
c
m

.

CP violation in 5D QED
hep-ph/0401232

José Wudka
Bohdan Grzadkowski

jose.wudka@ucr.edu

UC Riverside

CP violation in 5D QED – p.1/18



Overview

Introduction

A simple model

Fourier expansions and all that

The effective potential & CP violating vacua

Phenomenology

Conclusions and future plans

CP violation in 5D QED – p.2/18



Overview

Introduction

A simple model

Fourier expansions and all that

The effective potential & CP violating vacua

Phenomenology

Conclusions and future plans

CP violation in 5D QED – p.2/18



Overview

Introduction

A simple model

Fourier expansions and all that

The effective potential & CP violating vacua

Phenomenology

Conclusions and future plans

CP violation in 5D QED – p.2/18



Overview

Introduction

A simple model

Fourier expansions and all that

The effective potential & CP violating vacua

Phenomenology

Conclusions and future plans

CP violation in 5D QED – p.2/18



Overview

Introduction

A simple model

Fourier expansions and all that

The effective potential & CP violating vacua

Phenomenology

Conclusions and future plans

CP violation in 5D QED – p.2/18



Overview

Introduction

A simple model

Fourier expansions and all that

The effective potential & CP violating vacua

Phenomenology

Conclusions and future plans

CP violation in 5D QED – p.2/18



Introduction

In the 1920’s Kaluza & Klein showed a possible way of unifying
gravity with E& M assuming space-time is a 5-dim. cylinder

Non-Abelian extensions exist, but it is difficult to include chiral
fermions Witten, 1981

Alternatively: can assume space-time has D dimensions and we live
in a 4-dim subspace (brane) Arkani-Hamed et al., 1998

Assume D-dim gravity has scale GF

Localize SM fields to the subspace
[

LM
(4)
Pl

]2

=
[

LM
(D)
Pl

]D−2

; D = 6 → L ∼ 1mm

For 2 branes + conformally flat metric Randall & Sundrum, 1999

ln[M2
PlGF ] ∼ L

√
Λ(4)/MPl

Finally, one need not confine the fields to the brane:

Momentum conservation along the 5th dimension disallows large
deviations form the SM. Appelquist et al., 2000
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A simple model

QED on a 5-dim cylinder with Lagrangian

LQED = −1

4
F 2
MN +

∑

i=1,2

ψ̄i
(

iγMDM −Mi

)

ψi + Lgf ,

with FMN = ∂MAN − ∂NAM , and DM = ∂M + ie5qiAM

Boundary conditions Scherk& Schwarz, 1979
Hosotani, 1983 (in this context)

ψi(x
µ, y + L) = eiαi ψi(x

µ, y) AM (xµ, y + L) = AM (xµ, y)

Gauge transformations

ψi(x, y) → e−ie5qiΛ(x,y)ψi(x, y), AM (x, y) → AM (x, y)+∂MΛ(x, y)

CP transformations Shimizu, 1985
Gavela& Nepomechie, 1984

xM → εMxM , AM → −εMAM , ψi → ηiγ
0γ2ψ?i , |ηi| = 1, ε0,4 = −ε1,2,3 = +1

Look for non-trivial CP violating vacua
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Fourier expansions and all that

The KK modes: Hosotani, 1983

ψi(x, y) =
1√
L

∞
∑

n=−∞

ψi,n(x)eiω̄i,ny; ω̄in = (2πn+ αi)/L

AM (x, y) =
1√
L

[

∞
∑

n=−∞

AMn (x)eiωny + a δM4

]

; ωn = 2πn/L

The fermion Lagrangian

Lψ =
∑

in

ψ̄i,n [iγµ∂µ −Mi + iγ5µi,n]ψi,n−e
∑

i,l,n

qiψ̄i,l

(

6Al−n + iA4
l−n γ5

)

ψi,n

with µi,n = ω̄i,n + eqi a , e ≡ e5/
√
L = 4-dim gauge coupling.

Diagonalize the fermion mass matrix

ψi,n → exp(iγ5θi,n)ψi,n; tan(2θi,n) =
µi,n
Mi

; |θi,n| ≤ π/4
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Fourier expansions and all that (cont.)

Physical fermion masses:

mi,n =
√

M2
i + µ2

i,n

Interactions:

LAψ = −e
∑

i

qi

{

Aµ
∑

k

ψ̄i,kγ
µψi,k +

∑

k 6=l

Aµ k−lψ̄i,kΓ
(v)
i,klγ

µψi,l

}

Lϕψ = −e
∑

i

qi

{

ϕ
∑

k

ψ̄i,k Γ
(ϕ)
i,k ψi,k +

∑

k 6=l

A4 k−lψ̄i,kΓ
(s)
i,klψi,l

}

ϕ ≡ A4,n=0 = physical scalar with (naively) CPV couplings

Aµ ≡ Aµ 0 = 4-dim. photon

and

Γ
(ϕ)
i,k ≡ −iγ5e

2iγ5θi,k , Γ
(s)
i,kl ≡ −iγ5e

iγ5(θi,k+θi,l), Γ
(v)
i,kl ≡ eiγ5(θi,k−θi,l)
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Fourier expansions and all that (cont.)

Gauge fixing:

Lgf = − ξ
2

(

∂µAµ − ξ−1∂yA4

)2

LA + Lgf =
1

2

∑

n

{

Aµn
[

( + ω2
n)gµν − (1 − ξ)∂µ∂ν

]

Aν−n −A4
n( + ω2

n/ξ)A
4
−n

}

then

Aµn, (n 6= 0) will eat A4
n

Aµ = Aµn=0 remains massless

ϕ = A4
n=0 is gauge invariant.

ϕ is a gauge singlet: cannot choose the A4 = 0 gauge (similar to
finite temp. case).

U(1) gauge invariance remains unbroken.

There is no symmetry that forbids 〈ϕ〉 6= 0

CP violation in 5D QED – p.7/18
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n

Aµ = Aµn=0 remains massless

ϕ = A4
n=0 is gauge invariant.

ϕ is a gauge singlet: cannot choose the A4 = 0 gauge (similar to
finite temp. case).

U(1) gauge invariance remains unbroken.

There is no symmetry that forbids 〈ϕ〉 6= 0
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The effective potential

Standard evaluation

Result for one fermion:

V (M ;L;ω) =
1

32π6L4

[

(LM)2Li3(u) + 3(LM)Li4(u) + 3Li5(u) + H.c.
]

where u = exp[L(iω −M)], ω = α+ eqψLa
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Effective potential (cont.)

Full potential: Veff =
∑

i=1,2
V (Mi;L;ωi)

− 7.5 − 5 − 2.5 2.5 5 7.5
e a (TeV)

− 1

1

2

3

Veff (10−6 TeV4 )

α=π

− 7.5 − 5 − 2.5 2.5 5 7.5
e a (TeV)

− 3

− 2

− 1

1

Veff (10−6 TeV4 )

α=3π/2

− 7.5 − 5 − 2.5 2.5 5 7.5
e a (TeV)

− 1

1

2

3

Veff (10−6 TeV4 )

α=0

− 7.5 − 5 − 2.5 2.5 5 7.5
e a (TeV)

− 3

− 2

− 1

1

Veff (10−6 TeV4 )

α=π/2

α1 = 0, α2 = α

L−1 = 0.3TeV
M1 = 0.2TeV, M2 = 5GeV
q1 = 2/3, q2 = −1/3

For α = 0, π, CP-invariant
bound conds. ⇒ sponta-
neous CPV

For α 6= 0, π, bound conds.
contain explicit CPV
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No CPV with one fermion

V (M ;L;ω) absolute minima: ω = nπ/L, n =odd

With the field redefinitions:

ψnew = ei(π−α)y/Lψ ϕnew = ϕ+
α− π

e5qψL

Vnew has a minimum at 〈ϕnew〉 = 0 ⇒ no spontaneous CPV

ψnew(x, y + L) = −ψnew(x, y) ⇒ no CPV from the boundary
conditions.

Equivalently at the minimum, mn = m−n−1, this allows a generalized
definition

ψn
CP−→ C(γ0ψ−n−1)

T

under which the couplings are invariant.
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Phenomenology

Electric dipole moments

Definition:

e
〈

p′ |JµEM | p
〉

= d ū(p′)σµνγ5(p
′ − p)νu(p)

Aµn : d
(v)
i,n =

(eqi)
3c

(−)
i,n

4π2

mi,n

m2
i,0

J (v)(xi,n, yi,n)

ϕ : di,0 = −
(eqi)

3c
(+)
i,0

16π2mi,0
J (s)(m2

ϕ/m
2
i,0, 1)

A4
n : d

(s)
i,0 = −

(eqi)
3c

(+)
i,n

16π2

mi,n

m2
i,0

J (s)(xi,n, yi,n)

Where
. c

(±)
i,n

= ±Mi(µi,n ± µi,0)/(mi,nmi,0)

. xi,n = (ωn/mi,0)2, yi,n = (mi,n/mi,0)2

. J(s)(x, y) = 1 + (x − y + 1) ln

√

y/x + (2x/ρ − ρ) Θ

. J(v)(x, y) = −1 + (y − x) ln

√

y/x + (ρ − cotΘ)Θ

. ρ2 ≡ 4xy − (x + y − 1)2 tanΘ ≡ ρ/(x + y − 1).
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Phenomenology (cont)

Results

0.5 1 1.5 2 2.5
L ( TeV−1 )

− 4
− 3.5

− 3
− 2.5

− 2
− 1.5

− 1
− 0.5

d1 (10−22e cm )

α=0

π/2
������

π 3π/2
�����������

α

− 4

− 3

− 2

− 1

d1 (10−22e cm )

L=1.5 TeV−1

CP violation in 5D QED – p.12/18



Comments

Other observables (e.g. Υ → ϕγ)

mϕ was included as the dominating 2-loop effect, needs
quantitative verification.

Non-Abelian extension...in progress

Other CPV models

A scalar gets a VEV in another brane, or bulk fields have complex

couplings Branco etal, 2000
Huang et al., 2001

Take S1 → S1/G, G =discrete group & appropriate behavior of
bulk fermions under G
Light KK modes contain CPV, transmitted to our brane through
scalar messengers. Chang & Mohapatra, 2001

Taking α = 0 for a non-Abelian model and assuming certain
dynamics generates appropriate 〈A4〉 Cosme et al., 2003
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Kaluza Klein

In a 5D cylinder ∼ �4 × S1 with coor-
dinates xM = (xµ, y) the metric will be
periodic in y...

...and can be expanded in a Fourier series

gMN (x, y) = g
(0)
MN (x)+

∑

k 6=0

g
(k)
MN (x)eiky/L g

(0)
MN =

(

gµν Aµ

Aµ γ

)

The Einstein-Hilbert action reads:
∫

d5z
√
gMNR

(5) = 2πL

∫

d4x
√
gµν

(

R(4) − 1

4
FµνFρσg

µρgνσ + · · ·
)

k 6= 0 modes have masses ∼ 1/L

Gauge couplings suppressed by 1/MPl.

(return)
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Non-Abelian Kaluza& Klein

Space =

�4 ×B, coordinates=(xµ, φi)

Symmetry group G acting on B, generators = {Ta}

Under G: φi → φi + εaKi
a(φ)

Metric:

g
(0)
MN =

(

gµν(x)
∑

a
Aaµ(x)K

a
i

∑

a
Aaµ(x)K

a
i γij(φ)

)

Then Aaµ is the gauge field for a gauge theory with group G

For G = SU(3) × SU(2) × U(1), dim(B) ≥ 7

(return)
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Localizing matter to a brane

Imagine a 5D scalar field with potential

“Bounce” solution: Φ(y = ±∞) = ±v
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Localizing matter to a brane (cont)

Fermions coupled to this scalar field: ψ̄ψΦ

Have a mode with a zero effective mass at y = 0

This mode gets a mass ∼ v outside the brane

All other modes have a mass ∼M also

Boson couplings: |Dχ|2 − V (χ,Φ)

Can use the above field to induce SSB only off the brane
⇒ Gauge fields become massive outside the brane

(return)
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⇒ Gauge fields become massive outside the brane

(return)
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