Pfaffian statistics through the 1D coherent state representation KITP, February 24, 2009

Alexander Seidel

Collaborators:
D.-H. Lee (Berkeley)

Kun Yang (FSU/NHMFL)
J. Moore (Berkeley)
J.M. Leinaas (Univ. Oslo)
H. Fu (Brown)

A one-dimensional language for fractional quantum Hall systems

Wavefunctionslook complicated when expressed in the Landau level basis. Still, one can construct a simple 1d language for quantum Hall states:
A. S. et. al, PRL 95 '05, PRL 97 '06
E. Bergholtz et. al, J. Stat. Mech '06, PRB 74 '06
F.D.M. Haldane, talk at 06 March meeting
B.A. Bernevig, F.D.M. Haldane, PRL 100 ‘08
X.-G. Wen, Z. Wang, PRB 77 '08

A one-dimensional language for fractional quantum Hall systems

Wavefunctionslook complicated when expressed in the Landau level basis. Still, one can construct a simple 1d language for quantum Hall states:
A. S. et. al, PRL 95 '05, PRL 97 '06
E. Bergholtz et. al, J. Stat. Mech '06, PRB 74 '06
F.D.M. Haldane, talk at 06 March meeting
B.A. Bernevig, F.D.M. Haldane, PRL 100 ‘08
X.-G. Wen, Z. Wang, PRB 77 '08

What can be (potentially) learned from adiabatic continuity

\checkmark Patterns efficiently encode some defining quantum numbers of underlying quantum Hall states: fractional charges, number of topological sectors ...
\square Study thin "cylinder version" of critical points/behavior between different quantum Hall phases.
\longrightarrow e.g. (331)->Pfaffian, A.S., K. Yang, PRL 100, '08 , "non-trivial" thin cylinder limit of Haldane-Rezayi state (unpublished)
\checkmark Provide direct way to extract information about (nonabelian) statistics from wavefunctions. (*)
(*) cf. N. Read, PRB 79 ,'09; arXiv:0807.3107

Thin torus/cylinder limit of quantum Hall states

Example: $v=1 / 3$ Laughlin state on cylinder
$1 / R_{y}$

Tao-Thouless state on thin cylinder Haldane, Rezayi PRB 50 '94

Thin torus/cylinder limit of quantum Hall states

Example: $v=1 / 3$ Laughlin state on cylinder

$1 / R_{y}$

Tao-Thouless state on thin cylinder Haldane, Rezayi PRB 50 ' 94

$$
\begin{gathered}
H_{T K}=\int d^{2} r d^{2} r^{\prime}\left[\nabla^{2} \delta\left(r-r^{\prime}\right)\right] \psi^{\dagger}(r) \psi^{\dagger}\left(r^{\prime}\right) \psi\left(r^{\prime}\right) \psi(r) \\
\sim \sum_{R, x, y} e^{-\left(x^{2}+y^{2}\right) / R_{y}^{2}} c_{R-x}^{\dagger} c_{R+x}^{\dagger} c_{R-y} c_{R+y} \\
\text { (expressed in lowest Landau level basis) }
\end{gathered}
$$

Thin torus/cylinder limit of quantum Hall states

Example: $v=1 / 3$ Laughlin state on cylinder

$1 / R_{y}$

Tao-Thouless state on thin cylinder Haldane, Rezayi PRB 50 '94

$$
\begin{aligned}
H_{T K}= & \int d^{2} r d^{2} r^{\prime}\left[\nabla^{2} \delta\left(r-r^{\prime}\right)\right] \psi^{\dagger}(r) \psi^{\dagger}\left(r^{\prime}\right) \psi\left(r^{\prime}\right) \psi(r) \\
& \sim \sum e^{-\left(x^{2}+y^{2}\right) / R_{y}^{2}} c_{R-x}^{\dagger} c_{R+x}^{\dagger} c_{R-y} c_{R+y}
\end{aligned}
$$

$$
\longrightarrow 0 \sum_{n}\left[e^{-\frac{1}{2} R_{y}^{-2}} c_{n}^{\dagger} c_{n} c_{n+1}^{\dagger} c_{n+1}+e^{-2 R_{y}^{-2}} c_{n}^{\dagger} c_{n} c_{n+2}^{\dagger} c_{n+2}\right]
$$

Thin torus/cylinder limit of quantum Hall states

Example: $v=1 / 3$ Laughlin state on cylinder

$1 / R_{y}$

adiabatically connected!
A.S. et al, PRL 2005
$\mathrm{O} \sim \exp \left(-C R_{y}^{2}\right)$

A one-dimensional language for fractional quantum Hall systems

Use thin cylinder limits as labels for the complicated bulk states
$\begin{array}{ll} \\ v=1 / 3 \text { Laughlin liquid: } \longrightarrow 0100100100100100100 \\ & 0010010010010010010 \\ & \end{array}$
Laughlin quasi-hole: $\longrightarrow 010010010001001001$
$q=1 / 3$ domain-wall
Laughlin quasi-particle: $\longrightarrow 001001001010010010$
$q=-1 / 3$ anti-domain-wall
-Laughlin quasi-particle as "dressed" domain wall

The $v=1$ Pfaffianstate

$v=1$ Pfaffian:

$$
\Psi=P f\left[\frac{1}{z_{i}-z_{j}}\right] \prod_{(i j)}\left(z_{i}-z_{j}\right) \exp \left[-\sum_{k}\left|z_{k}\right|^{2} / 4\right]
$$

(G. Moore, N. Read, Nucl. Phys. B, '91)

The $v=1$ Pfaffianstate

> v=1 Pfaffian:

$$
\Psi=\operatorname{Pf}\left[\frac{1}{z_{i}-z_{j}}\right] \prod_{(i j)}\left(z_{i}-z_{j}\right) \exp \left[-\sum_{k}\left|z_{k}\right|^{2} / 4\right]
$$

(G. Moore, N. Read, Nucl. Phys. B, '91)

Thin cylinder patterns:

3 ground states!
2-quasi-hole states

0202020202020 10202020202020 A charge 1 excitation in the 2020 grouns state.... 020202011111111111110202020 ... can decay into twocharge 1/2excitations ! 111111102020202020201111111 (same for the 1111 ground state)

```
A.S., D.-H. Lee, PRL '06
for v=1/2: c.f. E. Bergholtz et al. PRB 2006
```


Pfaffiandegeneracies

Degeneracy of quasi-hole states:

Four-domain-wall states:
02020201111111020202011111110202020
02020201111110202020201111110202020
\uparrow
Two different out-of-phase "middle strings" are possible
Generalize to 2 n hole-type domain-walls (fixing the boundary strings): $2^{\mathrm{n}-1}$ sectors
cf. C. Nayak, F. Wiczek, Nucl .Phys. B'96

Bratteli diagrams out of CDW-Patterns

Bratteli diagram for the $\mathrm{k}=3$ Read-Rezayi
cf. J.K. Slingerland, F.A. Bais, Nucl. Phys. B ‘01
More on domain walls+fusion rules: E. Ardonne, arxiv:0809.0389

How to understand braiding statistics in a one-dimensional language?

How to understand braiding statistics in the one-dimensional language: $v=1 / m$ Laughlin state

How to understand braiding statistics in the one-dimensional language: $v=1 / \mathrm{m}$ Laughlin state

Remember: $[x, y] \propto i$
localized Laughlin quasi hole $==$ "coherent state"

How to understand braiding statistics in the one-dimensional language: $v=1 / m$ Laughlin state

How to understand braiding statistics in the one-dimensional language: $v=1 / \mathrm{m}$ Laughlin state

$$
x_{1}=\left(c+m n_{1}\right) / R_{y}, x_{2}=\left(c+1+m n_{2}\right) / R_{y}
$$

But: only good for $h_{2 x}-h_{1 x} \ll \ell_{b}$

What aboutexchange paths ?

$$
\left|h_{2 x}-h_{1 x}\right| \gg \ell_{b} \text { violated! }
$$

Duality between thin torus limits (modular invariance)

Duality between thin torus limits (modular invariance)

Two hole exchange

$$
\left|\psi_{h}\right\rangle \rightarrow e^{i \gamma}\left|\psi_{h}\right\rangle
$$

Berry phase:

$$
\gamma=\sum_{\text {segments } \mathcal{C}_{\hat{k}}} \int_{\mathcal{C}_{\vec{k}}} \vec{A} \cdot d \vec{s}+" \text { twist } "
$$

Berry connection: $\vec{A}=i\left\langle\psi_{h} \mid \nabla_{h} \psi_{h}\right\rangle$

Two hole exchange

$$
\left|\psi_{h}\right\rangle \rightarrow e^{i \gamma}\left|\psi_{h}\right\rangle
$$

Berry phase:

Pfaffian statistics from a 1d viewpoint

02020202020111111111111020202020201111111111102020202020202

Pfaffian statistics from a 1d viewpoint

02020202020111111111111020202020201111111111102020202020202

Pfaffian statistics from a 1d viewpoint

02020202020111111111111020202020201111111111102020202020202

In this basis: Every second generator of the braid group is diagonal, and every other generator in block diagonal with block size 2.

Pfaffian 2-hole states

Sectors:
$c=\left\{\begin{array}{l}\text { 1. } 111111111111102020202020202011111111111111 \\ \text { 2. } 111111111111110202020202020201111111111111 \\ \text { 3. } 020202020202011111111111111102020202020202 \\ 4.20202020202020111111111111110202020202020\end{array}\right.$

$$
x_{2}=\left(2 n_{2}-s\right) / R_{y}
$$

$$
\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{c}=\quad \sum \quad \phi\left(h_{1}, x_{1}\right) \phi\left(h_{2}, x_{2}\right)\left|x_{1} x_{2}\right\rangle_{c}
$$

m1, \boldsymbol{m}_{2} in sector Ω
${\overline{\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\bar{c}}}}=\sum_{y_{1}, y_{2} \text { in sector } \bar{\epsilon}} \bar{\phi}\left(h_{1}, y_{1}\right) \bar{\phi}\left(h_{2}, y_{2}\right){\overline{\left.y_{1} y_{2}\right\rangle_{\bar{c}}}}^{2}$ "dual" basis

$$
\phi(h, x)=\exp \left[\frac{i}{2} h_{y} x-\frac{1}{4}\left(x-h_{x}\right)^{2}\right] \quad \bar{\phi}(h, y)=\phi(-i h, y)
$$

Transition matrices

$$
\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{c}=u_{c, \bar{c}}\left(h_{1}, h_{2}\right)\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\bar{c}}
$$

Can diagonalise using transformation properties under magnetic translations:

$$
\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{c} \longrightarrow\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\mu \nu} \quad, \quad{\overline{\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{c}}}_{c}{\overline{\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\mu \nu}}}_{\mu, \nu= \pm 1}
$$

where:

$$
\begin{gathered}
T_{x}\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\mu \nu} \simeq \mu e^{-i\left(h_{1 y}+h_{2 y}\right) / 2 R_{y}}\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\mu \nu} \\
T_{y}\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\mu \nu} \simeq \nu e^{-i\left(h_{1 刃}+h_{2 n}\right) / 2 R_{n}}\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\mu \nu} \\
\text { (and similarly for } \overline{\left.\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\mu \nu}\right)} \\
\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\mu \nu}=u_{\mu \nu}\left(h_{1}, h_{2}\right) \overline{\left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\mu \nu}}
\end{gathered}
$$

diagonal in (μv) -basis !

Transition matrices

$$
\begin{aligned}
& \left|\psi\left(h_{1}, h_{2}\right)\right\rangle_{\mu \nu}=u_{\mu \nu}\left(h_{1}, h_{2}\right){\overline{\left.\psi\left(h_{1}, h_{2}\right)\right\rangle}}_{\mu \nu} \\
& u_{\mu \nu}\left(h_{1}, h_{2}\right) \stackrel{ }{=} e_{\uparrow}^{i \alpha} e^{i\left(h_{1 x} h_{1 y}+h_{2 x} h_{2 y}\right) / 2}
\end{aligned}
$$

locally constant phase, depends on μ, ν, and "region"

These paths can be used to relate the overall phase factors in various sectors/regions.

The configuration space of the two holes comes in two disjoint pieces, each of which is characterized by a phase α.
Only the difference between these two phases matters.

Determination of remaining parameters

3 parameters thus far undetermined:

- One phase for the even particle number sector,
- one phase for the odd particle number sector,
- and the "shift" parameter s.

20202020202020202020201111111111110202020202020202020202
This process should be diagonal

111111111111111111111111020202020201111111111111111111111111
This process should not depend on particle number parity

Pfaffian statistics from a 1d viewpoint

Determined modulo $\pi / 4$

02020202020111111111111020202020201111111111102020202020202

$$
\theta=3 \pi / 8
$$

$e^{i \theta} / \sqrt{2} \quad 0202020202011111111111020202020201111111111102020202020202$
$+$
$i e^{i \theta} / \sqrt{2} \quad 02020202020111111111110202020202011111111111102020202020202$

Pfaffian statistics from a 1d viewpoint

Determined modulo $\pi / 4$

02020202020111111111111020202020201111111111102020202020202
\downarrow
$\theta=3 \pi / 8$
even length 11-string
$e^{i \theta \mp i \pi / 4} 02020202020111111111111020202020201111111111102020202020202$
odd length 11-string

Pfaffian statistics from a 1d viewpoint

Determined modulo $\pi / 4$

$$
02020202020111111111111020202020201111111111102020202020202
$$

$$
\theta=3 \pi / 8
$$

Equivalent to Majoranafermion representation
C. Nayak, F. Wiczek, Nucl .Phys. B '96
D. A. Ivanov, PRL, ‘01

Conclusions

1D labels for fractional quantum Hall states do....

- ...efficiently encode fundamental quantum numbers (fractional charges, topological degeneracies...)
- ...allow independent derivation of statistics for Laughlin states, Moore-Read states and perhaps others.
- ...give rise to simple and picturesque representations for topological sectors and the result of quasi-hole braiding processes

Multicomponent states and critical points: The Halperin (331) state

$$
\prod_{i<j}\left(z_{i}-z_{j}\right)^{3} \prod_{I<J}\left(z_{I}-z_{J}\right)^{3} \prod_{i, J}\left(z_{i}-z_{J}\right) \exp \left(-\sum_{\alpha}\left|z_{\alpha}\right|^{2} / 4\right)
$$

For general Halperin (m, m^{\prime}, n) states: A.S., K Yang, PRL '08

Thin torus patterns:

$$
\begin{aligned}
& \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \times 4 \\
& \uparrow \downarrow 0 \uparrow \uparrow \downarrow 00 \uparrow \downarrow 00 \uparrow \downarrow 00 \times 4
\end{aligned}
$$

c.f. $v=1 / 2$ Pfaffian:

1010101010101010

 1100110011001100Multicomponent states and critical points: The Halperin (331) state

Thin torus patterns:

$$
\begin{aligned}
& \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \times 4 \\
& \uparrow \downarrow 00 \uparrow \downarrow 00 \uparrow \downarrow 00 \uparrow \downarrow 00 \times 4 \\
& \uparrow \downarrow)=\uparrow \downarrow+\downarrow \uparrow
\end{aligned}
$$

c.f. $v=1 / 2$ Pfaffian:

$$
\begin{array}{ll}
1010101010101010 & \times 2 \\
1100110011001100 & \times 4
\end{array}
$$

Multicomponent states and critical points: The Halperin (331) state

$$
\begin{aligned}
& \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \times 4 \\
& \uparrow \downarrow 00 \uparrow \downarrow 00 \uparrow \downarrow 00 \uparrow \downarrow 00 \times 4 \\
& \text { (} \downarrow)=\uparrow \downarrow+\downarrow \uparrow
\end{aligned}
$$

c.f. $v=1 / 2$ Pfaffian:

1010101010101010
 $x 2$ 1100110011001100
 $\times 4$

Multicomponent states and critical points: The Halperin (331) state

$$
\begin{gathered}
\uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \uparrow 0 \downarrow 0 \times 4 \\
\uparrow \downarrow \downarrow \uparrow \downarrow 00 \uparrow \downarrow 00 \uparrow \downarrow 00 \times 4 \\
\uparrow \downarrow \downarrow \downarrow+\downarrow \uparrow
\end{gathered}
$$

In the thin torus limit, a transverse field Icing transition takes place at $t=J_{z}$ in one of the topological sectors.

Multicomponent states and critical points: The Haldane-Rezayi state

$$
\Psi_{H R}\left(z_{1}^{\uparrow}, \ldots, z_{N / 2}^{\dagger}, z_{1}^{\downarrow}, \ldots, z_{N / 2}^{\downarrow}\right)=\operatorname{det}\left(\frac{1}{\left(z_{i}^{\uparrow}-z_{j}^{\downarrow}\right)^{2}}\right) \prod_{\alpha<\beta}\left(z_{\alpha}-z_{\beta}\right)^{2}
$$

Argued to be critical: N. Read, D. Green, PRB '00

$$
v=1 / 2
$$

Thin torus patterns (unpublished):

$$
\begin{aligned}
& \uparrow \downarrow=\uparrow \downarrow-\downarrow \uparrow \\
& \uparrow \downarrow 00 \uparrow \downarrow 00 \uparrow \downarrow 00 \uparrow \downarrow 00 \times 4 \\
& \uparrow \downarrow 000 \uparrow 000 \uparrow 000 \uparrow 000 \times 4
\end{aligned}
$$

Multicomponent states and critical points: The Haldane-Rezayi state

$$
\begin{aligned}
& \Psi_{H R}\left(z_{1}^{\uparrow}, \ldots, z_{N / 2}^{\dagger}, z_{1}^{\downarrow}, \ldots, z_{N / 2}^{\downarrow}\right)=\operatorname{det}\left(\frac{1}{\left(z_{i}^{\uparrow}-z_{j}^{\downarrow}\right)^{2}}\right) \prod_{\alpha<\beta}\left(z_{\alpha}-z_{\beta}\right)^{2} \\
& \text { Argued to be critical: N. Read, D. Green, PRB '00 }
\end{aligned}
$$

Argued to be critical: N. Read, D. Green, PRB '00

Thin torus patterns (unpublished):

$$
\begin{aligned}
& \uparrow \downarrow=\uparrow \downarrow-\downarrow \uparrow \\
& \uparrow \downarrow 00 \uparrow \downarrow 00 \uparrow \downarrow 00 \uparrow \downarrow 00 \times 4 \\
& \uparrow \downarrow 00 \uparrow 000 \uparrow 000 \uparrow 000 \times 4
\end{aligned}
$$

