right) A_{-n}^{4} \right\}$$

- $lacksquare A_n^{\mu}, \ (n \neq 0) \ \text{will eat} \ A_n^4$
- $A^{\mu} = A^{\mu}_{n=0}$ remains massless

Gauge fixing:

$$\mathcal{L}_{gf} = -\frac{\xi}{2} \left(\partial^{\mu} A_{\mu} - \xi^{-1} \partial_{y} A_{4} \right)^{2}$$

$$\mathcal{L}_{A} + \mathcal{L}_{gf} = \frac{1}{2} \sum_{n} \left\{ A_{n}^{\mu} \left[(\Box + \omega_{n}^{2}) g_{\mu\nu} - (1 - \xi) \partial_{\mu} \partial_{\nu} \right] A_{-n}^{\nu} - A_{n}^{4} (\Box + \omega_{n}^{2}/\xi) A_{-n}^{4} \right\}$$

- $A_n^{\mu}, \ (n \neq 0)$ will eat A_n^4
- $A^{\mu} = A^{\mu}_{n=0}$ remains massless
- $\varphi = A_{n=0}^4$ is gauge invariant.

Gauge fixing:

$$\mathcal{L}_{gf} = -\frac{\xi}{2} \left(\partial^{\mu} A_{\mu} - \xi^{-1} \partial_{y} A_{4} \right)^{2}$$

$$\mathcal{L}_{A} + \mathcal{L}_{gf} = \frac{1}{2} \sum_{n} \left\{ A_{n}^{\mu} \left[\left(\Box + \omega_{n}^{2} \right) g_{\mu\nu} - (1 - \xi) \partial_{\mu} \partial_{\nu} \right] A_{-n}^{\nu} - A_{n}^{4} \left(\Box + \omega_{n}^{2} / \xi \right) A_{-n}^{4} \right\}$$

- $lacksquare A_n^{\mu}, \ (n \neq 0) \ \text{will eat} \ A_n^4$
- $A^{\mu} = A^{\mu}_{n=0}$ remains massless
- $\phi = A_{n=0}^4$ is gauge invariant.
- φ is a gauge singlet: cannot choose the $A_4=0$ gauge (similar to finite temp. case).

Gauge fixing:

$$\mathcal{L}_{gf} = -\frac{\xi}{2} \left(\partial^{\mu} A_{\mu} - \xi^{-1} \partial_{y} A_{4} \right)^{2}$$

$$\mathcal{L}_{A} + \mathcal{L}_{gf} = \frac{1}{2} \sum_{n} \left\{ A_{n}^{\mu} \left[\left(\Box + \omega_{n}^{2} \right) g_{\mu\nu} - (1 - \xi) \partial_{\mu} \partial_{\nu} \right] A_{-n}^{\nu} - A_{n}^{4} \left(\Box + \omega_{n}^{2} / \xi \right) A_{-n}^{4} \right\}$$

- $lacksquare A_n^{\mu}, \ (n \neq 0) \ \text{will eat} \ A_n^4$
- $A^{\mu} = A^{\mu}_{n=0}$ remains massless
- $\varphi = A_{n=0}^4$ is gauge invariant.
- φ is a gauge singlet: cannot choose the $A_4=0$ gauge (similar to finite temp. case).
- ightharpoonup U(1) gauge invariance remains unbroken.

Gauge fixing:

$$\mathcal{L}_{gf} = -\frac{\xi}{2} \left(\partial^{\mu} A_{\mu} - \xi^{-1} \partial_{y} A_{4} \right)^{2}$$

$$\mathcal{L}_{A} + \mathcal{L}_{gf} = \frac{1}{2} \sum_{n} \left\{ A_{n}^{\mu} \left[\left(\Box + \omega_{n}^{2} \right) g_{\mu\nu} - (1 - \xi) \partial_{\mu} \partial_{\nu} \right] A_{-n}^{\nu} - A_{n}^{4} \left(\Box + \omega_{n}^{2} / \xi \right) A_{-n}^{4} \right\}$$

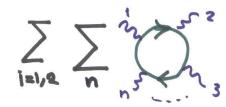
- $lacksquare A_n^{\mu}, \ (n \neq 0) \ \text{will eat} \ A_n^4$
- $A^{\mu} = A^{\mu}_{n=0}$ remains massless
- $\varphi = A_{n=0}^4$ is gauge invariant.
- φ is a gauge singlet: cannot choose the $A_4=0$ gauge (similar to finite temp. case).
- lackbox U(1) gauge invariance remains unbroken.
- ▶ There is no symmetry that forbids $\langle \varphi \rangle \neq 0$

The effective potential

Standard evaluation

$$\sum_{i=1/2}\sum_{n}n_{i}\sum_{n}n_{i}$$

The effective potential



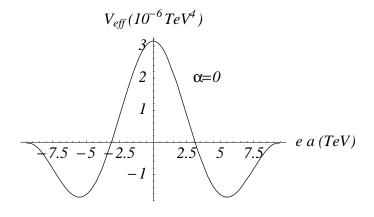
▶ Result for one fermion:

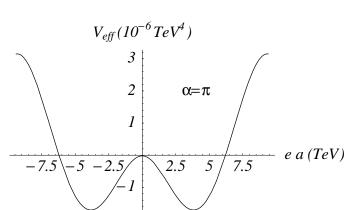
$$V(M; L; \omega) = \frac{1}{32\pi^6 L^4} \left[(LM)^2 Li_3(u) + 3(LM) Li_4(u) + 3Li_5(u) + \text{H.c.} \right]$$

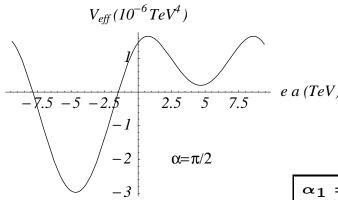
where
$$u = \exp[L(i\omega - M)], \ \omega = \alpha + eq_{\psi}La$$

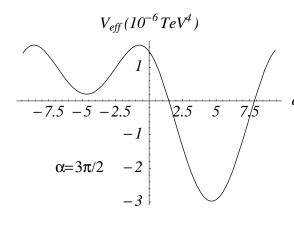
Effective potential (cont.)

Full potential: $V_{eff} = \sum_{i=1,2} V(M_i; L; \omega_i)$







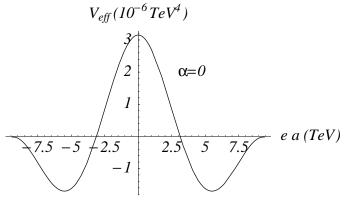


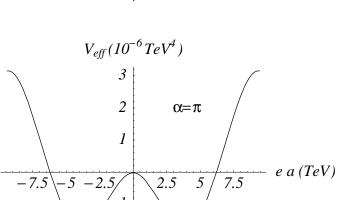
$$\begin{array}{l} \alpha_1 = \mathbf{0}, \; \alpha_2 = \alpha \\ L^{-1} = 0.3 \text{TeV} \\ M_1 = 0.2 \text{TeV}, \; M_2 = 5 \text{GeV} \\ q_1 = 2/3, \; q_2 = -1/3 \end{array}$$

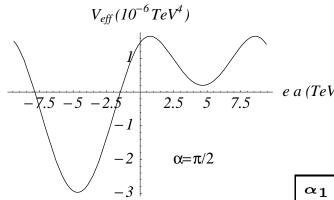
e a (TeV)

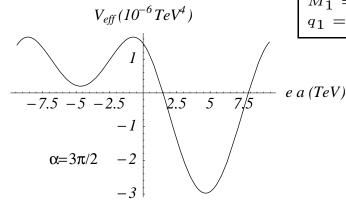
Effective potential (cont.)

Full potential: $V_{eff} = \sum_{i=1,2} V(M_i; L; \omega_i)$







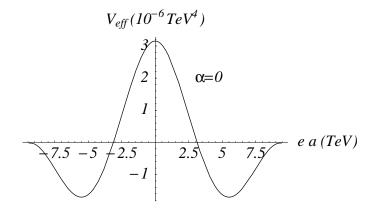


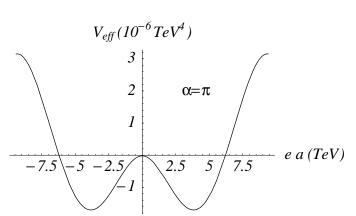
$$\begin{array}{l} \alpha_1 = \mathbf{0}, \; \alpha_2 = \alpha \\ L^{-1} = 0.3 \text{TeV} \\ M_1 = 0.2 \text{TeV}, \; M_2 = 5 \text{GeV} \\ q_1 = 2/3, \; q_2 = -1/3 \end{array}$$

For $\alpha = 0, \pi$, CP-invariant bound conds. \Rightarrow spontaneous CPV

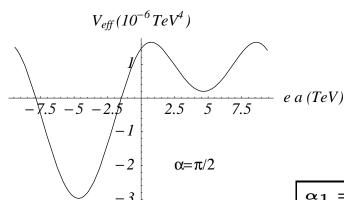
Effective potential (cont.)

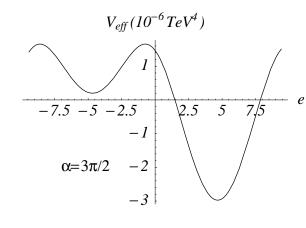
Full potential:
$$V_{eff} = \sum_{i=1,2} V(M_i; L; \omega_i)$$





For $\alpha=0,\pi$, CP-invariant bound conds. \Rightarrow spontaneous CPV





$$\begin{array}{l} \alpha_1 = \mathbf{0}, \; \alpha_2 = \alpha \\ L^{-1} = 0.3 \text{TeV} \\ M_1 = 0.2 \text{TeV}, \; M_2 = 5 \text{GeV} \\ q_1 = 2/3, \; q_2 = -1/3 \end{array}$$

For $\alpha \neq 0, \pi$, bound conds. contain *explicit* CPV

 $ightharpoonup V(M;L;\omega)$ absolute minima: $\omega=n\pi/L,\ n=$ odd

- $ightharpoonup V(M;L;\omega)$ absolute minima: $\omega=n\pi/L,\ n=$ odd
- With the field redefinitions:

$$\psi_{\text{new}} = e^{i(\pi - \alpha)y/L} \psi$$
 $\varphi_{\text{new}} = \varphi + \frac{\alpha - \pi}{e_5 q_{\psi} L}$

- $ightharpoonup V(M;L;\omega)$ absolute minima: $\omega=n\pi/L,\ n=$ odd
- With the field redefinitions:

$$\psi_{\text{new}} = e^{i(\pi - \alpha)y/L} \psi \qquad \varphi_{\text{new}} = \varphi + \frac{\alpha - \pi}{e_5 q_{\psi} L}$$

 $ightharpoonup V_{
m new}$ has a minimum at $\langle arphi_{
m new}
angle = 0 \Rightarrow$ no spontaneous CPV

- $V(M;L;\omega)$ absolute minima: $\omega=n\pi/L,\ n=$ odd
- With the field redefinitions:

$$\psi_{\text{new}} = e^{i(\pi - \alpha)y/L} \psi \qquad \varphi_{\text{new}} = \varphi + \frac{\alpha - \pi}{e_5 q_{\psi} L}$$

- $ightharpoonup V_{
 m new}$ has a minimum at $\langle arphi_{
 m new}
 angle = 0 \Rightarrow$ no spontaneous CPV
- $\psi_{
 m new}(x,y+L)=-\psi_{
 m new}(x,y)\Rightarrow$ no CPV from the boundary conditions.

- $V(M;L;\omega)$ absolute minima: $\omega=n\pi/L,\ n=$ odd
- With the field redefinitions:

$$\psi_{\text{new}} = e^{i(\pi - \alpha)y/L} \psi \qquad \varphi_{\text{new}} = \varphi + \frac{\alpha - \pi}{e_5 q_{\psi} L}$$

- $ightharpoonup V_{
 m new}$ has a minimum at $\langle arphi_{
 m new}
 angle = 0 \Rightarrow$ no spontaneous CPV
- $\psi_{\rm new}(x,y+L)=-\psi_{\rm new}(x,y)\Rightarrow$ no CPV from the boundary conditions.
- ▶ Equivalently at the minimum, $m_n = m_{-n-1}$, this allows a generalized definition

$$\psi_n \xrightarrow{\mathrm{CP}} C\overline{(\gamma_0 \psi_{-n-1})}^T$$

under which the couplings are invariant.

▶ Electric dipole moments

- ▶ Electric dipole moments
- Definition:

$$e\left\langle p'\left|J_{EM}^{\mu}\right|p\right\rangle = \left|\mathbf{d}\right|\bar{u}(p')\sigma^{\mu\nu}\gamma_{5}(p'-p)_{\nu}u(p)$$

Electric dipole moments

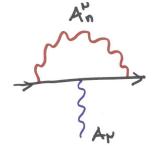
Definition:

$$e\left\langle p'\left|J_{EM}^{\mu}\right|p\right\rangle = \boxed{\mathbf{d}} \bar{u}(p')\sigma^{\mu\nu}\gamma_{5}(p'-p)_{\nu}u(p)$$

$$A_n^{\mu}: \qquad d_{i,n}^{(v)} = \frac{(eq_i)^3 c_{i,n}^{(-)}}{4\pi^2} \frac{m_{i,n}}{m_{i,0}^2} J^{(v)}(x_{i,n}, y_{i,n})$$

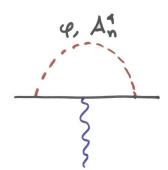
$$\varphi: \qquad d_{i,0} = -\frac{(eq_i)^3 c_{i,0}^{(+)}}{16\pi^2 m_{i,0}} J^{(s)}(m_{\varphi}^2/m_{i,0}^2, 1)$$

$$A_n^4: \qquad d_{i,0}^{(s)} = -\frac{(eq_i)^3 c_{i,n}^{(+)}}{16\pi^2} \frac{m_{i,n}}{m_{i,0}^2} J^{(s)}(x_{i,n}, y_{i,n})$$



$$\varphi: \qquad d_{i,0} = -\frac{(eq_i)^3 c_{i,0}^{(+)}}{16\pi^2 m_{i,0}} J^{(s)}(m_{\varphi}^2/m_{i,0}^2, 1)$$

$$A_n^4: d_{i,0}^{(s)} = -\frac{(eq_i)^3 c_{i,n}^{(+)}}{16\pi^2} \frac{m_{i,n}}{m_{i,0}^2} J^{(s)}(x_{i,n}, y_{i,n})$$



Electric dipole moments

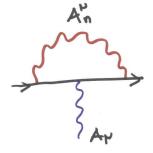
Definition:

$$e\left\langle p'\left|J_{EM}^{\mu}\right|p\right\rangle = \boxed{\mathbf{d}} \bar{u}(p')\sigma^{\mu\nu}\gamma_{5}(p'-p)_{\nu}u(p)$$

$$A_n^{\mu}: \qquad d_{i,n}^{(v)} = \frac{(eq_i)^3 c_{i,n}^{(-)}}{4\pi^2} \frac{m_{i,n}}{m_{i,0}^2} J^{(v)}(x_{i,n}, y_{i,n})$$

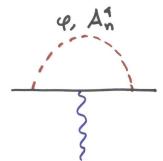
$$\varphi: \qquad d_{i,0} = -\frac{(eq_i)^3 c_{i,0}^{(+)}}{16\pi^2 m_{i,0}} J^{(s)}(m_{\varphi}^2/m_{i,0}^2, 1)$$

$$A_n^4: \qquad d_{i,0}^{(s)} = -\frac{(eq_i)^3 c_{i,n}^{(+)}}{16\pi^2} \frac{m_{i,n}}{m_{i,0}^2} J^{(s)}(x_{i,n}, y_{i,n})$$



$$\varphi: \qquad d_{i,0} = -\frac{(eq_i)^3 c_{i,0}^{(+)}}{16\pi^2 m_{i,0}} J^{(s)}(m_{\varphi}^2/m_{i,0}^2, 1)$$

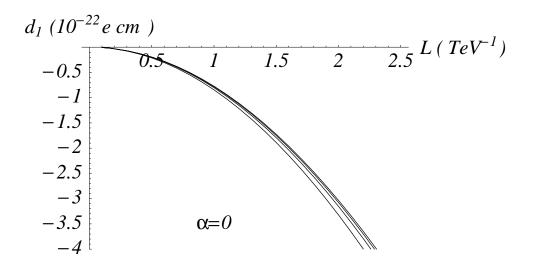
$$A_n^4: d_{i,0}^{(s)} = -\frac{(eq_i)^3 c_{i,n}^{(+)}}{16\pi^2} \frac{m_{i,n}}{m_{i,0}^2} J^{(s)}(x_{i,n}, y_{i,n})$$

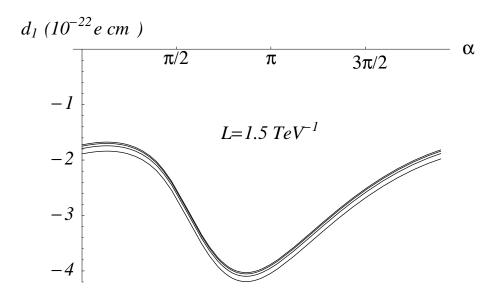


Where

Phenomenology (cont)

Results





Comments

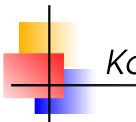
lacktriangle Other observables (e.g. $\Upsilon o \varphi \gamma$)

Comments

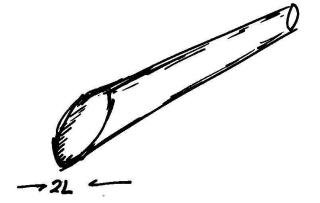
- Other observables (e.g. $\Upsilon \to \varphi \gamma$)
- $lacktriangledown_{arphi}$ was included as the dominating 2-loop effect, needs quantitative verification.

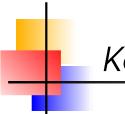
Comments

- lacktriangle Other observables (e.g. $\Upsilon o \varphi \gamma$)
- m_{φ} was included as the dominating 2-loop effect, needs quantitative verification.
- Non-Abelian extension...in progress

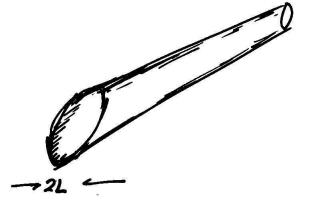


In a 5D cylinder $\sim \mathbb{R}^4 \times S^1$ with coordinates $x^M = (x^\mu, y)$ the metric will be periodic in y...





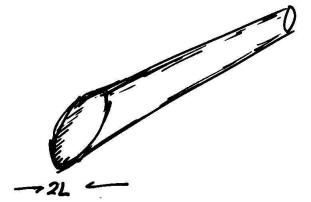
In a 5D cylinder $\sim \mathbb{R}^4 \times S^1$ with coordinates $x^M = (x^\mu, y)$ the metric will be periodic in y...



...and can be expanded in a Fourier series

$$g_{MN}(x,y) = g_{MN}^{(0)}(x) + \sum_{k \neq 0} g_{MN}^{(k)}(x) e^{iky/L} \qquad g_{MN}^{(0)} = \begin{pmatrix} g_{\mu\nu} & A_{\mu} \\ A_{\mu} & \gamma \end{pmatrix}$$

In a 5D cylinder $\sim \mathbb{R}^4 \times S^1$ with coordinates $x^M = (x^\mu, y)$ the metric will be periodic in y...



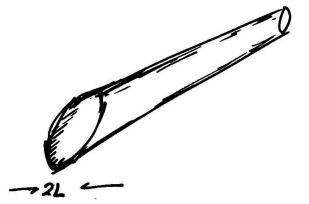
...and can be expanded in a Fourier series

$$g_{MN}(x,y) = g_{MN}^{(0)}(x) + \sum_{k \neq 0} g_{MN}^{(k)}(x)e^{iky/L} \qquad g_{MN}^{(0)} = \begin{pmatrix} g_{\mu\nu} & A_{\mu} \\ A_{\mu} & \gamma \end{pmatrix}$$

The Einstein-Hilbert action reads:

$$\int d^5 z \sqrt{g_{MN}} R^{(5)} = 2\pi L \int d^4 x \sqrt{g_{\mu\nu}} \left(R^{(4)} - \frac{1}{4} F_{\mu\nu} F_{\rho\sigma} g^{\mu\rho} g^{\nu\sigma} + \cdots \right)$$

In a 5D cylinder $\sim \mathbb{R}^4 \times S^1$ with coordinates $x^M = (x^\mu, y)$ the metric will be periodic in y...



...and can be expanded in a Fourier series

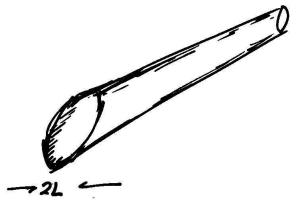
$$g_{MN}(x,y) = g_{MN}^{(0)}(x) + \sum_{k \neq 0} g_{MN}^{(k)}(x)e^{iky/L} \qquad g_{MN}^{(0)} = \begin{pmatrix} g_{\mu\nu} & A_{\mu} \\ A_{\mu} & \gamma \end{pmatrix}$$

The Einstein-Hilbert action reads:

$$\int d^5 z \sqrt{g_{MN}} R^{(5)} = 2\pi L \int d^4 x \sqrt{g_{\mu\nu}} \left(R^{(4)} - \frac{1}{4} F_{\mu\nu} F_{\rho\sigma} g^{\mu\rho} g^{\nu\sigma} + \cdots \right)$$

 $k \neq 0$ modes have masses $\sim 1/L$

In a 5D cylinder $\sim \mathbb{R}^4 \times S^1$ with coordinates $x^M = (x^\mu, y)$ the metric will be periodic in y...



...and can be expanded in a Fourier series

$$g_{MN}(x,y) = g_{MN}^{(0)}(x) + \sum_{k \neq 0} g_{MN}^{(k)}(x)e^{iky/L} \qquad g_{MN}^{(0)} = \begin{pmatrix} g_{\mu\nu} & A_{\mu} \\ A_{\mu} & \gamma \end{pmatrix}$$

The Einstein-Hilbert action reads:

$$\int d^5 z \sqrt{g_{MN}} R^{(5)} = 2\pi L \int d^4 x \sqrt{g_{\mu\nu}} \left(R^{(4)} - \frac{1}{4} F_{\mu\nu} F_{\rho\sigma} g^{\mu\rho} g^{\nu\sigma} + \cdots \right)$$

 $k \neq 0$ modes have masses $\sim 1/L$

Gauge couplings suppressed by $1/M_{\rm Pl}$.



• Space
$$= \mathbb{R}^4 \times B$$
, coordinates $=(x^\mu,\phi^i)$

- Space $= \mathbb{R}^4 \times B$, coordinates= (x^μ,ϕ^i)
- Symmetry group G acting on B, generators = $\{T_a\}$

- Space $= \mathbb{R}^4 \times B$, coordinates $=(x^\mu,\phi^i)$
- Symmetry group G acting on B, generators = $\{T_a\}$
- Under $G: \phi^i \to \phi^i + \epsilon^a K_a^i(\phi)$

- Space = $\mathbb{R}^4 \times B$, coordinates= (x^μ, ϕ^i)
- Symmetry group G acting on B, generators $= \{T_a\}$
- Under $G: \phi^i \to \phi^i + \epsilon^a K_a^i(\phi)$
- Metric:

$$g_{MN}^{(0)} = \begin{pmatrix} g_{\mu\nu}(x) & \sum_{a} A_{\mu}^{a}(x) K_{i}^{a} \\ \sum_{a} A_{\mu}^{a}(x) K_{i}^{a} & \gamma_{ij}(\phi) \end{pmatrix}$$

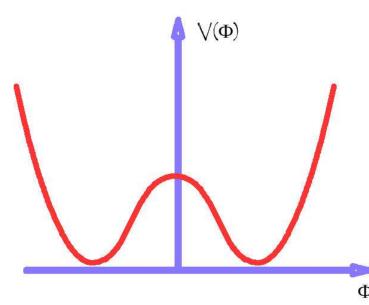
- Space = $\mathbb{R}^4 \times B$, coordinates= (x^μ, ϕ^i)
- Symmetry group G acting on B, generators $= \{T_a\}$
- ▶ Under $G: \phi^i \to \phi^i + \epsilon^a K_a^i(\phi)$
- Metric:

$$g_{MN}^{(0)} = \begin{pmatrix} g_{\mu\nu}(x) & \sum_{a} A_{\mu}^{a}(x) K_{i}^{a} \\ \sum_{a} A_{\mu}^{a}(x) K_{i}^{a} & \gamma_{ij}(\phi) \end{pmatrix}$$

▶ Then A^a_μ is the gauge field for a gauge theory with group G For $G = SU(3) \times SU(2) \times U(1)$, $\dim(B) \geq 7$

Localizing matter to a brane

Imagine a 5D scalar field with potential

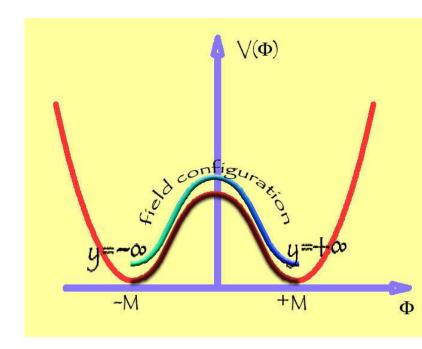


Localizing matter to a brane

 $\bigvee(\Phi)$

Imagine a 5D scalar field with potential

"Bounce" solution: $\Phi(y=\pm\infty)=\pm v$



• Fermions coupled to this scalar field: $\bar{\psi}\psi\Phi$

- Fermions coupled to this scalar field: $\bar{\psi}\psi\Phi$
 - lacktriangle Have a mode with a zero effective mass at y=0

- Fermions coupled to this scalar field: $\bar{\psi}\psi\Phi$
 - Have a mode with a zero effective mass at y=0
 - lacktriangle This mode gets a mass $\sim v$ outside the brane

- Fermions coupled to this scalar field: $\bar{\psi}\psi\Phi$
 - Have a mode with a zero effective mass at y=0
 - lacktriangle This mode gets a mass $\sim v$ outside the brane
 - lacktriangle All other modes have a mass $\sim M$ also

- Fermions coupled to this scalar field: $ar{\psi}\psi\Phi$
 - ▶ Have a mode with a zero effective mass at y = 0
 - lacktriangle This mode gets a mass $\sim v$ outside the brane
 - lacktriangle All other modes have a mass $\sim M$ also
- **Boson couplings:** $|D\chi|^2 V(\chi, \Phi)$

- lacktriangleright Fermions coupled to this scalar field: $ar{\psi}\psi\Phi$
 - Have a mode with a zero effective mass at y=0
 - lacktriangle This mode gets a mass $\sim v$ outside the brane
 - lacktriangle All other modes have a mass $\sim M$ also
- **Boson couplings:** $|D\chi|^2 V(\chi, \Phi)$
 - Can use the above field to induce SSB only off the brane
 - ⇒ Gauge fields become massive outside the brane