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® [ow-dimensional systems have been a source
of new physics for over 60 years, at least since
Onsager’s solution of the 2D Ising model.

© |n a way, this physics is still interesting today.

Much of the discussion of the 5/2 state
and the MR and anti-Pfaffian wavefunctions

is couched in the language of the Ising model
(e.g. 1, 0, 1)) and the Ising TQFT.
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® [ow-dimensional systems have been a source
of new physics for over 60 years, at least since
Onsager’s solution of the 2D Ising model.

© |n a way, this physics is still interesting today.

Much of the discussion of the 5/2 state
and the MR and anti-Pfaffian wavefunctions

is couched in the language of the Ising model
(e.g. 1, 0, 1)) and the Ising TQFT.

Why?

Does the Ising model tell us anything about 5/2?
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Effective Theory for the MR Pfaffian Edge
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Milovanovic and Read ’95

The neutral sector is a chiral Majorana fermion.
= chiral part of the critical 2D Ising model
and the |+1-D transverse field Ising chain.

subdivide edge
into halves, call
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If we represent the edge of an MR droplet by

a non-chiral Majorana fermion on an interval,
then the boundary conditions at the ends of the
interval must be conformally-invariant.

Conformally-inv. b.c. of Ising model: fixed+, fixed-, free

With no gps. in bulk, the droplet is mapped to a strip

with fixed b.c. at both ends.
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Different possible
Ising boundary cond.

Different possible
bulk quasiparticles.
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@ We can obtain any conf. invar. b.c. at one end of the

strip by adding the corresponding quasiparticle in the
bulk.

Fixed+ —> Fixed- —>F|xed+

IS

Free Free —»
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@ We can obtain any conf. invar. b.c. at one end of the

strip by adding the corresponding quasiparticle in the
bulk.

Fixed+ —> Fixed- —>F|xed+

IS

Free Free —>

® At which end of the strip should the b.c. be
changed?! Can be switched by a
Zio gauge choice = Ising K-W duality
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Coupling a bulk vortex to the edge corresponds to
applying a boundary magnetic field when the b.c. is ‘free’.

L - / 0t (iR (s + Va0 )R + i (8 — V0o )L)
+ 11 0ibo + th oY r(0) 4+ ¥ (0)]
The vortex is

absorbed by the
edge

Flow from
free to fixed b.c.

Entropy loss: AS = — In \/§ (similar to 2-channel Kondo
e.g. Affleck+Ludwig early 90’s)
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A similar analysis holds for Zg3 parafermions, the

critical 3-State Potts model, and the k=3 RR state.
Read, Rezayi '99

H=-1Y b ° \
(1:3)

Primary fields: 1,¢,¢T,J, JT,S C /
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fixed—A b.c.
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fixed—A b.c.
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Point Contacts

Point contacts are a useful probe of the edge
excitations (and edge-bulk interplay) of a topological
state.

Tunneling through the bulk

selects quasiparticles. / o\
Therefore, the scaling //

exponents revealed by < Jr

transport through a pt.
can tell us about the gps.
supported by the state.
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Radu et al. ‘08:

Point contact _—%

in 5/2 state
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Point Contacts and Perturbed Boundary CFT
Quantum Hall Droplet
with a Point Contact

Non-chiral Majorana

C B . )
Fermion with a defect x=—L x= x=1L
. x=0 - ¢ Yig x=L
Two copies of a Majorana 6 ——
- - ~ )
fermion coupled at boundary W o
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Ising Defect Conformal B.C.

The Ising model with a defect line has 4 possible
conformally-invariant b.c.

‘Continuous Neumann’ (Free, Fixed)

‘Continuous Dirichlet’ (Fixed, Fixed)

product boundary

fixed lines conditions

Oshikawa and Affleck ’97
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Majorana Fermion Backscattering

Jbulk
W i---fp/ HN
Majorana fermion N\ GI- + N
backscattering only I i ::_ i §§
? * M A
H H H
\ = 8- A
H +--+ T RN
+ H N + §
e/ e
Jdefect = Jbulk
Continuous Dirichlet Line:
Fermion backscattering only _  Column of bonds
(no vortex tunneling) weakened/strengthened
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Special Points on C.D. Line

: : PR __ '
© Define a Dirac fermion, { e = —1r +iY2R
. 7) L .
bosonize: et =i +iar

® Parametrize by phase shift/boson (0) 0o

value at boundary:

Transmitting: 0 = ( @
(Free,Free): 6 = /2 @ @
iy bmame (O
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Vortex Tunneling

® Vortex Tunneling = Magnetic Field at Defect Line

® Causes flow to (Fixed, Fixed) B.C.

Entropy loss: (Free,Free) — (Fixed,Fixed) = In 2

A=-(14+=

® Scaling dim. depends 1 26\ N 1
on pt.on C.D.line: 8 T 8

Implications for transport

-~ TZA—Q
through a pt. contact: Ras

see also LeClair and Ludwig 99
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Non-Perturbative Treatment

Yo + 10y ~ e
i%ﬂ% ™~ a¢

Standard bosonization:
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Non-Perturbative Treatment

Yo + iy ~ e
i%ﬂ% ™~ a¢

Standard bosonization:

However, to recover the pert.
expansion of e/4 tunneling:

Friday, March 27,2009



Non-Perturbative Treatment

Yo + iy ~ e
i%ﬂ% ™~ a¢

Standard bosonization:

However, to recover the pert.

+ o190/ 2 — igp/2
expansion of e/4 tunneling: 0,0 ~ STe /2 4 §=ei¢/
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Non-Perturbative Treatment

Yo + iy ~ e
i%ﬂ% ™~ a¢

Standard bosonization:

However, to recover the pert.

expansion of e/4 tunneling: Ta0b e 19/2 L gt/

- e
{'ff' ’/’:P

bookkeeping ==
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Non-Perturbative Treatment

Yo + iy ~ e'?
73%% ™~ 8gb

Standard bosonization:

However, to recover the pert.

. , Qg2 — ip/2
expansion of e/4 tunneling: To0p ~ STe /2 4 5T et/

bookkeeping

Fendley, Fisher, Nayak PRL, PRB ’06.
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Non-Perturbative Treatment
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Crossover from Trans. to (Fixed, Fixed)

@ Pf. point contact can be rewritten as resonant
tunneling between Luttinger liquids

M= [ do g (060" + (0.6

4t dTeina(O)/\/g 1t dTeiﬁbb(O)/\/? + h.c.

D) !

*>—o—o 0 o—o—o
| | | |

@ Tunneling current can be computed by time-
dependent DMRG.
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® Agrees with perturbative calculations
around the weak- and strong-backscattering
limits. Only way to compute the current in
the crossover regime.
Agrees with Bethe ansatz for |/3 point contact.

F g : " 8 e\ X% Q\\x
EI\\\\ <) N ‘x\
AN o, \\
1.0 | o X
I \\E AN .
8 N
\\a \\é >€\\
-/ .
Em IB~V s N @ )
«
\E\ . 3
[ t=01 N _ Feiguin, Fendley,
o t=0.2 \ . ’
< =03 5 Fisher, Nayak '08
01} £
— 04 — 1o

Vv

® Future: time-dep. DMRG for anti-Pfaffian, 33 1.
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Continuous Neumann B.C.

@ Dirichlet b.c. for the dual boson: @ — QR — @[

® TFIM with a defect: H=-> 02— o7 02 —bo? 0}
n#0 n#0

® Same as C.D. line, but with a vortex pinned at
the pt. contact

will think about this context soon:

O O

O O
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Perturbing Continuous Neumann b.c.

@ If the bulk vortex is coupled to the edge, the
system flows to the C.D. line.

@ Vortex tunneling takes the system to (Free,Fixed)
because one of the droplets contains a vortex

resonant Majorana

@ —

free, fixed

@ — @ O
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Summary: Fixed Pts. and Flows

- vortex tunneling .
B - (free, fixed)
C.N.
N—transmitting
. bulk—edge
resonant Majorana Ji
fermion tunneling coupting
- '
(+, +) CD (free, free L (fixed, fixed)

vortex tunneling

transmitting
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Continuous Neumann b.c.
and Two-Pt. Contact Interferometers

Along the C.N. line, correlation functions
have the following property (Oshikawa+Affleck "97):

(o(z < 0) o(z' > 0)) =0

Same as the odd-even effect (Bonderson, Kitaey, Shtengel
'06; Stern-Halperin '06) in an interferometer:
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Bulk-Edge Coupling in an MR Interferometer

The corr. fcn. can be computed along the flow
from C.N.to C.D.

(0(2,1)0(0,0)) = (2A2(z — Unt)) 2.1 0z — )

Confluent hypergeometric function:

\IJ(CL,C7 ;(j) _ F(la) /)OO " e_xssc—l(l 4+ S)a—c—1
A = 4dnh® Jv,”

Chamon et al.’97; Fradkin et al.’98  similar to free-to-fixed flow,
Bonderson, Kitaev, Shtengel *06 see Chatterjee and Zamolodchikoy, '94

Stern_Halnerin ’0A4
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This leads to an interference term in the
backscattered current of the form:

(assuming equal charge/neutral velocities)

[12 = Z |t1t2| 25/4\/7'(')\ COS(27T(I)/4(I)0) X
1
eV (oA + e V)]

cos(xe™V/v)

more complicated for unequal velocities, but similar
physics and scaling
Bishara and Nayak, in prep.

see also: Rosenow et al.’08
Overbosch and Wen 08
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Free b.c. in the 3-State Potts model

® Weakening a line of bonds is a relevant
perturbation, A = 4/5

E—vortex

backscattering only

J A
<1-.l----*..->

> .

® Flow to (Free, Free) b.c.

Jbulk

A

%
>

Jdefect = Joulk
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Free b.c. in the 3-State Potts model

® Weakening a line of bonds is a relevant
perturbation, A = 4/5

E—vortex

backscattering only ?
(D) -—=

® Flow to (Free, Free) b.c.

© There is an 8th conformally-inv.

8 backscatt.

‘new’

Jbulk

Jdefect = Joulk

VI7 7777777722220l
LSS S S S S S S,
;//////////////////////////////////

LSS S S S S S S SSSS
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Possible Relevance to Experiment
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Possible Relevance to Experiment

® Recently,Willett et al. have measured the current
through a 2-pt. contact interferometer.

@ There are regions in which the oscillation period as
a function of side gate voltage (a proxy for area)

corresp. to e/4 gps and regions in which they
corresp. to e/2 gps.

@ These regions may correspond to even/odd gp.
numbers in the interference loop.

® If so, the tunneling current should have temp., voltage
dependence detd by the CFT discussed above.
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Rxaj -~ T29—2

Different states, gps. -
different coherence lengths

The long. resistance should
scale with temp. differently
in different possible states.

1 _1
2l \v. v,
e/4 MR |Pf/SU(2), | K=8|(3,3,1) || e/2
L*inpm | 1.4 0.5 19 | 0.7 || 4.8
T* inmK | 36 13 484 | 19 (121

see also, X.Wan et al.’07
K. LeHur,’02

y:g e* | nA? 0 ge | gn | ¢
MR e/4|yes | e™/* |1/8(1/8]1/4
e/2| no | e™/? |1/2 1/2
Pf e/4|yes |e "™/ [1/8(3/8]1/2
e/2| no | ™% |1/2 1/2
SU(2),: | e/4 | yes | €™/2 |1/8|3/8(1/2
e/2| no | e™/? |1/2 1/2
=8: |e/4| no | €™/® |1/8 1/8
e/2| no | /% |1/2 1/2
(3,3,1): |e/4| no |e®™/®|1/8(1/4|3/8
e/2| no | e™/? |1/2 1/2

v==~121] e |nA? 0 ge | gn g
HHy/s: | e/5 | no | e®™/% | 1/5|2/5| 3/5
2¢/5| no | e*/5 | 2/5| 0 | 2/5
BSa/s: | e/5 | yes | €7/4° |1/10| 1/8 | 9/40
e/5 | no | e ®"/% 11/10| 1/2 | 3/5

2¢/5| no | /5 | 2/5| 0 | 2/5
BSss: | e/5 | yes [e ™17/ 1/10| 3/8 |19/40
e/5 | no | e /5 |1/10| 1/2 | 3/5

2¢/5| no | e*/5 | 2/5| 0 | 2/5
RRi—3:| ¢/5 | yes | e /5 |1/10|3/10| 2/5
2¢/5| no | e*/5 | 2/5| 0 | 2/5
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sSummary

® Partition functions of quantum Hall droplets
are given by critical 2D stat. mech. models with
boundary conditions det'd by quasiparticles

in the bulk.

® Inter-edge quasiparticle tunneling causes flows
from one conformally-invariant b.c. to another.

® Even/odd effect = CD vs. CN b.c. for Ising defect

® Simple interp. for 8 conf. inv. b.c. of 3-State Potts,
esp. free and ‘new’.
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