Interaction and disorder effects in graphene

Oskar Vafek

Florida State University and National High Magnetic Field Laboratory

KITP, May 19 2009

Collaborators

Prof. Igor Herbut (Simon Fraser) Dr. Vladimir Juricic (Simon Fraser)

This talk is based on:

OV arXiv.0810.3697

I.F. Herbut, V. Juricic, OV, PRL **100**, 046403 (2008). *OV and M.J. Case, PRB* **77**, 033410 (2008). *OV PRL***98**, 216401 (2007). *OV PRL***97**, 266406 (2006).

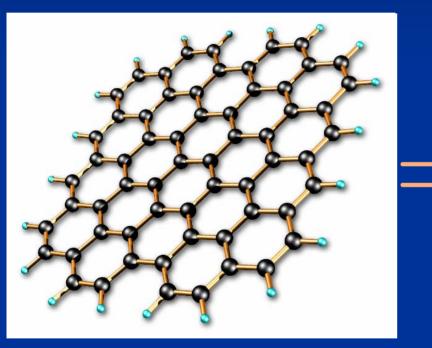
Outline

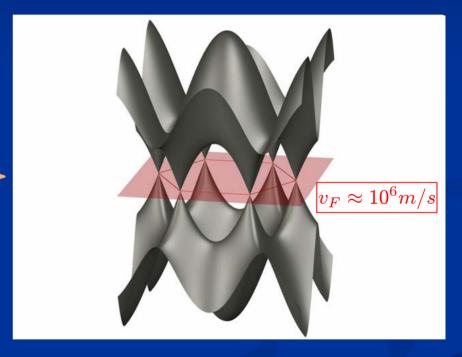
Dirac Fermions and marginal irrelevance of the 1/r Coulomb interactions

 Rippling and the resulting random strain coupling to the massless Dirac particles: random vector Δ_A + scalar Δ_φ potentials

Combined effect of interactions and disorder: Infra-red stable line of fixed points

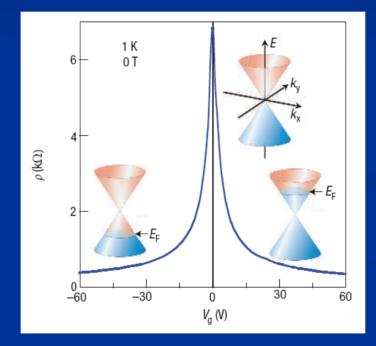
Minimal conductivity as a critical amplitude: ω-dependence from the flow towards the fixed line





Minimal Conductivity: Experimental status

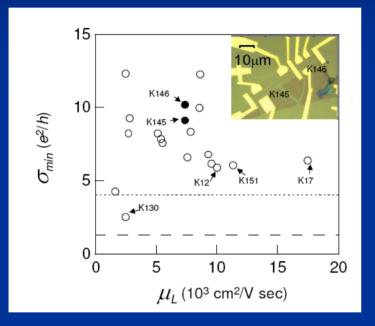
$r \sim h/e^2$ What sets the proportionality constant?



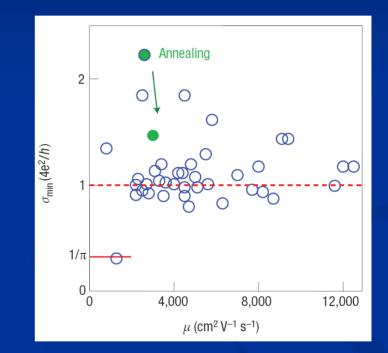
From: Geim and Novoselov Nature Materials 2007

Minimum conductivity: Experimental status

Collision dominated regime $\omega << T$ (d.c. conductivity)



Y.-W. Tan et.al. PRL 2007

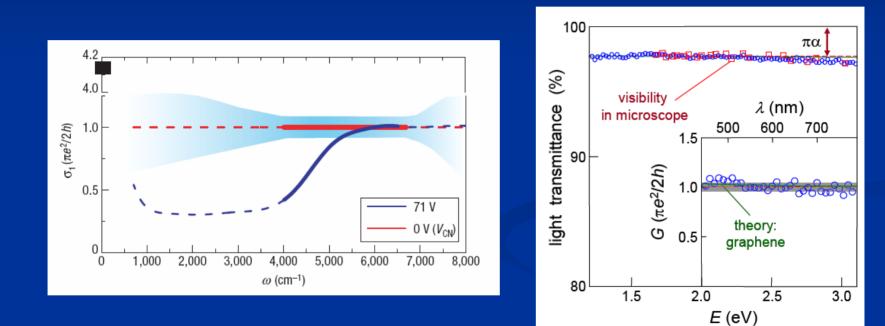


Geim and Novoselov Nature Materials 2007

 $\sigma_{min}(\omega < Hz, T \sim 10 - 100K) = (non - universal\#) \times \frac{e}{d}$

Minimum conductivity: Experimental status

"collisionless" regime $\omega >> T$ (a.c. conductivity)

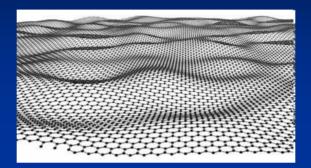


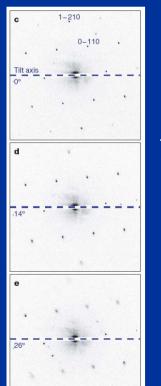
Z. Q. Li et.al. Nature Physics 2008

R. R. Nair et.al. Science 2008 <u>*likely slightly away from neutrality</u>

 e^2 $\frac{\pi}{2}$ $\sigma_{min}(\omega \sim eV, T \sim 10 - 100K) \approx$

Statement of the problem



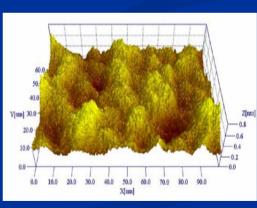


Electron diffraction from a <u>suspended</u> graphene monolayer under different incidence angles.

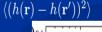
J. Meyer et. al.

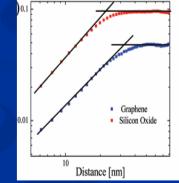
Vol 446 |1 March 2007 | doi:10.1038/nature05545

Ripples are ~0.5nm in height w/ typical size ~5nm laterally.



STM image of a single layer graphene <u>on a silicon oxide</u>: Stolyarova et al., PNAS, 104, 9209 (2007).

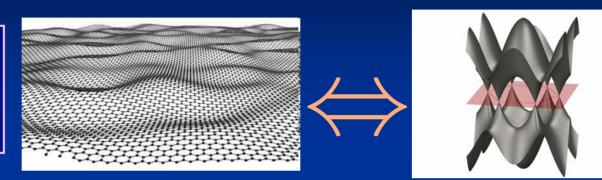


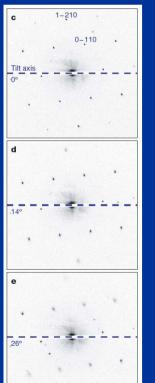


Ishigami et al., Nano Lett., 7, 1643 (2007).

Statement of the problem

What is the combined effect of the rippling and the Coulomb interactions on the Dirac fermions?



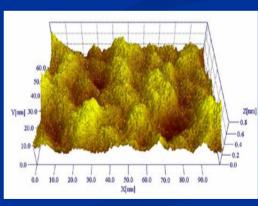


Electron diffraction from a <u>suspended</u> graphene monolayer under different incidence angles.

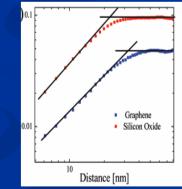
J. Meyer et. al.

Vol 446 |1 March 2007 | doi:10.1038/nature05545

Ripples are ~0.5nm in height w/ typical size ~5nm laterally.



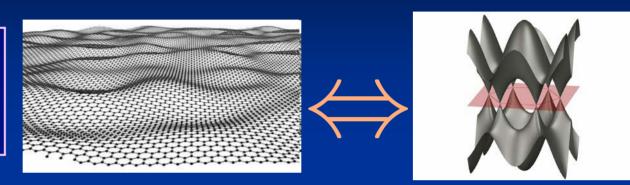
STM image of a single layer graphene <u>on a silicon oxide</u>: Stolyarova et al., PNAS, 104, 9209 (2007).



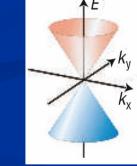
Ishigami et al., Nano Lett., 7, 1643 (2007).

Formulation of the problem

What is the combined effect of the rippling and the Coulomb interactions on the Dirac fermions?



Rippling introduces strain u_{ij} which couples to the Dirac *Femions through scalar and vector potentials*



$$\mathcal{H}_{0} = \sum_{j=1} \int d^{2}\mathbf{r} \left[\psi_{j}^{\dagger}(\mathbf{r}) \boldsymbol{v_{F}} \mathbf{p} \cdot \sigma \psi_{j}(\mathbf{r}) \right].$$

$$\mathcal{H}_{disorder} = \sum_{j=1}^{N} \int d^{2}\mathbf{r} \left[\psi_{j}^{\dagger}(\mathbf{r}) \left(\phi(\mathbf{r}) + (-1)^{j} \boldsymbol{v_{F}} \mathbf{a}(\mathbf{r}) \cdot \sigma \right) \psi_{j}(\mathbf{r}) \right].$$

$$\mathcal{H}_{disorder} = \sum_{j=1}^{N} \int d^{2}\mathbf{r} \left[\psi_{j}^{\dagger}(\mathbf{r}) \left(\phi(\mathbf{r}) + (-1)^{j} \boldsymbol{v_{F}} \mathbf{a}(\mathbf{r}) \cdot \sigma \right) \psi_{j}(\mathbf{r}) \right].$$

H. Suzura, T. Ando al., PRB (2002), Mariani, von Oppen PRL (2008), Guinea et.al. PRB (2008)

Formulation of the problem

Strain + Coulomb interaction effects:

$$\begin{aligned} \mathcal{H}_{0} &= \sum_{j=1}^{N} \int d^{2}\mathbf{r} \left[\psi_{j}^{\dagger}(\mathbf{r}) \boldsymbol{v_{F}} \mathbf{p} \cdot \sigma \psi_{j}(\mathbf{r}) \right]. \\ \mathcal{H}_{disorder} &= \sum_{j=1}^{N} \int d^{2}\mathbf{r} \left[\psi_{j}^{\dagger}(\mathbf{r}) \left(\phi(\mathbf{r}) + \boldsymbol{v_{F}} \mathbf{a}(\mathbf{r}) \cdot \sigma \right) \psi_{j}(\mathbf{r}) \right]. \end{aligned}$$
$$\hat{V}_{Coulomb} &= \frac{1}{2} \int d^{2}\mathbf{r} d^{2}\mathbf{r}' \left[\delta \hat{n}(\mathbf{r}) \frac{\boldsymbol{e}^{2}}{\boldsymbol{\epsilon}} \frac{1}{|\mathbf{r} - \mathbf{r}'|} \delta \hat{n}(\mathbf{r}') \right]. \end{aligned}$$

$$egin{aligned} &\langle \phi(\mathbf{k})
angle = 0; &\langle \phi_{\mu}(\mathbf{k}) \phi(\mathbf{k}')
angle = \Delta_{\phi} \delta_{\mu
u} (2\pi)^2 \delta(\mathbf{k} - \mathbf{k}') \ &\langle a_{\mu}(\mathbf{k})
angle = 0; &\langle a_{\mu}(\mathbf{k}) a_{
u}(\mathbf{k}')
angle = \Delta_A \delta_{\mu
u} (2\pi)^2 \delta(\mathbf{k} - \mathbf{k}') \end{aligned}$$

OV arXiv.0810.3697

Formulation of the problem

₹E

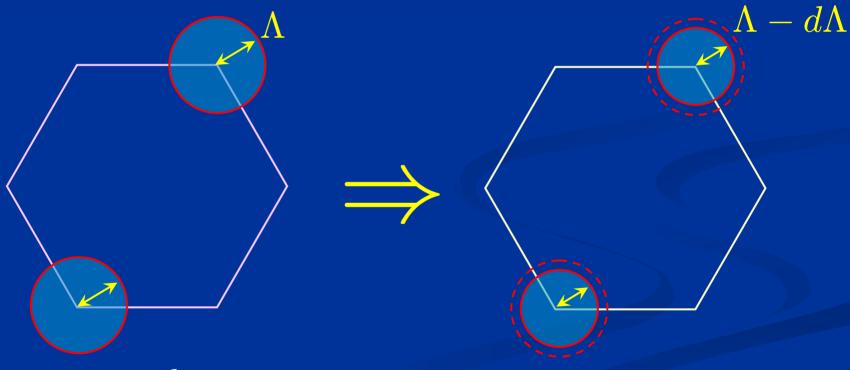
Replica field theory: $\psi \rightarrow \psi^i; i = 1, 2..., n$

 ϵv_F

$$\begin{split} \langle Z^n \rangle_{dis} &= \int D\psi^{\dagger}\psi e^{-(S_0 + S_{\phi} + S_A + S_{int})} \\ S_0 &= \int_0^{\beta} d\tau \int d^2 r \psi^{\dagger} (\partial_{\tau} + v_F \sigma \cdot \mathbf{p}) \\ S_{\phi} &= -\frac{1}{2} v_F^2 \Delta_{\phi} \int_0^{\beta} d\tau d\tau' \int d^2 \mathbf{r} \psi^{i\dagger} \psi^i(r, \tau) \psi^{j\dagger} \psi^j(r, \tau') \\ S_A &= -\frac{1}{2} v_F^2 \Delta_A \int_0^{\beta} d\tau d\tau' \int d^2 \mathbf{r} \psi^{i\dagger} \sigma^a \psi^i(r, \tau) \psi^{j\dagger} \sigma^a \psi^j(r, \tau') \\ S_{int} &= \frac{1}{2} \int_0^{\beta} d\tau \int d^2 \mathbf{r} d^2 \mathbf{r}' \psi^{i\dagger} \psi^i(r, \tau) V(|r - r'|) \psi^{i\dagger} \psi^i(r', \tau') \\ \alpha &= \frac{e^2}{2} \end{split}$$

Renormalization group approach

The degrees of freedom of interest reside near the K and K' points in the reciprocal space.

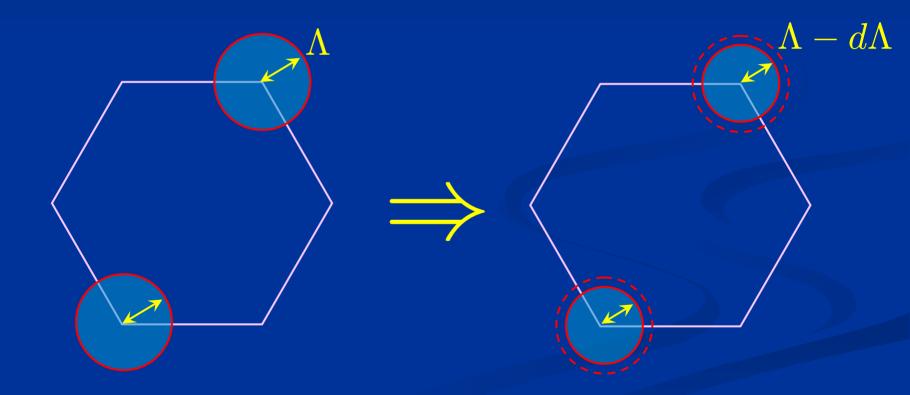


 $rac{d}{d\Lambda}\langle {\cal O}
angle = 0 \Rightarrow$

Observables must be independent of the arbitrary cutoff Λ upon proper rescaling and adjustment of the coupling constants

Renormalization group approach

Analyze the fate of the "coupling constants": $e^2, v_F, \Delta_A, \overline{\Delta_\phi}$



OV arXiv.0810.3697

Minimal conductivity: RG perspective

$\sigma_{dc}\left(\{g_i(\Lambda)\}\right) = \sigma_{dc}\left(\{g_i(\Lambda')\}\right).$

• the conductivity calculated from the original couplings in the theory, $\sigma(\{g_i(\Lambda)\})$, with the cutoff set at Λ or from the new couplings $\sigma(\{g(\Lambda')\})$ with the cutoff set at Λ' , is the same. Therefore, *the conductivity is a function of the universal fixed point couplings only and is itself universal.*

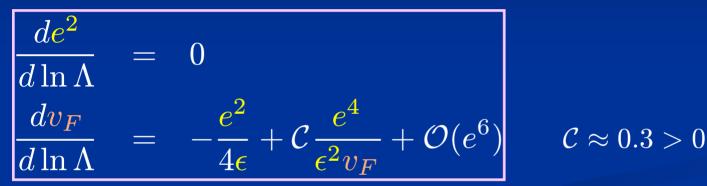
• the universality of conductivity here means dependence on the *fixed point couplings only*. If instead of a single point there is actually a line of such fixed points, then the conductivity depends on the precise position along such line, which is typically experimentally uncontrollable, giving rise to an appearance of non-universality.

• the electrical conductivity measurement at the neutrality point is therefore a direct probe of the highly non-trivial physics emerging at the end of the renormalization group trajectory.

See e.g M.-C. Cha et. al. PRB 1991, Sondhi et.al. RMP 1997

Special cases I

Coulomb interaction only



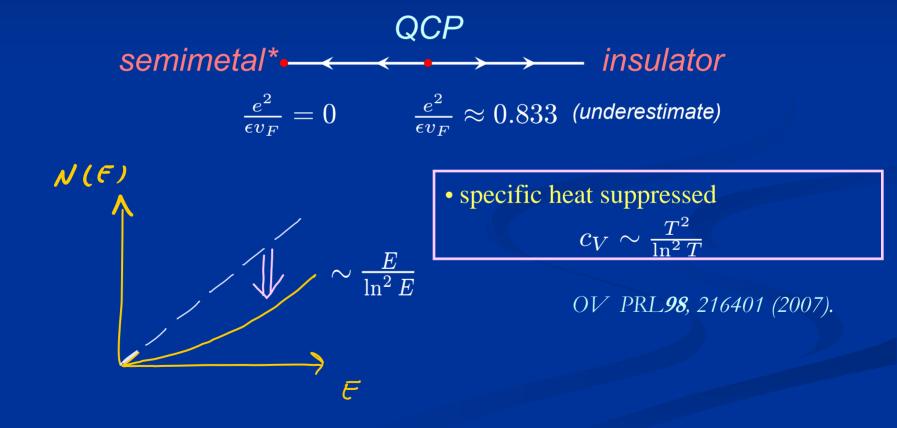
ky kx

OV and M.J. Case, PRB 77, 033410 (2008)

$$\begin{array}{ccc} & \mathsf{QCP} \\ \textbf{semimetal}^{*} & \longleftarrow & \begin{array}{c} & \mathsf{insulator} \\ \\ \frac{e^2}{\epsilon v_F} = 0 & \frac{e^2}{\epsilon v_F} \approx 0.833 \ (underestimate) \end{array}$$

*Monte Carlo gives : 1.11 ± 0.06 Drut and Lahde PRL **102**, 026802 (2009)

Effects of Coulomb interactions on (clean) Dirac fermions



Electrical transport at the clean Dirac point: Coulomb interactions

At T = 0 the free system is metallic, with conductivity $\sigma_0(\omega) = N \frac{\pi}{8} \frac{e^2}{h}$ (note, ω independent due to $N(\omega) \sim \omega$) We might expect, that Coulomb interactions would drive it

insulating since the density of states is suppressed. Not so! There is a cancellation between density of states suppression and vertex enhancement. With Coulomb interactions:

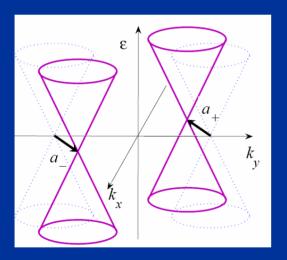
$$\sigma(\omega) = N \frac{\pi}{8} \frac{e^2}{h} \left(1 + c \frac{e^2}{\hbar\epsilon \left(v_F + \frac{e^2}{\hbar\epsilon} \ln \frac{\Lambda}{\omega} \right)} \right).$$
$$c = (25/3 - 2\pi) \approx 2.05$$

Interactions enhance a.c. conductivity!

I.F. Herbut, V. Juricic, OV, PRL 100, 046403 (2008)

Rippling induced strains and Dirac Fermions

The smooth corrugations tend to introduce spatial modulation of the hopping amplitudes. At long wavelengths, this results in local shifts of the Dirac points.



$$egin{aligned} \mathcal{H}_{Dirac} = \left(egin{aligned} v_F \sigma \cdot (\mathbf{p} - \mathbf{a}(\mathbf{r})) & 0 \ 0 & v_F \sigma \cdot (\mathbf{p} + \mathbf{a}(\mathbf{r})) \end{array}
ight). \end{aligned}$$

- For any given realization of the "vector" potential, the overall time reversal symmetry is preserved.
- Still, in the vicinity of the nodal points, the varying hopping appears to induce varying magnetic field **H**. This field changes direction for the two nodes.

Iordanskii and Koshelev, JETP Lett. 41, 574 (1985). Kane and Mele PRL (1997), Morozov et.al. PRL (2006), Morpurgo and Guinea PRL (2006), Abanin et. al. PRL (2007) ...

Free Dirac Fermions and random vector potential

$$\mathcal{H}_{0} = \sum_{j=1}^{\frac{N}{2}} \int d^{2}\mathbf{r} \left[\psi_{j\pm}^{\dagger}(\mathbf{r}) v_{F} \left(\mathbf{p} \pm \mathbf{a}(\mathbf{r}) \right) \cdot \sigma \psi_{j\pm}(\mathbf{r}) \right] \qquad \frac{dv_{F}}{d\ln\kappa} = v_{F}$$
$$\langle a_{\mu}(\mathbf{k}) \rangle = 0; \quad \langle a_{\mu}(\mathbf{k}) a_{\nu}(\mathbf{k}') \rangle = \Delta_{A} \delta_{\mu\nu} (2\pi)^{2} \delta(\mathbf{k} - \mathbf{k}') \qquad \frac{d\Delta_{A}}{d\ln\kappa} = 0$$

- Random vector potential is an exactly marginal perturbation; can write down an exact zero energy eigenstate.
- Disorder dependence of the "dynamical critical exponent" z are known exactly

$$\omega \sim k^z \Rightarrow N(E) \sim E^{-1 + \frac{2}{z}}$$
$$z = 1 + \frac{\Delta_A}{\pi} \text{ for } \Delta_A \le 2\pi$$
$$z = 4\sqrt{\frac{\Delta_A}{2\pi}} - 1 \text{ for } \Delta_A > 2\pi$$

Ludwig et.al. PRB 1994; Motrunich et.al. PRB 2002

$$\mathcal{N}(\mathcal{E})$$

 $\sim E^{\frac{\pi-\Delta_A}{\pi+\Delta_A}}$

Free Dirac Fermions and random vector potential: Numerical Check

$$\mathcal{H}_{lattice} = \sum_{\langle rr' \rangle} t_{\mathbf{r},\mathbf{r}'} \left[c^{\dagger}_{\mathbf{r}} c_{\mathbf{r}'} + h.c. \right]; \quad t_{\mathbf{r},\mathbf{r}'} = -te^{-\phi_{\mathbf{r}} + \phi_{\mathbf{r}'}}$$

$$\mathcal{P}[\{\phi_{\mathbf{r}}\}] \sim e^{-\frac{1}{2\Delta_A} \sum_{\langle \mathbf{rr}' \rangle} (\phi_{\mathbf{r}} - \phi_{\mathbf{r}'})^2}$$

- We take periodic boundary conditions
- Then generate the random configurations of φ using Metropolis algorithm
- Calculate the density of states and average over configurations
- *Expect:*

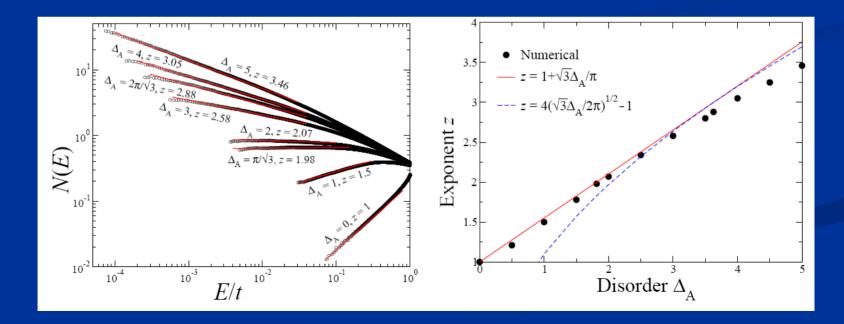
$$N(E) \sim E^{-1+\frac{2}{z}}; \quad z = 1 + \sqrt{3} \frac{\Delta_A}{\pi}$$

Motrunich et.al. PRB 2002

Free Dirac Fermions and random vector potential: Numerical Check

$$\mathcal{H}_{lattice} = \sum_{\langle rr' \rangle} t_{\mathbf{r},\mathbf{r}'} \left[c^{\dagger}_{\mathbf{r}} c_{\mathbf{r}'} + h.c. \right]; \quad t_{\mathbf{r},\mathbf{r}'} = -te^{-\phi_{\mathbf{r}}+\phi_{\mathbf{r}'}}$$

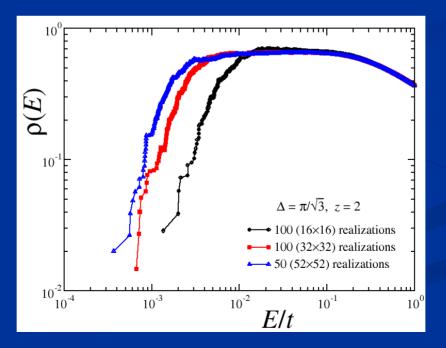
 $\mathcal{P}[\{\phi_{\mathbf{r}}\}] \sim e^{-\frac{1}{2\Delta_A} \sum_{\langle \mathbf{rr}' \rangle} (\phi_{\mathbf{r}} - \phi_{\mathbf{r}'})^2}$



Free Dirac Fermions and random vector potential: Numerical Check

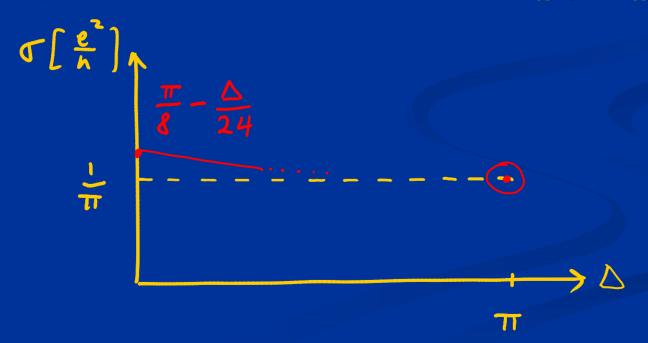
$$\mathcal{H}_{lattice} = \sum_{\langle rr' \rangle} t_{\mathbf{r},\mathbf{r}'} \left[c^{\dagger}_{\mathbf{r}} c_{\mathbf{r}'} + h.c. \right]; \quad t_{\mathbf{r},\mathbf{r}'} = -te^{-\phi_{\mathbf{r}}+\phi_{\mathbf{r}'}}$$

$$\mathcal{P}[\{\phi_{\mathbf{r}}\}] \sim e^{-\frac{1}{2\Delta_A} \sum_{\langle \mathbf{rr'} \rangle} (\phi_{\mathbf{r}} - \phi_{\mathbf{r'}})^2}$$



Free Dirac Fermions and random vector potential

- *Conductivity along the non-interacting fixed line is non-universal*
- Ludwig et. al. (1994) hypothesis: for z=2, $\sigma=1/\pi(e^2/h)$
- In combination with the perturbative result it is reasonable to conjecture that the conductivity is monotonic in Δ_A up to $\Delta_A = \pi$.



Special cases II

Coulomb interactions and random vector potential only

$$\frac{dv_F}{d\ln\Lambda} = v_F \frac{\Delta_A}{\pi} - \frac{e^2}{4\epsilon} + \mathcal{A}v_F \Delta_A^2 + \mathcal{B}\Delta_A \frac{e^2}{\epsilon} + \mathcal{C}\frac{e^4}{\epsilon^2 v_F} + \mathcal{O}(e^6)$$

$$\frac{de^2}{d\ln\Lambda} = 0$$

$$\frac{d\Delta_A}{d\ln\Lambda} = 0 \quad \longleftarrow \quad marginal(!)$$

$$\mathcal{A} = 0,$$

$$\mathcal{B} = \frac{1}{8\pi},$$

$$\mathcal{C} = \frac{N}{12} - \frac{103}{96} + \frac{3}{2}\ln 2.$$

 \overline{h} 2

 π

I.F. Herbut, V. Juricic, OV, PRL **100**, 046403 (2008). *OV and M.J. Case, PRB* **77**, 033410 (2008). *Stauber et.al. PRB* (2005); *Foster and Aleiner PRB* (2008)

Combined effect of interactions and disorder: infra-red (locally) stable line of fixed points

Competition between logarithmic depletion of density of states and logarithmic increase, balances along a fixed line

$rac{dv_F}{d\ln\kappa} = v_F rac{\Delta_A}{\pi} - rac{e^2}{4\epsilon}$ -	$+ \mathcal{A}v_F \Delta_A^2 + \mathcal{B}\Delta_A \frac{e^2}{\epsilon} + \mathcal{C}\frac{e^4}{\epsilon^2 v_F} + \mathcal{O}(e^6)$
$\frac{de^2}{d\ln\kappa} = 0$	$\mathcal{N}(\mathcal{E})$
$rac{d\Delta_A}{d\ln\kappa} = 0$	
4 0	
$egin{aligned} \mathcal{A} &= 0, \ \mathcal{B} &= rac{1}{8\pi}, \end{aligned}$	
$C = \frac{N}{12} - \frac{103}{96} + \frac{3}{2} \ln 2.$	

I.F. Herbut, V. Juricic, OV, PRL **100**, 046403 (2008). *OV and M.J. Case, PRB* **77**, 033410 (2008).

The general case

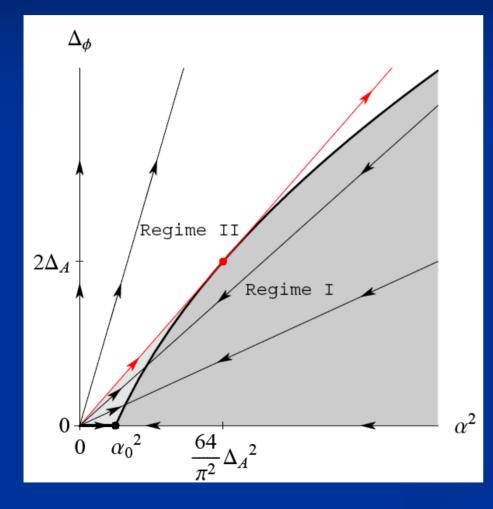
$$\beta_{\alpha} = \frac{\partial \alpha}{\partial \ln \Lambda} = -\alpha \left(\frac{\Delta_{A}}{\pi} + \frac{\Delta_{\phi}}{2\pi} - \frac{\alpha}{4} \right)$$
$$\beta_{\Delta_{\phi}} = \frac{\partial \Delta_{A}}{\partial \ln \Lambda} = 0$$
$$\beta_{\Delta_{\phi}} = \frac{\partial \Delta_{\phi}}{\partial \ln \Lambda} = -2\Delta_{\phi} \left(\frac{\Delta_{A}}{\pi} + \frac{\Delta_{\phi}}{2\pi} - \frac{\alpha}{4} \right).$$

$$\frac{d}{d\ln\Lambda} \begin{bmatrix} \Delta_A \end{bmatrix} = 0$$
$$\frac{d}{d\ln\Lambda} \begin{bmatrix} \Delta_{\phi} \\ \alpha^2 \end{bmatrix} = 0$$

2 marginal parameters!

OV arXiv.0810.3697 Foster and Aleiner PRB (2008)

The general case



Regime I: Flow to the perturbatively accessible IR stable fixed line at nonzero(!) Δ_{ϕ} , Δ_{A} , e^{2}/v_{F} .

The scalar disorder (puddles) -> effectively screened. Dirac point is a useful starting point

Regime II:

Runaway flows, no perturbative control. Thinking about the puddles is likely more useful.

OV arXiv.0810.3697

The general case: conductivity from RG

Since the conductivity does not develop an anomalous dimension:

$$\Rightarrow \left(\frac{\partial}{\partial \ln \Lambda} + \beta_{\Delta_{\phi}} \frac{\partial}{\partial \Delta_{\phi}} + \beta_{\Delta_{A}} \frac{\partial}{\partial \Delta_{A}} + \beta_{\alpha} \frac{\partial}{\partial \alpha}\right) \sigma \left(\omega, \Lambda, \Delta_{\phi}, \Delta_{A}, \alpha = \frac{e^{2}}{v_{F}}\right) = 0$$
$$\Rightarrow \sigma \left(\omega, \Lambda, \Delta_{\phi}[\Lambda], \Delta_{A}[\Lambda], \alpha[\Lambda]\right) = \sigma \left(\omega, \rho\Lambda, \Delta_{\phi}[\rho\Lambda], \Delta_{A}[\rho\Lambda], \alpha[\rho\Lambda]\right)$$

A pedestrian perturbation theory gives:

$$\sim \bigcirc \sim \sim \bigcirc \sim \sim \bigcirc \sim \sim \bigcirc \sim \sim \bigcirc \sim$$

$$\sigma\left(\omega,\Lambda,\Delta_{\phi},\Delta_{A},\alpha\right) = 4\frac{e^{2}}{h}\left(\frac{\pi}{8} - \frac{\Delta_{\phi}}{24} - \frac{\Delta_{A}}{24} + \alpha\frac{\pi}{16}\left(\frac{25}{6} - \pi\right)\right).$$

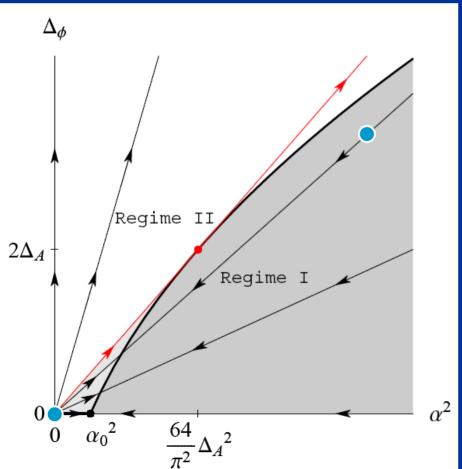
To make this result consistent with the scaling law

$$\sigma\left(\omega,\Lambda,\Delta_{\phi},\Delta_{A},\alpha\right) = 4\frac{e^{2}}{h}\left(\frac{\pi}{8} - \frac{1}{24}\frac{\Delta_{\phi}}{\alpha^{2}}\alpha^{2}(\omega/\Lambda) - \frac{\Delta_{A}}{24} + \alpha(\omega/\Lambda)\frac{\pi}{16}\left(\frac{25}{6} - \pi\right)\right).$$

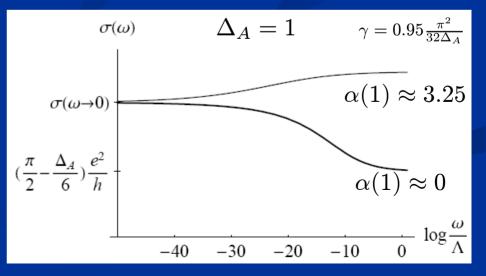
$$OV \ arXiv.0810.3697$$

RG calculation of conductivity

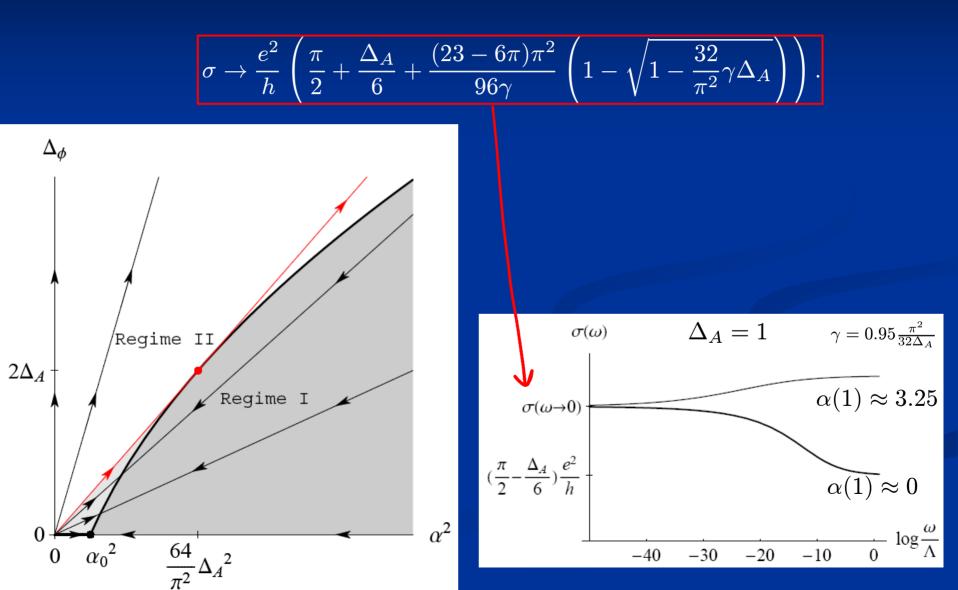
$$\sigma\left(\omega,\Lambda,\Delta_{\phi},\Delta_{A},\alpha\right) = 4\frac{e^{2}}{h}\left(\frac{\pi}{8} - \frac{1}{24}\left[\frac{\Delta_{\phi}}{\alpha^{2}}\right]\alpha^{2}\left(\omega/\Lambda\right) - \frac{\Delta_{A}}{24} + \alpha\left(\omega/\Lambda\right)\frac{\pi}{16}\left(\frac{25}{6} - \pi\right)\right).$$



$$\frac{d\alpha}{d\ln\rho} = -\alpha \left(\frac{\gamma}{2\pi}\alpha^2 - \frac{\alpha}{4} + \frac{\Delta_A}{\pi}\right).$$
$$\alpha(1) = \alpha$$



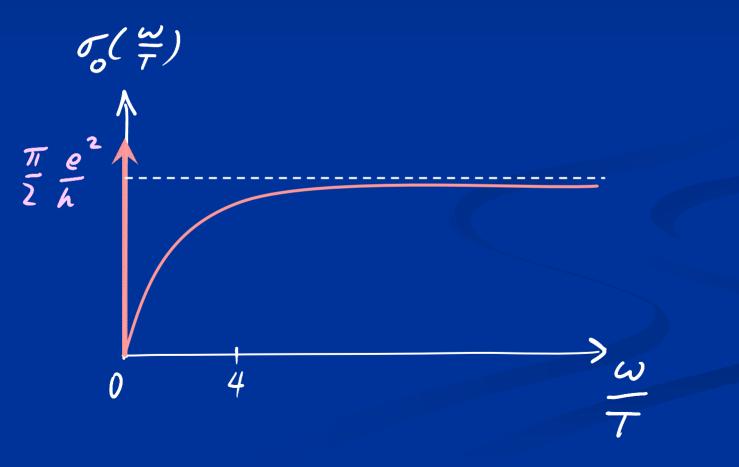
RG calculation of conductivity



Conductivity scaling function

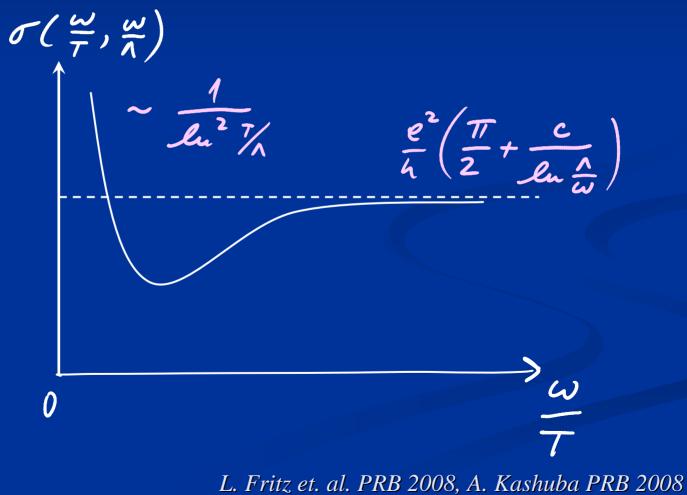
For non-interacting Dirac particles

$$\sigma_0(\omega,T) = \frac{e^2}{h} \left(\frac{\pi}{2} \tanh\left(\frac{\omega}{4T}\right) + 4\pi T \ln 2\delta(\omega)\right).$$



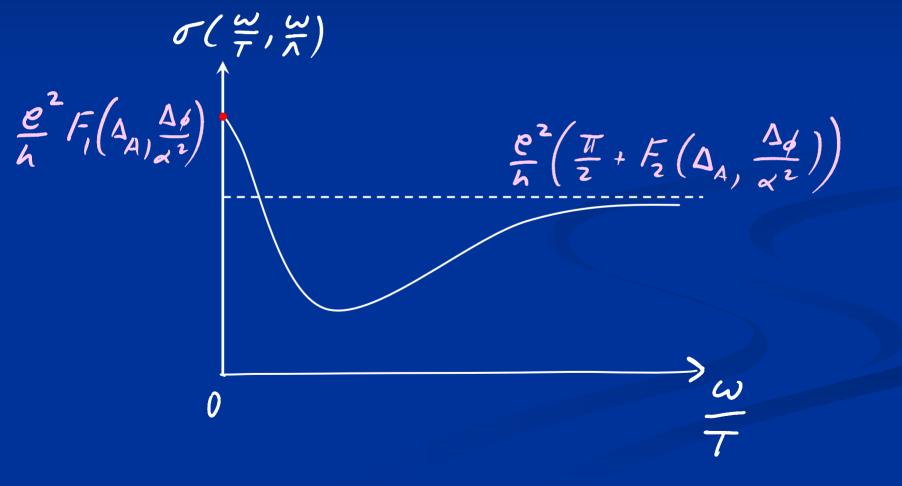
Conductivity scaling function

For (weakly) Coulomb-interacting clean Dirac particles



Conductivity scaling function

For (weakly) Coulomb-interacting Dirac particles with disorder



Conclusions

The combined effect of Coulomb interactions and rippling disorder can lead to a (locally) infra-red stable line of fixed points with linear density of states.

Minimal conductivity along such fixed line is non-universal, disorder and interaction dependent.

OV arXiv.0810.3697