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LS Matter??
• Topological band structures/Weyl/

Majoranas

• SOC vs. Exchange

• Kitaev++

• Iridates

• Quantum spin ice

All GREAT!!! Maybe just a few comments 



Weyl++
• Many talks once again prove that we 

are really good at theory of free 
electrons - and there are still some 
good ideas being explored

• c.f. Potter’s quantum oscillations - nice!

Cite me!!! or else...



Weyl++
• But can we do something beyond weak 

interactions??

Crazy ideas...(of varying degree)...can we do better 
without throwing out the baby with the bathwater??

so
rr

y 
Ta

ka
gi

-s
en

se
i



Kitaev++
4

tors Q and Q0 ⌘ g±Q (where g is a reciprocal lattice vector)
parametrize the same set of spin configurations, we can re-
strict the domain over which minimization of Q is performed
to the first Brillouin zone.

Classical simulated annealing using the single-spin
Metropolis algorithm and periodic boundary conditions was
performed in conjunction with the single-Q ansatz minimiza-
tion. Simulated annealing has the advantage over single-Q
ansatz minimization in that it can access states that are char-
acterized by multiple Q-vectors and is less prone to being
trapped by local minima in energy. On the other hand, al-
though simulated annealing can access single-Q states given
by Eq. 3, the allowable Q-vectors must be commensurate with
the finite system sizes chosen in our simulations. A saw-tooth
like temperature annealing profile was used to better traverse
the spin-configuration space and a minimum of 1⇥10

6 sweeps
(updates per spin) were used for each simulation.

Over 8000 (J,K,�) parameter points for each lattice were
analyzed, with particular focus on spiral phases. For each pa-
rameter point, simulated annealing was performed with ran-
dom initial conditions on systems with n⇥n⇥n conventional
unit cells where n  10. For the spiral regions, we performed
additional annealing on systems with m⇥ 1⇥ 1 conventional
unit cells, where m  100 is the direction along the spiral
wavevector. In addition, a minimum of 1000 single-Q ansatz
minimization runs were also performed per parameter point.
The minimum energy amongst these simulated annealing and
single-Q ansatz minimization runs is deemed the variational
bound of the ground state energy and the corresponding pseu-
dospin configuration is used to characterize the magnetic or-
der of the ground state at that parameter point.

B. General considerations

Before delving into the details of the classical magnetic
ground states of Eq. 1, we first examine some general features
of the hyperhoneycomb and H–1 phase diagrams, which were
obtained via the methods outlined in Sec. IV A.

To fix the overall energy scale, we parametrize the (J,K,�)
parameter space using an angular representation

(J,K,�) = (sin ✓ cos�, sin ✓ sin�, cos ✓), (4)

such that
p
J2

+K2
+ �

2
= 1. The phase diagrams are plot-

ted as polar plots, where the angular component is given by �
and the radial component, r, is given by ✓. In Figs. 5a and
5b, we show the phase diagrams for the hyperhoneycomb and
H–1 lattices, respectively, when � � 0 (i.e. � 2 [0, 2⇡) and
r = ✓ 2 [0, ⇡

2 ]); the �  0 results can be obtained by applying
time-reversal on the odd sublattice pseudospins, which trans-
forms (J,K,�) ! (�J,�K,��) and can be seen in Fig. 5.
Prior to Sec. V C, we will concentrate on the � � 0 case with
the understanding that equivalent statements can be made for
the �  0 case. Important properties of the �  0 phases—
especially those relating to experimental results—will be dis-
cussed in Sec. V C.

At first glance, we note the striking similarities between the
two phase diagrams: despite the different topology of the hy-
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FIG. 2. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with � � 0. The parametrization of the exchange
interactions can be found in Eq. 4. A detailed description of the
phases can be found in Sec. V while a summary can be found in
Table I. The color contours are guides for the eye: in the case of spi-
ral (SP) states, they represent the length of the Q-vector, whereas in
the case of non-spiral states, they represent properties relevant to that
particular phase; see Sec. V for details.
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FIG. 5: (Colors online) Phase diagrams of the e↵ective model (20) obtained with the classical Monte Carlo simulations at low
temperature T = 0.1J1 for (a) second neighbor Kitaev interaction equal to K2 = 0, (b) second neighbor Kitaev interaction
K2 = �2J2. The simulation is done for J1 = 3 meV and K1 = �17 meV. The blue, rose, green, white, cyan and emerald regions
show the ferromagnetic (FM), the stripy, the zigzag, the incommensurate 3Q�spiral, the 120� structure and the intermediate
state, respectively. The red star is placed in the region which might well characterize the set of interactions for Na2IrO3. (c)
The structure factors obtained as a Fourier transform of a snapshot of a given configuration for each of these magnetic phases.
Sharp peaks appear at the corresponding ordering wavevector.

of the J1 � J2 � J3 �K1
22,24 and of the pure Heisenberg

J1�J2�J3 model on the honeycomb lattice.17 It displays
the ferromagnetic (blue region), the stripy (rose region)
and the zigzag antiferromagnetic states (green region),
the 3Q�incommensurate spiral state (white region), the
120� order (cyan region) and a very particular multi-Q
incommensurate state (dark cyan region), which we call
an ”intermediate” phase, as it always separates the 120�

order from either the stripy or the zigzag phases. The
Néel antiferromagnetic order is also one of the possible
ground states of the model. However, the n. n. Kitaev
term, K1, and the second neighbor Heisenberg term, J2,
destabilize it in favor of the stripy and zigzag phases.
The Néel order is realized only at values of J3/J1 > 1,
which are not shown in the Fig. 5 (a).

The simplest state we find on the phase diagram is
the ferromagnetic state which is characterized by a sin-
gle Q = (0, 0) wavevector. This state is the ground
state in the region of large ferromagnetic J2 and small
J3 couplings. As J2 is decreased and J3 is increased,
the ferromagnetic state becomes unstable with respect
to a spiral state, which is built out of three incommen-
surate wavevectors related by C3 rotation. Because the
ordering Q vectors are not connected by reciprocal lat-
tice vectors, the spiral phase represents an example of a

3Q�incommensurate order. Note that the magnitude of
the ordering wavevector |Q| varies throughout the phase.
The stripy and zigzag antiferromagnetic orders are

found for both ferromagnetic and antiferromagnetic J2
interaction of intermediate strength. However, while the
stripy order is found at small values of the third n. n.
interaction, J3, the experimentally observed zigzag order
is found only at values J3 � 0.35J1 which seem too large
given that tight-binding hopping amplitudes are clearly
dominated by the n. n. and the second neighbor terms.21

Both the stripy and the zigzag phases are single-Q orders,
characterized by one of the symmetry related wavevec-
tors: Q1 = (0, 2⇡

3 ), Q2 = (⇡3 ,
⇡p
3
) and Q3 = (�⇡

3 ,
⇡p
3
).

The stripy and the zigzag phases are separated by a
120� state characterized by one of the Q1 = ( 4⇡

3
p
3
, 0),

Q2 = ( 2⇡
3
p
3
, 2⇡

3 ) and Q3 = (� 2⇡
3
p
3
, 2⇡

3 ) wavevectors. Be-

cause these vectors are connected by the reciprocal lattice
vectors, this is a coplanar single-Q spiral which describes
the 120� spin ordering within each of the two sublattices
forming the honeycomb lattice. As x, y and z compo-
nents of spins are all equally modulated in this 120� state,
the spins in this state are lying in one of the (111) planes.
The transition from the stripy and the zigzag states

into the 120� state is not direct; it happens through the
intermediate phase. This transition can be understood

Tricoordinated lattices in 3D
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FIG. 2. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with � � 0. The parametrization of the exchange
interactions can be found in Eq. 4. A detailed description of the
phases can be found in Sec. V while a summary can be found in
Table I. The color contours are guides for the eye: in the case of spi-
ral (SP) states, they represent the length of the Q-vector, whereas in
the case of non-spiral states, they represent properties relevant to that
particular phase; see Sec. V for details.
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Non-zoological 
questions??



The biggest question 
for theorists is obvious:



Why did Kitaev leave?



Other questions for Kitaev

• Can we actually get one of these 
systems into the spin liquid phase?

• Can we do some theory better than 
semiclassical and Kitaev’s exact but 
special solution?

• What does it mean to be close to the 
Kitaev QSL?  Could you tell?



Close to Kitaev

E,T

g
KitaevQCPzigzag

physical 
line

spin waves anyons

soup

??
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Iridates
• Beautiful experiments on Sr2IrO4 from 

BJ Kim

• Surely theorists can learn something 
about high-Tc from this?  Or conversely 
predict something that is different from 
cuprates??

• Or maybe we should just place bets...

B.J. Kim et al. (Science 2014)

„Fermi-arcs“ at low doping

Pseudogap opens at low T

…and closes at 110 K

„normal“ FS

T-dependent „pseudogap“ in Sr2IrO4

many-body effect !



Iridates

• Rich experiments on pyrochlores, 
Nd2Ir2O7 etc. 

• Some theory, yet pretty much all is 
mean-field.  However, ARPES indicates 
strong correlations.   MFT predicts lots 
of nodal physics, but is it really there??  
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Outline
• Iridate electronic structure

• Quadratic band touching

• Field theory of quantum criticality

• Incorporation of rare earth spins

• Kondo mean field

• Strong correlation effects - band narrowing

• Fluctuation-induced first order physics

• Interplay of field, f-electron anisotropy, and Ir localization

• Field-induced nodal states

• Density matrix embedding theory

• Exact solution by AdS/CFT





Gapped phases w/ symmetry ! SET and SPT phases

• there are LRE symmetric states ! Symm. Enriched Topo. phases
- 100s symm. spin liquid through the PSG of topo. excit. Wen 02

- 8 trans. symm. enriched Z2 topo. order in 2D, 256 in 3D Kou-Wen 09

- 1000, 000s symm. Z2 spin liquid through [H2(SG ,Z2)]2⇥ Hermele 12

- Classify SET phases through H3[SG ⇥ GG ,U(1)] Ran 12

• there are SRE symmetric states !

one phase

many di↵erent phases

We may call them symmetry protected trivial (SPT) phase

or symmetry protected topological (SPT) phase
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- Haldane phase of 1D spin-1 chain w/ SO(3) symm. Haldane 83

- 1 topo. ins. w/ U(1)⇥ T symm. in 2D, Kane-Mele 05; Bernevig-Zhang 06

15 in 3D Moore-Balents 07; Fu-Kane-Mele 07

Xiao-Gang Wen, Perimeter/MIT, Oct. 2012 From topological order to long-range entanglement
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Gapped phases w/ symmetry ! SET and SPT phases

• there are LRE symmetric states ! Symm. Enriched Topo. phases
- 100s symm. spin liquid through the PSG of topo. excit. Wen 02

- 8 trans. symm. enriched Z2 topo. order in 2D, 256 in 3D Kou-Wen 09

- 1000, 000s symm. Z2 spin liquid through [H2(SG ,Z2)]2⇥ Hermele 12

- Classify SET phases through H3[SG ⇥ GG ,U(1)] Ran 12

• there are SRE symmetric states !

one phase

many di↵erent phases

We may call them symmetry protected trivial (SPT) phase

or symmetry protected topological (SPT) phase

2
g

1
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

g
1

SRE

SB−SRE 2

SY−SRE 2

symmetry breaking
(group theory)

SPT phases

(tensor category

(group cohomology
  theory)

LRE 1 LRE 2

SET orders

  w/ symmetry)
intrinsic topo. order

topological  order
(tensor category)

symmetry
preserve

no symmetry

phase

transition

SPT 1 SPT 2

- Haldane phase of 1D spin-1 chain w/ SO(3) symm. Haldane 83

- 1 topo. ins. w/ U(1)⇥ T symm. in 2D, Kane-Mele 05; Bernevig-Zhang 06

15 in 3D Moore-Balents 07; Fu-Kane-Mele 07

Xiao-Gang Wen, Perimeter/MIT, Oct. 2012 From topological order to long-range entanglement
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