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OutlineOutline

Dirac Fermions and marginal irrelevance of the 1/r Dirac Fermions and marginal irrelevance of the 1/r 
Coulomb interactionsCoulomb interactions

Rippling and the resulting random strain coupling to the Rippling and the resulting random strain coupling to the 
masslessmassless Dirac particles: Dirac particles: 

random vector random vector ΔΔAA + scalar + scalar ΔΔφφ potentialspotentials

Combined effect of interactions and disorder:Combined effect of interactions and disorder:
InfraInfra--red stable line of fixed pointsred stable line of fixed points

Minimal conductivity as a critical amplitude: Minimal conductivity as a critical amplitude: 
ωω--dependence from the flow towards the fixed linedependence from the flow towards the fixed line



⇒ vF ≈ 10
6m/s



Minimal Conductivity: Experimental statusMinimal Conductivity: Experimental status

From: Geim and Novoselov Nature Materials 2007

rr~ h/e~ h/e22 What sets the proportionality constant?What sets the proportionality constant?



Minimum conductivity: Experimental statusMinimum conductivity: Experimental status

Y.-W. Tan et.al. PRL 2007 Geim and Novoselov Nature Materials 2007

Collision dominated regime Collision dominated regime ωω<<T (<<T (d.cd.c. conductivity). conductivity)

σmin(ω < Hz, T ∼ 10− 100K) = (non− universal#)×
e2

h



Minimum conductivity: Experimental statusMinimum conductivity: Experimental status

R. R. Nair et.al. Science 2008
*likely slightly away from neutrality

““collisionlesscollisionless”” regime regime ωω>>T (>>T (a.ca.c. conductivity). conductivity)

Z. Q. Li et.al. Nature Physics 2008

σmin(ω ∼ eV, T ∼ 10− 100K) ≈
π

2
×
e2

h



Statement of the problemStatement of the problem

Electron diffraction from a 
suspended graphene 
monolayer under 
different incidence angles. 

J. Meyer et. al.

Ripples are ~0.5nm in height w/ 
typical size ~5nm laterally.

STM image of a single layer 
graphene on a silicon oxide: 
Stolyarova et al., PNAS, 
104, 9209 (2007).

h(h(r)− h(r0))2i

Ishigami et al., Nano
Lett., 7, 1643 (2007).



Statement of the problemStatement of the problem

Electron diffraction from a 
suspended graphene 
monolayer under 
different incidence angles. 

J. Meyer et. al.

What is the combined 
effect of the rippling and 
the Coulomb interactions 
on the Dirac fermions?

Ripples are ~0.5nm in height w/ 
typical size ~5nm laterally.

STM image of a single layer 
graphene on a silicon oxide: 
Stolyarova et al., PNAS, 
104, 9209 (2007).

h(h(r)− h(r0))2i

Ishigami et al., Nano
Lett., 7, 1643 (2007).

⇔



Formulation of the problemFormulation of the problem
What is the combined 
effect of the rippling and 
the Coulomb interactions 
on the Dirac fermions?

Rippling introduces strain Rippling introduces strain uuijij which couples to the Dirac which couples to the Dirac 
FemionsFemions through scalar and vector potentialsthrough scalar and vector potentials

H. Suzura, T. Ando al., PRB (2002), Mariani, von Oppen PRL (2008), Guinea et.al. PRB (2008) 

φ = g(uxx + uyy), ax = b(uyy − uxx), ay = 2buxy , and g ≈ 20− 30eV , b ≈ A−1

H0 =
NX
j=1

Z
d2r

h
ψ†j (r)vFp · σψj(r)

i
.

Hdisorder =
NX
j=1

Z
d2r

h
ψ†j (r)

¡
φ(r) + (−1)jvFa(r) · σ

¢
ψj(r)

i
.

⇔



Formulation of the problemFormulation of the problem
Strain + Coulomb interaction effects:Strain + Coulomb interaction effects:

V̂Coulomb =
1

2

Z
d2rd2r0

·
δn̂(r)

e2

²

1

|r− r0|
δn̂(r0)

¸
.

hφ(k)i = 0; hφμ(k)φ(k
0)i = ∆φδμν(2π)

2δ(k− k0)

haμ(k)i = 0; haμ(k)aν(k
0)i = ∆Aδμν(2π)

2δ(k− k0)
OV  arXiv.0810.3697

H0 =
NX
j=1

Z
d2r

h
ψ†j (r)vFp · σψj(r)

i
.

Hdisorder =
NX
j=1

Z
d2r

h
ψ†j (r) (φ(r) + vFa(r) · σ)ψj(r)

i
.



Formulation of the problemFormulation of the problem
Replica field theory:Replica field theory:

hZnidis =

Z
Dψ†ψe−(S0+Sφ+SA+Sint)

S0 =

Z β

0

dτ

Z
d2rψ†(∂τ + vFσ · p)

Sφ = −
1

2
v2F∆φ

Z β

0

dτdτ 0
Z
d2rψi

†
ψi(r, τ)ψj

†
ψj(r, τ 0)

SA = −
1

2
v2F∆A

Z β

0

dτdτ 0
Z
d2rψi

†
σaψi(r, τ)ψj

†
σaψj(r, τ 0)

Sint =
1

2

Z β

0

dτ

Z
d2rd2r0ψi

†
ψi(r, τ)V (|r − r0|)ψi

†
ψi(r0, τ 0)

ψ → ψi; i = 1, 2 . . . , n

α ≡ e2

²vF OV  arXiv.0810.3697



Λ Λ− dΛ

The degrees of freedom of interest reside near the K and KThe degrees of freedom of interest reside near the K and K’’ points points 
in the reciprocal space. in the reciprocal space. 

⇒

Observables must be independent  of the Observables must be independent  of the 
arbitrary cutoffarbitrary cutoffΛΛ upon proper rescaling and  upon proper rescaling and  
adjustment of the coupling constantsadjustment of the coupling constants

d

dΛ
hOi = 0⇒

Renormalization group approachRenormalization group approach



Λ Λ− dΛ

⇒

Renormalization group approachRenormalization group approach

Analyze the fate of the Analyze the fate of the ““coupling constantscoupling constants””:: e2, vF ,∆A,∆φ

OV  arXiv.0810.3697



Minimal conductivity: RG perspectiveMinimal conductivity: RG perspective

• the conductivity calculated from the original couplings in the theory, σ({gi(Λ)}), 
with the cutoff set at Λ or from the new couplings σ({g(Λ’)}) with the cutoff set 
at Λ’, is the same. Therefore, the conductivity is a function of  the 
universal fixed point couplings only and is itself universal. 

• the universality of conductivity here means dependence on the fixed point 
couplings only. If instead of a single point there is actually a line of such fixed 
points, then the conductivity depends on the precise position along such line, 
which is typically experimentally uncontrollable, giving rise to an appearance of 
non-universality. 

•the electrical conductivity measurement at the neutrality point is therefore a 
direct probe of the highly non-trivial physics emerging at the end of the 
renormalization group trajectory.

σdc ({gi(Λ)}) = σdc ({gi(Λ
0)}) .

See e.g M.-C. Cha et. al. PRB 1991, Sondhi et.al. RMP 1997



Special cases ISpecial cases I
Coulomb interaction onlyCoulomb interaction only

C ≈ 0.3 > 0

semimetal* insulator
QCP

(underestimate)e2

²vF
= 0 e2

²vF
≈ 0.833

OV and M.J. Case, PRB 77, 033410 (2008)

de2

*Monte Carlo gives : 1.11± 0.06
Drut and Lahde PRL 102, 026802 (2009)

d lnΛ
= 0

dvF
d lnΛ

= −
e2

4²
+ C

e4

²2vF
+O(e6)



Effects of Coulomb interactions on Effects of Coulomb interactions on 
(clean) Dirac fermions(clean) Dirac fermions

semimetal* insulator
QCP

(underestimate)e2

²vF
= 0 e2

²vF
≈ 0.833

∼ E
ln2 E

• specific heat suppressed
cV ∼

T 2

ln2 T

OV  PRL98, 216401 (2007).



Electrical transport at the clean Dirac point: Electrical transport at the clean Dirac point: 
Coulomb interactionsCoulomb interactions

Interactions enhance a.c. conductivity!

At T = 0 the free system is metallic, with conductivity

σ0(ω) = N
π
8
e2

h (note, ω independent due to N(ω) ∼ ω)
We might expect, that Coulomb interactions would drive it

insulating since the density of states is suppressed. Not so!
There is a cancellation between density of states suppression
and vertex enhancement. With Coulomb interactions:

c = (25/3− 2π) ≈ 2.05

I.F. Herbut, V. Juricic, OV, PRL 100, 046403 (2008)

σ(ω) = N
π

8

e2

h

Ã
1 + c

e2

h̄²
¡
vF +

e2

h̄² ln
Λ
ω

¢! .



Rippling induced strains and Dirac FermionsRippling induced strains and Dirac Fermions

IordanskiiIordanskii and and KoshelevKoshelev, JETP , JETP LettLett. 41, 574 (1985).. 41, 574 (1985).
Kane and Kane and MeleMele PRL (1997), PRL (1997), MorozovMorozov et.alet.al. PRL (2006), . PRL (2006), 
MorpurgoMorpurgo and Guinea PRL (2006),  and Guinea PRL (2006),  AbaninAbanin et. al. PRL (2007) et. al. PRL (2007) ……

The smooth corrugations tend to introduce spatial modulation of The smooth corrugations tend to introduce spatial modulation of the hopping the hopping 
amplitudes.  At long wavelengths, this results in local shifts oamplitudes.  At long wavelengths, this results in local shifts of the Dirac points.f the Dirac points.

For any given realization of the For any given realization of the ““vectorvector””
potential, the overall time reversal potential, the overall time reversal 
symmetry is preserved.symmetry is preserved.
Still, in the vicinity of the nodal points, the  Still, in the vicinity of the nodal points, the  
varying hopping appears to induce varying hopping appears to induce 
varying magnetic field varying magnetic field HH. This field . This field 
changes direction for the two nodes.changes direction for the two nodes.

HDirac =

µ
vFσ · (p− a(r)) 0

0 vFσ · (p+ a(r))

¶
.



Free Dirac Fermions and random vector potentialFree Dirac Fermions and random vector potential

Random vector potential is an exactly Random vector potential is an exactly 
marginal perturbation; marginal perturbation; cancan write down write down 
an exact zero energy an exact zero energy eigenstateeigenstate. . 
Disorder dependence of the Disorder dependence of the ““dynamical dynamical 
critical exponentcritical exponent”” z are known exactlyz are known exactly

Ludwig et.al. PRB 1994; Motrunich et.al. PRB 2002

H0 =

N
2X
j=1

Z
d2r

h
ψ†j±(r)vF (p± a(r)) · σψj±(r)

i
haμ(k)i = 0; haμ(k)aν(k

0)i = ∆Aδμν(2π)
2δ(k− k0)

dvF
d lnκ

= vF
∆A
π

d∆A
d lnκ

= 0

ω ∼ kz ⇒ N(E) ∼ E−1+
2
z

z = 1 + ∆A

π
for ∆A ≤ 2π

z = 4
q
∆A

2π − 1 for ∆A > 2π

∼ E
π−∆A
π+∆A



Free Dirac Fermions and random vector potential: Free Dirac Fermions and random vector potential: 
Numerical CheckNumerical Check

tr,r0 = −te
−φr+φr0Hlattice =

X
hrr0i

tr,r0
£
c†rcr0 + h.c.

¤
;

P [{φr}] ∼ e
− 1
2∆A

P
hrr0i(φr−φr0 )

2

We take periodic boundary conditionsWe take periodic boundary conditions
Then generate the random configurations of Then generate the random configurations of φφ using Metropolis  using Metropolis  
algorithmalgorithm
Calculate the density of states and average over configurationsCalculate the density of states and average over configurations
Expect:Expect:

Motrunich et.al. PRB 2002

N(E) ∼ E−1+
2
z ; z = 1 +

√
3
∆A
π



Free Dirac Fermions and random vector potential: Free Dirac Fermions and random vector potential: 
Numerical CheckNumerical Check

tr,r0 = −te
−φr+φr0Hlattice =

X
hrr0i

tr,r0
£
c†rcr0 + h.c.

¤
;

P [{φr}] ∼ e
− 1
2∆A

P
hrr0i(φr−φr0 )

2



Free Dirac Fermions and random vector potential: Free Dirac Fermions and random vector potential: 
Numerical CheckNumerical Check

tr,r0 = −te
−φr+φr0Hlattice =

X
hrr0i

tr,r0
£
c†rcr0 + h.c.

¤
;

P [{φr}] ∼ e
− 1
2∆A

P
hrr0i(φr−φr0 )

2



Free Dirac Fermions and random vector potentialFree Dirac Fermions and random vector potential

Conductivity along the nonConductivity along the non--interacting fixed line is noninteracting fixed line is non--universaluniversal
Ludwig et. al. (1994) hypothesis: for z=2, Ludwig et. al. (1994) hypothesis: for z=2, σσ=1/=1/ππ (e(e22/h) /h) 
In combination with the In combination with the perturbativeperturbative result it is reasonable to result it is reasonable to 
conjecture that the conductivity is monotonic in conjecture that the conductivity is monotonic in ΔΔΑΑ up to up to ΔΔΑΑ=π.=π.



Special cases IISpecial cases II
Coulomb interactions and random vector potential onlyCoulomb interactions and random vector potential only

I.F. Herbut, V. Juricic, OV, PRL 100, 046403 (2008).
OV and M.J. Case, PRB 77, 033410 (2008).
Stauber et.al. PRB (2005); Foster and Aleiner PRB (2008)

A = 0,
B = 1

8π
,

C = N
12 −

103
96 +

3
2 ln 2.

dvF
d lnΛ

= vF
∆A
π
−
e2

4²
+AvF∆

2
A + B∆A

e2

²
+ C

e4

²2vF
+O(e6)

de2

d lnΛ
= 0

d∆A
d lnΛ

= 0

aCa*
e2
ÅÅÅÅÅÅÅÅ
vF

0

DA
*

DA

marginal(!)

σ(ω) =
e2

h

π

2

µ
1 +

µ
8

π
− 2

¶
∆A

¶
.

⇐



Combined effect of interactions and disorder: Combined effect of interactions and disorder: 
infrainfra--red (locally) stable line of fixed pointsred (locally) stable line of fixed points

Competition between logarithmic depletion of density of states aCompetition between logarithmic depletion of density of states and logarithmicnd logarithmic
increase, balances along a fixed lineincrease, balances along a fixed line

I.F. Herbut, V. Juricic, OV, PRL 100, 046403 (2008).
OV and M.J. Case, PRB 77, 033410 (2008).

A = 0,
B = 1

8π
,

C = N
12 −

103
96 +

3
2 ln 2.

∼ E

dvF
d lnκ

= vF
∆A
π
−
e2

4²
+AvF∆

2
A + B∆A

e2

²
+ C

e4

²2vF
+O(e6)

de2

d lnκ
= 0

d∆A
d lnκ

= 0



OV  arXiv.0810.3697
Foster and Aleiner PRB (2008)

The general caseThe general case

2 marginal parameters!

βα =
∂α

∂ lnΛ
= −α

µ
∆A
π
+
∆φ

2π
−

α

4

¶
β∆φ

=
∂∆A
∂ lnΛ

= 0

β∆φ
=

∂∆φ

∂ lnΛ
= −2∆φ

µ
∆A
π
+
∆φ

2π
−

α

4

¶
.

d

d lnΛ
[∆A] = 0

d

d lnΛ

·
∆φ

α2

¸
= 0



Regime I:Regime I:
Flow to the Flow to the perturbativelyperturbatively
accessible IR stable fixed line at accessible IR stable fixed line at 
nonzero(!) nonzero(!) ΔΔφφ , , ΔΔAA , e, e22/v/vF.F.

The scalar disorder (puddles) The scalar disorder (puddles) --> > 
effectively screened. Dirac point is a effectively screened. Dirac point is a 
useful starting pointuseful starting point

Regime II:Regime II:
Runaway flows, no Runaway flows, no perturbativeperturbative
control. Thinking about the puddles control. Thinking about the puddles 
is likely more useful.is likely more useful.

The general caseThe general case

OV  arXiv.0810.3697



The general case: conductivity from RGThe general case: conductivity from RG

OV  arXiv.0810.3697

Since the conductivity does not develop an anomalous dimension:

⇒

µ
∂

∂ lnΛ
+ β∆φ

∂

∂∆φ
+ β∆A

∂

∂∆A
+ βα

∂

∂α

¶
σ

µ
ω,Λ,∆φ,∆A,α =

e2

vF

¶
= 0

⇒ σ (ω,Λ,∆φ[Λ],∆A[Λ],α[Λ]) = σ (ω, ρΛ,∆φ[ρΛ],∆A[ρΛ],α[ρΛ])

A pedestrian perturbation theory gives:

σ (ω,Λ,∆φ,∆A,α) = 4
e2

h

µ
π

8
−
∆φ

24
−
∆A
24

+ α
π

16

µ
25

6
− π

¶¶
.

To make this result consistent with the scaling law

σ (ω,Λ,∆φ,∆A,α) = 4
e2

h

µ
π

8
−
1

24

∆φ

α2
α2(ω/Λ)−

∆A
24

+ α(ω/Λ)
π

16

µ
25

6
− π

¶¶
.



RG calculation of conductivityRG calculation of conductivity

dα

d ln ρ
= −α

µ
γ

2π
α2 −

α

4
+
∆A
π

¶
.

σ (ω,Λ,∆φ,∆A,α) = 4
e2

h

µ
π

8
−
1

24

·
∆φ

α2

¸
α2(ω/Λ)−

∆A
24

+ α(ω/Λ)
π

16

µ
25

6
− π

¶¶
.

α(1) = α

∆A = 1

α(1) ≈ 0

α(1) ≈ 3.25

γ = 0.95 π2

32∆A



RG calculation of conductivityRG calculation of conductivity

∆A = 1

α(1) ≈ 0

α(1) ≈ 3.25

γ = 0.95 π2

32∆A

σ →
e2

h

Ã
π

2
+
∆A
6
+
(23− 6π)π2

96γ

Ã
1−

r
1−

32

π2
γ∆A

!!
.



Conductivity scaling functionConductivity scaling function

σ0(ω, T ) =
e2

h

³π
2
tanh

³ ω

4T

´
+ 4πT ln 2δ(ω)

´
.For nonFor non--interacting Dirac particlesinteracting Dirac particles



Conductivity scaling functionConductivity scaling function

For (weakly) CoulombFor (weakly) Coulomb--interacting clean Dirac particlesinteracting clean Dirac particles

L. Fritz et. al. PRB 2008, A. L. Fritz et. al. PRB 2008, A. KashubaKashuba PRB 2008PRB 2008



Conductivity scaling functionConductivity scaling function

For (weakly) CoulombFor (weakly) Coulomb--interacting Dirac particles with disorderinteracting Dirac particles with disorder



ConclusionsConclusions

The combined effect of Coulomb interactions and The combined effect of Coulomb interactions and 
rippling disorder can lead to a (locally) infrarippling disorder can lead to a (locally) infra--red stable red stable 
line of fixed points with line of fixed points with llinear density of statesinear density of states..

Minimal conductivity along such fixed line is Minimal conductivity along such fixed line is 
nonnon--universal, disorder and interaction dependent.universal, disorder and interaction dependent.

OV  arXiv.0810.3697
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